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Abstract Let ("1, g) be an (n+1)-dimensional smooth compact connected Riemannian
manifold with smooth boundary 92 = 3. Assume that the Ricci curvature of €2 is non-
negative and the principal curvatures of ¥ are bounded from below by a positive constant
c. In this paper, by constructing a new weight function, the authors obtain a lower bound
of the first nonzero Steklov eigenvalue under the assumption that Secqo > —k, where k
is a positive constant. The authors also extend this result to the Steklov-type eigenvalue
problem of the weighted Laplacian on a metric measure space.
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1 Introduction

Let (Q"*1, g) be an (n + 1)-dimensional (n > 1) smooth compact connected Riemannian
manifold with smooth boundary 092 = 3. The Steklov eigenvalue problem is as follows (see

[11, 20]):

Au=0 in Q,
ou . (1.1)
3, —ou onZ

where A is the Laplace-Beltrami operator of 2 and v is the outward unit normal vector of the
boundary ¥. It is well known that the spectrum of the eigenvalue problem (1.1) is nonnegative,
discrete and unbounded:

O=09g<o01<09< -+ — +o00.

For more information about the Steklov eigenvalue problem, interested readers can also refer
to [6].
In this paper, we concern the lower bound of the first nonzero Steklov eigenvalue o7 of 2.
In [16], Payne used maximum principle to prove that for a bounded domain  C R2?, if

the geodesic curvature k, of the boundary curve ¥ satisfies k; > ¢ > 0, then the first nonzero
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Steklov eigenvalue o1 of () satisfies 01 > ¢, with equality holding if and only if 2 is isometric
to a round disk of radius % Later, Escobar [3] generalized Payne’s result to 2-dimensional
compact manifolds with nonnegative Gaussian curvature and strictly convex boundary by a
similar method. In higher dimensions, by using Reilly’s formula (see [19]), he also provided
a non-sharp estimate o1 > § for compact manifolds (Qn+L g) which satisfies Ricg > 0 and
h > cgs, > 0, where h is the second fundamental form of ¥ with respect to v in [3].

Based on the above results, Escobar made the following conjecture (see [4]).

Escobar’s conjecture Let (2"*!, g) be an (n+ 1)-dimensional smooth compact connected
Riemannian manifold with smooth boundary Y. Assume that the Ricci curvature Ricq is
nonnegative and that the second fundamental form h > cgy, > 0, where c is a positive constant.

Then the first nonzero Steklov eigenvalue oy satisfies
o1 Z C.

Moreover, the equality holds if and only if € is isometric to a Euclidean ball of radius %

When 2 is a ball equipped with rotationally invariant metric, this conjecture has been proved
by Montatio [14] (see also [24]). We also notice that Montafio [15] confirmed this conjecture
for Euclidean ellipsoids. Later, Xia and Xiong [22] showed that Escobar’s conjecture is true
for manifolds with nonnegative sectional curvature. It should be pointed out that they used
the weighted Reilly-type formula (see [18]) and the Pohozaev-type identity (see [17, 23]) and
constructed a special weight function. Recently, Duncan and Kumar [2] provided a new lower
bound of o1 which can be seen as an improvement on the result of Escobar (i.e., o1 > §).

By constructing a new weight function V' (see Section 3) and using the weighted Reilly-type

formula and the Pohozaev-type identity, we first prove the following theorem.

Theorem 1.1 Let (2", g) be an (n+ 1)-dimensional smooth compact connected Rieman-
nian manifold with smooth boundary . Assume that the Ricci curvature Ricq is nonnegative,
the sectional curvature Secq > —k and the second fundamental form h > cgs, > 0 for constants

k>0 and ¢ > Vk. Then the first nonzero Steklov eigenvalue o, satisfies
o1 >¢c— —.
¢

Remark 1.1 When ¢ > 2k, we conclude that o1 > ¢ — % > g, so that our estimate can
also be considered as an improvement on the estimate (01 > §) of Escobar [3]. On the other
hand, if we assume that k is arbitrarily small, our estimate also implies Escobar’s conjecture

under the condition of nonnegative sectional curvature by Xia and Xiong [22].

Theorem 1.1 can also be extended to metric measure spaces. Let (2"*! g) be an (n + 1)-
dimensional smooth compact connected Riemannian manifold with smooth boundary ¥ and ¢

be a smooth function on Q. Then (271, g,e~?dA) is called a metric measure space, where d A
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is the canonical volume element of €2, and the weighted Laplacian ILy is defined by
Ly = A= (Vo,-).

We refer interested readers to [21] for more information about metric measure spaces.

The Steklov-type eigenvalue problem of the weighted Laplacian on a metric measure space
(L g,e7?dA) is the following (see also [1]):

Lyu=0 1in Q,
9 (1.2)
au_ TU on X.

ov

Similarly, the spectrum of the eigenvalue problem (1.2) is also nonnegative, discrete and un-
bounded:

O=m<m <1y <--+ = 400.

Readers can refer to [1, 25] for the lower bound estimates of the first nonzero Steklov-type
eigenvalue 7.

By using the same weight function as in Theorem 1.1, the weighted Reilly-type formula and
the Pohozaev-type identity for the weighted Laplacian (see [1]), we have the following theorem,

which can be seen as a generalization of Theorem 1.1 on metric measure spaces.

Theorem 1.2 Let (2" g,e=?dA) be an (n + 1)-dimensional smooth compact connected
metric measure space with smooth boundary Y, such that the Ricci curvature Ricq is nonneg-
ative, the sectional curvature Secq > —k and the second fundamental form h > cgs > 0 for
constants k > 0 and ¢ > k. Assume that ¢ is convex; then the first nonzero Steklov-type

eigenvalue 11 satisfies

T >C— —.
C

The paper is organized as follows. Section 2 gives some basic definitions and some known
results which are needed later. Section 3 concentrates on the construction of the weight function.

In Section 4, we present the proofs of Theorems 1.1-1.2.

2 Preliminaries

This section mainly introduces some basic definitions and some known results which are
needed in the later proofs.

Let ("1 g) be an (n + 1)-dimensional smooth compact connected Riemannian manifold
with smooth boundary 92 = ¥ and g, be the induced metric on 3; denote by (-,-) the inner
product on Q as well as ¥. Denote by V%, V, A and V? the connection, the gradient, the
Laplacian and the Hessian on (), respectively, while by Vy and Ay the gradient and the

Laplacian on X, respectively. Let v be the unit outward normal of 3. We denote by h and
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H the second fundamental form and the mean curvature of ¥ with respect to v, respectively,
where

h(X,Y) = —(VLY,v)
and
H = trgh.
The principal curvatures of ¥ are defined to be the eigenvalues of h. Let Rq be the curvature

tensor of €2, i.e., for tangent vectors X,Y, Z W,
Ro(X,Y,Z,W) = (V{ VY Z = VYVRZ — Vik y, Z, W),

and Ricg be the Ricci curvature tensor of €). Let dA and da be the canonical volume element
of Q and 3, respectively.

Let (Q"F! g,e~?dA) be an (n + 1)-dimensional smooth compact connected metric measure
space with smooth boundary 02 = ¥, where ¢ is a smooth function on Q. Denote by Ly
the weighted Laplacian on 2, while by ]Lg the weighted Laplacian on Y. Let Ricg be the

Bakry—Emery—Ricci tensor of ), where
Ricf, = Rico + V2¢.

We denote by Hy the weighted mean curvature of ¥ with respect to v, where

9¢

Now, we introduce some known results which will be used in our proofs. The first result is
the following weighted Reilly-type formula for the weighted Laplacian (see [1]). Readers can

also refer to [18] for more information about the weighted Reilly-type formula.

Proposition 2.1 Let f and V' be two smooth functions on ("1 g,e=?dA). Then we have

/Q V(Lo f)? — [V2fP)e?dA

_ /Ev(z(m,gf)% + H¢(%)2 +h(Vsf, Vs f))e da

oV
+/ —|Vsfl?e ?da
» (91/
+/((V2V—L¢Vg+VRic3)(Vf, Vf))e ?dA. (2.1)
Q
Remark 2.1 We point out that when V' = 1, the formula (2.1) is the Reilly-type formula
for the weighted Laplacian (see [13]); when ¢ = const., the formula (2.1) is the weighted Reilly-

type formula in [18]; when V =1 and ¢ = const., the formula (2.1) is just the classical Reilly’s

formula (see [19]).

Next, we introduce the following Pohozaev-type identity for the weighted Laplacian (see

[1))-
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Proposition 2.2 Let X be a smooth vector field on (Q"*!, g,e=?dA). Let f be a smooth
function such that Lyf =0 on (Q"F1, g,e=?dA). Then we have

/9 ((v8,x.97) - %|Vf|2div¢(X))e_¢dA

:/E(%(X,Vﬁ—%|Vf|2<X,u>)e‘¢da, (2.2)

where divg = div — (Vé, ) denotes the weighted divergence operator on ).

Remark 2.2 We point out that when ¢ = const., the formula (2.2) is the Pohozaev-type
identity in [23].

3 The Construction of the Weight Function and Its Smooth
Approximation

In this section, we concentrate on the construction of the weight function V. We first
introduce the distance function to the boundary .

Let p = p(x) = d(z,X) be the distance function to the boundary 3. Obviously, p is smooth
on Q\Cut(X), where Cut(X) is the set of the cut points of 3. For this function, we have the
following proposition (see [5, 12]).

Proposition 3.1 Let (2", g) be as in Theorem 1.1. Then we have

max p < % coth™ (é) (3.1)

Now, we define the weight function V' as

V=V(p) = %(Cosh)Q(\/Eﬂ) 1n( cosh (k) ))),

cosh (VE(p — 6

where

0= %coth_1 (%)

By Proposition 3.1, we conclude that V' > 0 on Q. A direct calculation shows

o o S VER — )
Vip) = \/E( h) (\/Ee)cosh(\/E(p—o))’
Vs =0
and
?9_‘: .= —% sinh (Vk6) cosh (Vk0) = _CQC——k'

For this weight function V', we also have the following proposition.
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Proposition 3.2 Let (""", g) be as in Theorem 1.1 and V be the weight function discussed
above. Then Vx € Q and X € T, with |X|=1, we have

C(=V(p)(z; X) = ¢, (3-3)

where

OV () X) = lim it =Y PP X))) = V(plexp, (-rX))) +2V(pla)

r—0 7‘2

In particular, if © € Q\Cut(X), we also have
V2(=V) (X, X) > c.

Proof Vz € Q, let v : [0,1] = Q be the minimizing geodesic with arc length parameter such
that ¢t = p(y(t)) for ¢ € [0,1], where v(0) € ¥ and (1) = «.

By Proposition 3.1, we conclude that —V is nonincreasing as a function of p. Then by [10,
Theorem 2.31], for any X € 7,,Q with |X| = 1, we have
@)
f(0)

C(=V(p)(x: X) = =V"()(y (1), X)* = V' (1) 7= (1 = (7 (1), X)?),

where f is the solution of the following equation

fll _kf: 07
f(0) =1,
1(0) = —ec.

‘We know that

f = cosh (Vkt) — ﬁ sinh (Vkt).

Then a direct calculation shows that

' (cosh)?(v/k6) , 5
C(=V(p)(z; X) = C(cosh)Q(\/E(l —) (), X)

+ ¢(cosh)2(VEO) (1 — (v (1), X)?)

> c.

Since p is smooth on Q\Cut(X), we know that if z € Q\Cut(X), C(—=V(p))(z; X) =
V2(=V)|2(X, X). Therefore,
V2(-V)|.(X,X) > c.

We can use Proposition 3.2 to consider the convexity of —V. Let us first recall the definition

of a &-convex function (see [9]).

Definition 3.1 Let M be a Riemannian manifold, f : M — R be a continuous function on
M and & be a real number. We call f a &-convex function at a point P € M if there exists a
positive constant § such that the function (x) = f(x)— gTMdQ(P, x) is convez in a neighborhood
of P.
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By a similar proof to that of [22, Lemma 3.4], we conclude the following result.

Proposition 3.3 Let O be a neighborhood of Cut(X) such that O C Q. Then ¥n > 0, the

function =V discussed above is (¢ — n)-convex on O.

Since V' is not smooth on €2, we need to consider the smooth Greene-Wu-type approximation
of V (i.e., the Riemannian convolution introduced by Greene-Wu [7-9]). In fact, we have the

following result.

Proposition 3.4 Let O be a neighborhood of Cut(X) such that O C Q. Then Ve > 0, there

exists a smooth nonnegative function Ve on Q such that Ve =V on Q\O and
VE(-V,) = (c - )g. (3.4)

In particular, we also have

lim [[Ve = Vllgo(q) = 0.

The proof of Proposition 3.4 is also similar to that of [22, Proposition 3.3], so we omit it.

4 Proofs of Theorems 1.1-1.2

Now, let us concentrate on the proofs of Theorems 1.1-1.2. We have already completed
the construction of the weight function. The following proposition will be a crucial step in the

proof of Theorem 1.1.

Proposition 4.1 Let ("t g) be as in Theorem 1.1 and f be a harmonic function on §.

/Z(%)Qdaz (c—%)/QWdeA. (4.1)

Proof By the construction of V., we know that

Then we have

Vel =0

and
Ve 2

R
Then by the weighted Reilly-type formula in Proposition 2.1 (let ¢ = 0), we have

2
- / V.IV2f2dA = ——© / Vs fda
Q >

2 —k

+ / (V2V. — AV.g + V. Ricq)(Vf, Vf)dA. (4.2)
Q

In addition, by the Pohozaev-type identity in Proposition 2.2 (let ¢ = 0 and X = VV,), we

have

/Q (<V%fVVe,Vf> - %lVdeiv(vVe))dA
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— [ (Ghwve v =3IV )da

that is,

2

/Q<2v2x4 —~ AVg)(VS, VA = 5— /E (I - (%)Q)d“

We then have

c? af
2 — / (81/)
- / (“V2VA(V £, V) + VIV + ViRico(V £, V.f))dA
Q

By Proposition 3.4 and the curvature assumptions in Theorem 1.1, we have

c;i /(gi) da > (c—e /|Vf| dA.

Then by letting ¢ — 0, we conclude that

/(gi) da > (c—%)/QWdeA.

(4.3)

Proof of Theorem 1.1 Let f be an eigenfunction corresponding to the first nonzero

Steklov eigenvalue o1. We then have

/ % a—ol/fzda
/Q|Vf|2dA:al/Zf2da.

Then by (4.1), we conclude that
o1 Z cC— —.
c

and

Now we assume that o1 = ¢ — % By (4.5), we have

2
9 _c af\2
C/Q| f|dA_c2—k/E(8u) da

. / (“V2V(VF, V) + V.| V2F2 + VoRico(V f, Vf))dA
Q

> / ((c — IV I? + ViIVES]? + ViRica(V £, V f))dA
Q

Then by Proposition 3.4 and letting ¢ — 0, we have
[ IV 4 VRica w1, ¥ a4 =0
Q

We then have the following Obata equation:

Vif=0 in Q,
(s

(4.6)
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Then by [22, Proposition 4.3], Q is isometric to a Euclidean ball of radius %. Thus the

second fundamental form h satisfies

h = (C— ﬁ)gz,

c

which is a contradiction (since k£ > 0 and h > cgx). We then conclude that
o1 >c— —.
c

By the proof of Theorem 1.1, we also have the following corollary.

Corollary 4.1 Let (Q"1 g) be an (n+1)-dimensional smooth compact connected Rieman-
nian manifold with smooth boundary X such that the Ricci curvature Ricq is nonnegative, the
sectional curvature Secq > —k and the second fundamental form h > cgs > 0 for constants

k>0 and ¢ > Vk. Assume that the first nonzero Steklov eigenvalue oy satisfies
k

g1 =C— —.
C

Then k = 0 and  is isometric to a Euclidean ball of radius %

Now we consider the proof of Theorem 1.2. Note that Proposition 3.4 still holds under the

assumptions of Theorem 1.2. Thus, by a similar method, we have the following proposition.

Proposition 4.2 Let (2", g,e=?dA) be as in Theorem 1.2 and f be a smooth function on
Q such that Ly f = 0. Then we have

/E(%)Qe—%p (c—%)/Q|Vf|2e‘¢dA. (@7)

Proof By the weighted Reilly-type formula in Proposition 2.1 applied to V;, we have

C

2
/ Vs f2e™%da
kJs

2 —

_/ Ve[ V2 fPem?dA = —
Q
+ / ((V2V, — LyVeg + VRich)(Vf, Vf))e ?dA. (4.8)
Q
In addition, by the Pohozaev-type identity in Proposition 2.2 (let X = VV,), we have

/ (<v%fvvé,w> - %|Vf|2div¢(VV€))e_¢dA
Q

0
= [ (G5 V D) = IV TV Je e, (19)

that is,

2

/Q ((2V2V. — LgVeg)(Vf, Vf))e ?dA
S /,g (19512 (51) ) *da (4.10)
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‘We then have

c? af\2 _
cQ—k/E(E) e ¢da
- /Q (“V2VA(V £, V) + VAV P + ViRich(V £, V1))e*dA. (4.11)

By Proposition 3.4 and the assumptions in Theorem 1.2, we have

2 af 2_¢ 2 o
CQ—k/Z(g) e daZ(c—e)/Q|Vf|e dA.

Then by letting € — 0, we conclude that

/E(%fe—%az (c— %)/Q|Vf|2e_¢dA.

By choosing f as an eigenfunction corresponding to 71, we conclude that

T1 2 cC— —.
c
Therefore, we just need to prove that the situation where the equality holds will not happen.

Proof of Theorem 1.2 Assume that m, = ¢ — % By a similar calculation in Proposition

4.1, we conclude that
/Q(V|V2f|2 + VRich(Vf,Vf))e ?dA = 0.

We then have the following Obata equation:
V2f=0 in Q,

%Z(C—%)f on Y.

Then by a similar argument in the proof of Theorem 1.1, we conclude that

T >Cc— —.
&

Similarly, we also have the following corollary.

Corollary 4.2 Let (Q"1 g,e=?dA) be an (n + 1)-dimensional smooth compact connected
metric measure space with smooth boundary %, such that the Ricci curvature Ricq is nonneg-
ative, the sectional curvature Secq > —k and the second fundamental form h > cgs;, > 0 for
constants k > 0 and ¢ > k. Assume that ¢ is convex and that the first nonzero Steklov-type
eigenvalue 11 satisfies L

T =C— —.
C

Then k=0 and Q is isometric to a Euclidean ball of radius %
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