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Abstract Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected Riemannian
manifold with smooth boundary ∂Ω = Σ. Assume that the Ricci curvature of Ω is non-
negative and the principal curvatures of Σ are bounded from below by a positive constant
c. In this paper, by constructing a new weight function, the authors obtain a lower bound
of the first nonzero Steklov eigenvalue under the assumption that SecΩ ≥ −k, where k

is a positive constant. The authors also extend this result to the Steklov-type eigenvalue
problem of the weighted Laplacian on a metric measure space.
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1 Introduction

Let (Ωn+1, g) be an (n + 1)-dimensional (n ≥ 1) smooth compact connected Riemannian

manifold with smooth boundary ∂Ω = Σ. The Steklov eigenvalue problem is as follows (see

[11, 20]):











∆u = 0 in Ω,

∂u

∂ν
= σu on Σ,

(1.1)

where ∆ is the Laplace-Beltrami operator of Ω and ν is the outward unit normal vector of the

boundary Σ. It is well known that the spectrum of the eigenvalue problem (1.1) is nonnegative,

discrete and unbounded:

0 = σ0 < σ1 ≤ σ2 ≤ · · · → +∞.

For more information about the Steklov eigenvalue problem, interested readers can also refer

to [6].

In this paper, we concern the lower bound of the first nonzero Steklov eigenvalue σ1 of Ω.

In [16], Payne used maximum principle to prove that for a bounded domain Ω ⊂ R
2, if

the geodesic curvature kg of the boundary curve Σ satisfies kg ≥ c > 0, then the first nonzero
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Steklov eigenvalue σ1 of Ω satisfies σ1 ≥ c, with equality holding if and only if Ω is isometric

to a round disk of radius 1
c
. Later, Escobar [3] generalized Payne’s result to 2-dimensional

compact manifolds with nonnegative Gaussian curvature and strictly convex boundary by a

similar method. In higher dimensions, by using Reilly’s formula (see [19]), he also provided

a non-sharp estimate σ1 >
c
2 for compact manifolds (Ωn+1, g) which satisfies RicΩ ≥ 0 and

h ≥ cgΣ > 0, where h is the second fundamental form of Σ with respect to ν in [3].

Based on the above results, Escobar made the following conjecture (see [4]).

Escobar’s conjecture Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected

Riemannian manifold with smooth boundary Σ. Assume that the Ricci curvature RicΩ is

nonnegative and that the second fundamental form h ≥ cgΣ > 0, where c is a positive constant.

Then the first nonzero Steklov eigenvalue σ1 satisfies

σ1 ≥ c.

Moreover, the equality holds if and only if Ω is isometric to a Euclidean ball of radius 1
c
.

When Ω is a ball equipped with rotationally invariant metric, this conjecture has been proved

by Montaño [14] (see also [24]). We also notice that Montaño [15] confirmed this conjecture

for Euclidean ellipsoids. Later, Xia and Xiong [22] showed that Escobar’s conjecture is true

for manifolds with nonnegative sectional curvature. It should be pointed out that they used

the weighted Reilly-type formula (see [18]) and the Pohozaev-type identity (see [17, 23]) and

constructed a special weight function. Recently, Duncan and Kumar [2] provided a new lower

bound of σ1 which can be seen as an improvement on the result of Escobar (i.e., σ1 >
c
2 ).

By constructing a new weight function V (see Section 3) and using the weighted Reilly-type

formula and the Pohozaev-type identity, we first prove the following theorem.

Theorem 1.1 Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected Rieman-

nian manifold with smooth boundary Σ. Assume that the Ricci curvature RicΩ is nonnegative,

the sectional curvature SecΩ ≥ −k and the second fundamental form h ≥ cgΣ > 0 for constants

k > 0 and c >
√
k. Then the first nonzero Steklov eigenvalue σ1 satisfies

σ1 > c− k

c
.

Remark 1.1 When c ≥
√
2k, we conclude that σ1 > c− k

c
≥ c

2 , so that our estimate can

also be considered as an improvement on the estimate (σ1 >
c
2 ) of Escobar [3]. On the other

hand, if we assume that k is arbitrarily small, our estimate also implies Escobar’s conjecture

under the condition of nonnegative sectional curvature by Xia and Xiong [22].

Theorem 1.1 can also be extended to metric measure spaces. Let (Ωn+1, g) be an (n + 1)-

dimensional smooth compact connected Riemannian manifold with smooth boundary Σ and φ

be a smooth function on Ω. Then (Ωn+1, g, e−φdA) is called a metric measure space, where dA
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is the canonical volume element of Ω, and the weighted Laplacian Lφ is defined by

Lφ = ∆− 〈∇φ, ·〉.

We refer interested readers to [21] for more information about metric measure spaces.

The Steklov-type eigenvalue problem of the weighted Laplacian on a metric measure space

(Ωn+1, g, e−φdA) is the following (see also [1]):











Lφu = 0 in Ω,

∂u

∂ν
= τu on Σ.

(1.2)

Similarly, the spectrum of the eigenvalue problem (1.2) is also nonnegative, discrete and un-

bounded:

0 = τ0 < τ1 ≤ τ2 ≤ · · · → +∞.

Readers can refer to [1, 25] for the lower bound estimates of the first nonzero Steklov-type

eigenvalue τ1.

By using the same weight function as in Theorem 1.1, the weighted Reilly-type formula and

the Pohozaev-type identity for the weighted Laplacian (see [1]), we have the following theorem,

which can be seen as a generalization of Theorem 1.1 on metric measure spaces.

Theorem 1.2 Let (Ωn+1, g, e−φdA) be an (n + 1)-dimensional smooth compact connected

metric measure space with smooth boundary Σ, such that the Ricci curvature RicΩ is nonneg-

ative, the sectional curvature SecΩ ≥ −k and the second fundamental form h ≥ cgΣ > 0 for

constants k > 0 and c >
√
k. Assume that φ is convex ; then the first nonzero Steklov-type

eigenvalue τ1 satisfies

τ1 > c− k

c
.

The paper is organized as follows. Section 2 gives some basic definitions and some known

results which are needed later. Section 3 concentrates on the construction of the weight function.

In Section 4, we present the proofs of Theorems 1.1–1.2.

2 Preliminaries

This section mainly introduces some basic definitions and some known results which are

needed in the later proofs.

Let (Ωn+1, g) be an (n + 1)-dimensional smooth compact connected Riemannian manifold

with smooth boundary ∂Ω = Σ and gΣ be the induced metric on Σ; denote by 〈·, ·〉 the inner

product on Ω as well as Σ. Denote by ∇Ω, ∇, ∆ and ∇2 the connection, the gradient, the

Laplacian and the Hessian on Ω, respectively, while by ∇Σ and ∆Σ the gradient and the

Laplacian on Σ, respectively. Let ν be the unit outward normal of Σ. We denote by h and
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H the second fundamental form and the mean curvature of Σ with respect to ν, respectively,

where

h(X,Y ) = −〈∇Ω
XY, ν〉

and

H = trgh.

The principal curvatures of Σ are defined to be the eigenvalues of h. Let RΩ be the curvature

tensor of Ω, i.e., for tangent vectors X,Y, Z,W ,

RΩ(X,Y, Z,W ) = 〈∇Ω
X∇Ω

Y Z −∇Ω
Y ∇Ω

XZ −∇Ω
[X,Y ]Z,W 〉,

and RicΩ be the Ricci curvature tensor of Ω. Let dA and da be the canonical volume element

of Ω and Σ, respectively.

Let (Ωn+1, g, e−φdA) be an (n+1)-dimensional smooth compact connected metric measure

space with smooth boundary ∂Ω = Σ, where φ is a smooth function on Ω. Denote by Lφ

the weighted Laplacian on Ω, while by L
Σ
φ the weighted Laplacian on Σ. Let RicφΩ be the

Bakry-Émery-Ricci tensor of Ω, where

RicφΩ = RicΩ +∇2φ.

We denote by Hφ the weighted mean curvature of Σ with respect to ν, where

Hφ = H − ∂φ

∂ν
.

Now, we introduce some known results which will be used in our proofs. The first result is

the following weighted Reilly-type formula for the weighted Laplacian (see [1]). Readers can

also refer to [18] for more information about the weighted Reilly-type formula.

Proposition 2.1 Let f and V be two smooth functions on (Ωn+1, g, e−φdA). Then we have

∫

Ω

V ((Lφf)
2 − |∇2f |2)e−φdA

=

∫

Σ

V
(

2(LΣ
φf)

∂f

∂ν
+Hφ

(∂f

∂ν

)2

+ h(∇Σf,∇Σf)
)

e−φda

+

∫

Σ

∂V

∂ν
|∇Σf |2e−φda

+

∫

Ω

((∇2V − LφV g + V RicφΩ)(∇f,∇f))e−φdA. (2.1)

Remark 2.1 We point out that when V ≡ 1, the formula (2.1) is the Reilly-type formula

for the weighted Laplacian (see [13]); when φ =const., the formula (2.1) is the weighted Reilly-

type formula in [18]; when V ≡ 1 and φ =const., the formula (2.1) is just the classical Reilly’s

formula (see [19]).

Next, we introduce the following Pohozaev-type identity for the weighted Laplacian (see

[1]).
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Proposition 2.2 Let X be a smooth vector field on (Ωn+1, g, e−φdA). Let f be a smooth

function such that Lφf = 0 on (Ωn+1, g, e−φdA). Then we have

∫

Ω

(

〈∇Ω
∇fX,∇f〉 −

1

2
|∇f |2divφ(X)

)

e−φdA

=

∫

Σ

(∂f

∂ν
〈X,∇f〉 − 1

2
|∇f |2〈X, ν〉

)

e−φda, (2.2)

where divφ = div− 〈∇φ, ·〉 denotes the weighted divergence operator on Ω.

Remark 2.2 We point out that when φ =const., the formula (2.2) is the Pohozaev-type

identity in [23].

3 The Construction of the Weight Function and Its Smooth

Approximation

In this section, we concentrate on the construction of the weight function V . We first

introduce the distance function to the boundary Σ.

Let ρ = ρ(x) = d(x,Σ) be the distance function to the boundary Σ. Obviously, ρ is smooth

on Ω\Cut(Σ), where Cut(Σ) is the set of the cut points of Σ. For this function, we have the

following proposition (see [5, 12]).

Proposition 3.1 Let (Ωn+1, g) be as in Theorem 1.1. Then we have

max
Ω

ρ <
1√
k
coth−1

( c√
k

)

. (3.1)

Now, we define the weight function V as

V = V (ρ) =
c

k
(cosh)2(

√
kθ) ln

( cosh (
√
kθ)

cosh (
√
k(ρ− θ))

)

, (3.2)

where

θ =
1√
k
coth−1

( c√
k

)

.

By Proposition 3.1, we conclude that V ≥ 0 on Ω. A direct calculation shows

V ′(ρ) = − c√
k
(cosh)2(

√
kθ)

sinh (
√
k(ρ− θ))

cosh (
√
k(ρ− θ))

,

V |Σ = 0

and
∂V

∂ν

∣

∣

∣

Σ
= − c√

k
sinh (

√
kθ) cosh (

√
kθ) = − c2

c2 − k
.

For this weight function V , we also have the following proposition.
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Proposition 3.2 Let (Ωn+1, g) be as in Theorem 1.1 and V be the weight function discussed

above. Then ∀x ∈ Ω and X ∈ TxΩ with |X | = 1, we have

C(−V (ρ))(x;X) ≥ c, (3.3)

where

C(−V (ρ))(x;X) = lim inf
r→0

−V (ρ(expx(rX))) − V (ρ(expx(−rX))) + 2V (ρ(x))

r2
.

In particular, if x ∈ Ω\Cut(Σ), we also have

∇2(−V )|x(X,X) ≥ c.

Proof ∀x ∈ Ω, let γ : [0, l] → Ω be the minimizing geodesic with arc length parameter such

that t = ρ(γ(t)) for t ∈ [0, l], where γ(0) ∈ Σ and γ(l) = x.

By Proposition 3.1, we conclude that −V is nonincreasing as a function of ρ. Then by [10,

Theorem 2.31], for any X ∈ TxΩ with |X | = 1, we have

C(−V (ρ))(x;X) ≥ −V ′′(l)〈γ′(l), X〉2 − V ′(l)
f ′(l)

f(l)
(1 − 〈γ′(l), X〉2),

where f is the solution of the following equation










f ′′ − kf = 0,

f(0) = 1,

f ′(0) = −c.

We know that

f = cosh (
√
kt)− c√

k
sinh (

√
kt).

Then a direct calculation shows that

C(−V (ρ))(x;X) ≥ c
(cosh)2(

√
kθ)

(cosh)2(
√
k(l − θ))

〈γ′(l), X〉2

+ c(cosh)2(
√
kθ)(1− 〈γ′(l), X〉2)

> c.

Since ρ is smooth on Ω\Cut(Σ), we know that if x ∈ Ω\Cut(Σ), C(−V (ρ))(x;X) =

∇2(−V )|x(X,X). Therefore,

∇2(−V )|x(X,X) ≥ c.

We can use Proposition 3.2 to consider the convexity of −V . Let us first recall the definition

of a ξ-convex function (see [9]).

Definition 3.1 Let M be a Riemannian manifold, f :M → R be a continuous function on

M and ξ be a real number. We call f a ξ-convex function at a point P ∈ M if there exists a

positive constant δ such that the function ψ(x) = f(x)− ξ+δ
2 d2(P, x) is convex in a neighborhood

of P .
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By a similar proof to that of [22, Lemma 3.4], we conclude the following result.

Proposition 3.3 Let O be a neighborhood of Cut(Σ) such that O ⊂ Ω. Then ∀η > 0, the

function −V discussed above is (c− η)-convex on O.

Since V is not smooth on Ω, we need to consider the smooth Greene-Wu-type approximation

of V (i.e., the Riemannian convolution introduced by Greene-Wu [7–9]). In fact, we have the

following result.

Proposition 3.4 Let O be a neighborhood of Cut(Σ) such that O ⊂ Ω. Then ∀ǫ > 0, there

exists a smooth nonnegative function Vǫ on Ω such that Vǫ = V on Ω\O and

∇2(−Vǫ) ≥ (c− ǫ)g. (3.4)

In particular, we also have

lim
ǫ→0

‖Vǫ − V ‖C0(Ω) = 0.

The proof of Proposition 3.4 is also similar to that of [22, Proposition 3.3], so we omit it.

4 Proofs of Theorems 1.1–1.2

Now, let us concentrate on the proofs of Theorems 1.1–1.2. We have already completed

the construction of the weight function. The following proposition will be a crucial step in the

proof of Theorem 1.1.

Proposition 4.1 Let (Ωn+1, g) be as in Theorem 1.1 and f be a harmonic function on Ω.

Then we have
∫

Σ

(∂f

∂ν

)2

da ≥
(

c− k

c

)

∫

Ω

|∇f |2dA. (4.1)

Proof By the construction of Vǫ, we know that

Vǫ|Σ = 0

and
∂Vǫ

∂ν
= − c2

c2 − k
.

Then by the weighted Reilly-type formula in Proposition 2.1 (let φ ≡ 0), we have

−
∫

Ω

Vǫ|∇2f |2dA = − c2

c2 − k

∫

Σ

|∇Σf |2da

+

∫

Ω

(∇2Vǫ −∆Vǫg + VǫRicΩ)(∇f,∇f)dA. (4.2)

In addition, by the Pohozaev-type identity in Proposition 2.2 (let φ ≡ 0 and X = ∇Vǫ), we
have

∫

Ω

(

〈∇Ω
∇f∇Vǫ,∇f〉 −

1

2
|∇f |2div(∇Vǫ)

)

dA
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=

∫

Σ

(∂f

∂ν
〈∇Vǫ,∇f〉 −

1

2
|∇f |2〈∇Vǫ, ν〉

)

da, (4.3)

that is,
∫

Ω

(2∇2Vǫ −∆Vǫg)(∇f,∇f)dA =
c2

c2 − k

∫

Σ

(

|∇Σf |2 −
(∂f

∂ν

)2)

da. (4.4)

We then have

c2

c2 − k

∫

Σ

(∂f

∂ν

)2

da

=

∫

Ω

(−∇2Vǫ(∇f,∇f) + Vǫ|∇2f |2 + VǫRicΩ(∇f,∇f))dA. (4.5)

By Proposition 3.4 and the curvature assumptions in Theorem 1.1, we have

c2

c2 − k

∫

Σ

(∂f

∂ν

)2

da ≥ (c− ǫ)

∫

Ω

|∇f |2dA.

Then by letting ǫ→ 0, we conclude that
∫

Σ

(∂f

∂ν

)2

da ≥
(

c− k

c

)

∫

Ω

|∇f |2dA.

Proof of Theorem 1.1 Let f be an eigenfunction corresponding to the first nonzero

Steklov eigenvalue σ1. We then have
∫

Σ

(∂f

∂ν

)2

da = σ2
1

∫

Σ

f2da

and
∫

Ω

|∇f |2dA = σ1

∫

Σ

f2da.

Then by (4.1), we conclude that

σ1 ≥ c− k

c
.

Now we assume that σ1 = c− k
c
. By (4.5), we have

c

∫

Ω

|∇f |2dA =
c2

c2 − k

∫

Σ

(∂f

∂ν

)2

da

=

∫

Ω

(−∇2Vǫ(∇f,∇f) + Vǫ|∇2f |2 + VǫRicΩ(∇f,∇f))dA

≥
∫

Ω

((c− ǫ)|∇f |2 + Vǫ|∇2f |2 + VǫRicΩ(∇f,∇f))dA. (4.6)

Then by Proposition 3.4 and letting ǫ→ 0, we have
∫

Ω

(V |∇2f |2 + V RicΩ(∇f,∇f))dA = 0.

We then have the following Obata equation:










∇2f = 0 in Ω,

∂f

∂ν
=

(

c− k

c

)

f on Σ.
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Then by [22, Proposition 4.3], Ω is isometric to a Euclidean ball of radius c
c2−k

. Thus the

second fundamental form h satisfies

h =
(

c− k

c

)

gΣ,

which is a contradiction (since k > 0 and h ≥ cgΣ). We then conclude that

σ1 > c− k

c
.

By the proof of Theorem 1.1, we also have the following corollary.

Corollary 4.1 Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected Rieman-

nian manifold with smooth boundary Σ such that the Ricci curvature RicΩ is nonnegative, the

sectional curvature SecΩ ≥ −k and the second fundamental form h ≥ cgΣ > 0 for constants

k ≥ 0 and c >
√
k. Assume that the first nonzero Steklov eigenvalue σ1 satisfies

σ1 = c− k

c
.

Then k = 0 and Ω is isometric to a Euclidean ball of radius 1
c
.

Now we consider the proof of Theorem 1.2. Note that Proposition 3.4 still holds under the

assumptions of Theorem 1.2. Thus, by a similar method, we have the following proposition.

Proposition 4.2 Let (Ωn+1, g, e−φdA) be as in Theorem 1.2 and f be a smooth function on

Ω such that Lφf = 0. Then we have

∫

Σ

(∂f

∂ν

)2

e−φda ≥
(

c− k

c

)

∫

Ω

|∇f |2e−φdA. (4.7)

Proof By the weighted Reilly-type formula in Proposition 2.1 applied to Vǫ, we have

−
∫

Ω

Vǫ|∇2f |2e−φdA = − c2

c2 − k

∫

Σ

|∇Σf |2e−φda

+

∫

Ω

((∇2Vǫ − LφVǫg + VǫRic
φ
Ω)(∇f,∇f))e−φdA. (4.8)

In addition, by the Pohozaev-type identity in Proposition 2.2 (let X = ∇Vǫ), we have

∫

Ω

(

〈∇Ω
∇f∇Vǫ,∇f〉 −

1

2
|∇f |2divφ(∇Vǫ)

)

e−φdA

=

∫

Σ

(∂f

∂ν
〈∇Vǫ,∇f〉 −

1

2
|∇f |2〈∇Vǫ, ν〉

)

e−φda, (4.9)

that is,

∫

Ω

((2∇2Vǫ − LφVǫg)(∇f,∇f))e−φdA

=
c2

c2 − k

∫

Σ

(

|∇Σf |2 −
(∂f

∂ν

)2)

e−φda. (4.10)
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We then have

c2

c2 − k

∫

Σ

(∂f

∂ν

)2

e−φda

=

∫

Ω

(−∇2Vǫ(∇f,∇f) + Vǫ|∇2f |2 + VǫRic
φ
Ω(∇f,∇f))e−φdA. (4.11)

By Proposition 3.4 and the assumptions in Theorem 1.2, we have

c2

c2 − k

∫

Σ

(∂f

∂ν

)2

e−φda ≥ (c− ǫ)

∫

Ω

|∇f |2e−φdA.

Then by letting ǫ→ 0, we conclude that
∫

Σ

(∂f

∂ν

)2

e−φda ≥
(

c− k

c

)

∫

Ω

|∇f |2e−φdA.

By choosing f as an eigenfunction corresponding to τ1, we conclude that

τ1 ≥ c− k

c
.

Therefore, we just need to prove that the situation where the equality holds will not happen.

Proof of Theorem 1.2 Assume that τ1 = c − k
c
. By a similar calculation in Proposition

4.1, we conclude that
∫

Ω

(V |∇2f |2 + V RicφΩ(∇f,∇f))e−φdA = 0.

We then have the following Obata equation:










∇2f = 0 in Ω,

∂f

∂ν
=

(

c− k

c

)

f on Σ.

Then by a similar argument in the proof of Theorem 1.1, we conclude that

τ1 > c− k

c
.

Similarly, we also have the following corollary.

Corollary 4.2 Let (Ωn+1, g, e−φdA) be an (n+ 1)-dimensional smooth compact connected

metric measure space with smooth boundary Σ, such that the Ricci curvature RicΩ is nonneg-

ative, the sectional curvature SecΩ ≥ −k and the second fundamental form h ≥ cgΣ > 0 for

constants k ≥ 0 and c >
√
k. Assume that φ is convex and that the first nonzero Steklov-type

eigenvalue τ1 satisfies

τ1 = c− k

c
.

Then k = 0 and Ω is isometric to a Euclidean ball of radius 1
c
.
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