

Lower Bound Estimates of the First Steklov Eigenvalue for Compact Manifolds*

Yiwei LIU¹ Yi-Hu YANG¹

In memory of Professor Hesheng HU

Abstract Let (Ω^{n+1}, g) be an $(n+1)$ -dimensional smooth compact connected Riemannian manifold with smooth boundary $\partial\Omega = \Sigma$. Assume that the Ricci curvature of Ω is non-negative and the principal curvatures of Σ are bounded from below by a positive constant c . In this paper, by constructing a new weight function, the authors obtain a lower bound of the first nonzero Steklov eigenvalue under the assumption that $\text{Sec}_\Omega \geq -k$, where k is a positive constant. The authors also extend this result to the Steklov-type eigenvalue problem of the weighted Laplacian on a metric measure space.

Keywords Lower bound, Steklov eigenvalue, Weight function

2020 MR Subject Classification 53C21, 53C24

1 Introduction

Let (Ω^{n+1}, g) be an $(n+1)$ -dimensional ($n \geq 1$) smooth compact connected Riemannian manifold with smooth boundary $\partial\Omega = \Sigma$. The Steklov eigenvalue problem is as follows (see [11, 20]):

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \sigma u & \text{on } \Sigma, \end{cases} \quad (1.1)$$

where Δ is the Laplace-Beltrami operator of Ω and ν is the outward unit normal vector of the boundary Σ . It is well known that the spectrum of the eigenvalue problem (1.1) is nonnegative, discrete and unbounded:

$$0 = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \rightarrow +\infty.$$

For more information about the Steklov eigenvalue problem, interested readers can also refer to [6].

In this paper, we concern the lower bound of the first nonzero Steklov eigenvalue σ_1 of Ω .

In [16], Payne used maximum principle to prove that for a bounded domain $\Omega \subset \mathbb{R}^2$, if the geodesic curvature k_g of the boundary curve Σ satisfies $k_g \geq c > 0$, then the first nonzero

Manuscript received March 3, 2025.

¹School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

E-mail: lyw201611012@sjtu.edu.cn yangihu@sjtu.edu.cn

*This work was supported by the National Natural Science Foundation of China (No. 12071283).

Steklov eigenvalue σ_1 of Ω satisfies $\sigma_1 \geq c$, with equality holding if and only if Ω is isometric to a round disk of radius $\frac{1}{c}$. Later, Escobar [3] generalized Payne's result to 2-dimensional compact manifolds with nonnegative Gaussian curvature and strictly convex boundary by a similar method. In higher dimensions, by using Reilly's formula (see [19]), he also provided a non-sharp estimate $\sigma_1 > \frac{c}{2}$ for compact manifolds (Ω^{n+1}, g) which satisfies $\text{Ric}_\Omega \geq 0$ and $h \geq cg_\Sigma > 0$, where h is the second fundamental form of Σ with respect to ν in [3].

Based on the above results, Escobar made the following conjecture (see [4]).

Escobar's conjecture Let (Ω^{n+1}, g) be an $(n+1)$ -dimensional smooth compact connected Riemannian manifold with smooth boundary Σ . Assume that the Ricci curvature Ric_Ω is nonnegative and that the second fundamental form $h \geq cg_\Sigma > 0$, where c is a positive constant. Then the first nonzero Steklov eigenvalue σ_1 satisfies

$$\sigma_1 \geq c.$$

Moreover, the equality holds if and only if Ω is isometric to a Euclidean ball of radius $\frac{1}{c}$.

When Ω is a ball equipped with rotationally invariant metric, this conjecture has been proved by Montaño [14] (see also [24]). We also notice that Montaño [15] confirmed this conjecture for Euclidean ellipsoids. Later, Xia and Xiong [22] showed that Escobar's conjecture is true for manifolds with nonnegative sectional curvature. It should be pointed out that they used the weighted Reilly-type formula (see [18]) and the Pohozaev-type identity (see [17, 23]) and constructed a special weight function. Recently, Duncan and Kumar [2] provided a new lower bound of σ_1 which can be seen as an improvement on the result of Escobar (i.e., $\sigma_1 > \frac{c}{2}$).

By constructing a new weight function V (see Section 3) and using the weighted Reilly-type formula and the Pohozaev-type identity, we first prove the following theorem.

Theorem 1.1 *Let (Ω^{n+1}, g) be an $(n+1)$ -dimensional smooth compact connected Riemannian manifold with smooth boundary Σ . Assume that the Ricci curvature Ric_Ω is nonnegative, the sectional curvature $\text{Sec}_\Omega \geq -k$ and the second fundamental form $h \geq cg_\Sigma > 0$ for constants $k > 0$ and $c > \sqrt{k}$. Then the first nonzero Steklov eigenvalue σ_1 satisfies*

$$\sigma_1 > c - \frac{k}{c}.$$

Remark 1.1 When $c \geq \sqrt{2k}$, we conclude that $\sigma_1 > c - \frac{k}{c} \geq \frac{c}{2}$, so that our estimate can also be considered as an improvement on the estimate ($\sigma_1 > \frac{c}{2}$) of Escobar [3]. On the other hand, if we assume that k is arbitrarily small, our estimate also implies Escobar's conjecture under the condition of nonnegative sectional curvature by Xia and Xiong [22].

Theorem 1.1 can also be extended to metric measure spaces. Let (Ω^{n+1}, g) be an $(n+1)$ -dimensional smooth compact connected Riemannian manifold with smooth boundary Σ and ϕ be a smooth function on Ω . Then $(\Omega^{n+1}, g, e^{-\phi} dA)$ is called a metric measure space, where dA

is the canonical volume element of Ω , and the weighted Laplacian \mathbb{L}_ϕ is defined by

$$\mathbb{L}_\phi = \Delta - \langle \nabla \phi, \cdot \rangle.$$

We refer interested readers to [21] for more information about metric measure spaces.

The Steklov-type eigenvalue problem of the weighted Laplacian on a metric measure space $(\Omega^{n+1}, g, e^{-\phi} dA)$ is the following (see also [1]):

$$\begin{cases} \mathbb{L}_\phi u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \tau u & \text{on } \Sigma. \end{cases} \quad (1.2)$$

Similarly, the spectrum of the eigenvalue problem (1.2) is also nonnegative, discrete and unbounded:

$$0 = \tau_0 < \tau_1 \leq \tau_2 \leq \dots \rightarrow +\infty.$$

Readers can refer to [1, 25] for the lower bound estimates of the first nonzero Steklov-type eigenvalue τ_1 .

By using the same weight function as in Theorem 1.1, the weighted Reilly-type formula and the Pohozaev-type identity for the weighted Laplacian (see [1]), we have the following theorem, which can be seen as a generalization of Theorem 1.1 on metric measure spaces.

Theorem 1.2 *Let $(\Omega^{n+1}, g, e^{-\phi} dA)$ be an $(n+1)$ -dimensional smooth compact connected metric measure space with smooth boundary Σ , such that the Ricci curvature Ric_Ω is nonnegative, the sectional curvature $\text{Sec}_\Omega \geq -k$ and the second fundamental form $h \geq cg_\Sigma > 0$ for constants $k > 0$ and $c > \sqrt{k}$. Assume that ϕ is convex; then the first nonzero Steklov-type eigenvalue τ_1 satisfies*

$$\tau_1 > c - \frac{k}{c}.$$

The paper is organized as follows. Section 2 gives some basic definitions and some known results which are needed later. Section 3 concentrates on the construction of the weight function. In Section 4, we present the proofs of Theorems 1.1–1.2.

2 Preliminaries

This section mainly introduces some basic definitions and some known results which are needed in the later proofs.

Let (Ω^{n+1}, g) be an $(n+1)$ -dimensional smooth compact connected Riemannian manifold with smooth boundary $\partial\Omega = \Sigma$ and g_Σ be the induced metric on Σ ; denote by $\langle \cdot, \cdot \rangle$ the inner product on Ω as well as Σ . Denote by ∇^Ω , ∇ , Δ and ∇^2 the connection, the gradient, the Laplacian and the Hessian on Ω , respectively, while by ∇_Σ and Δ_Σ the gradient and the Laplacian on Σ , respectively. Let ν be the unit outward normal of Σ . We denote by h and

H the second fundamental form and the mean curvature of Σ with respect to ν , respectively, where

$$h(X, Y) = -\langle \nabla_X^\Omega Y, \nu \rangle$$

and

$$H = \text{tr}_g h.$$

The principal curvatures of Σ are defined to be the eigenvalues of h . Let R_Ω be the curvature tensor of Ω , i.e., for tangent vectors X, Y, Z, W ,

$$R_\Omega(X, Y, Z, W) = \langle \nabla_X^\Omega \nabla_Y^\Omega Z - \nabla_Y^\Omega \nabla_X^\Omega Z - \nabla_{[X, Y]}^\Omega Z, W \rangle,$$

and Ric_Ω be the Ricci curvature tensor of Ω . Let dA and da be the canonical volume element of Ω and Σ , respectively.

Let $(\Omega^{n+1}, g, e^{-\phi} dA)$ be an $(n+1)$ -dimensional smooth compact connected metric measure space with smooth boundary $\partial\Omega = \Sigma$, where ϕ is a smooth function on Ω . Denote by \mathbb{L}_ϕ the weighted Laplacian on Ω , while by \mathbb{L}_ϕ^Σ the weighted Laplacian on Σ . Let Ric_Ω^ϕ be the Bakry-Émery-Ricci tensor of Ω , where

$$\text{Ric}_\Omega^\phi = \text{Ric}_\Omega + \nabla^2 \phi.$$

We denote by H_ϕ the weighted mean curvature of Σ with respect to ν , where

$$H_\phi = H - \frac{\partial \phi}{\partial \nu}.$$

Now, we introduce some known results which will be used in our proofs. The first result is the following weighted Reilly-type formula for the weighted Laplacian (see [1]). Readers can also refer to [18] for more information about the weighted Reilly-type formula.

Proposition 2.1 *Let f and V be two smooth functions on $(\Omega^{n+1}, g, e^{-\phi} dA)$. Then we have*

$$\begin{aligned} & \int_{\Omega} V((\mathbb{L}_\phi f)^2 - |\nabla^2 f|^2) e^{-\phi} dA \\ &= \int_{\Sigma} V \left(2(\mathbb{L}_\phi^\Sigma f) \frac{\partial f}{\partial \nu} + H_\phi \left(\frac{\partial f}{\partial \nu} \right)^2 + h(\nabla_\Sigma f, \nabla_\Sigma f) \right) e^{-\phi} da \\ & \quad + \int_{\Sigma} \frac{\partial V}{\partial \nu} |\nabla_\Sigma f|^2 e^{-\phi} da \\ & \quad + \int_{\Omega} ((\nabla^2 V - \mathbb{L}_\phi V g + V \text{Ric}_\Omega^\phi)(\nabla f, \nabla f)) e^{-\phi} dA. \end{aligned} \tag{2.1}$$

Remark 2.1 We point out that when $V \equiv 1$, the formula (2.1) is the Reilly-type formula for the weighted Laplacian (see [13]); when $\phi = \text{const.}$, the formula (2.1) is the weighted Reilly-type formula in [18]; when $V \equiv 1$ and $\phi = \text{const.}$, the formula (2.1) is just the classical Reilly's formula (see [19]).

Next, we introduce the following Pohozaev-type identity for the weighted Laplacian (see [1]).

Proposition 2.2 *Let X be a smooth vector field on $(\Omega^{n+1}, g, e^{-\phi}dA)$. Let f be a smooth function such that $\mathbb{L}_\phi f = 0$ on $(\Omega^{n+1}, g, e^{-\phi}dA)$. Then we have*

$$\begin{aligned} & \int_{\Omega} \left(\langle \nabla_{\nabla f}^{\Omega} X, \nabla f \rangle - \frac{1}{2} |\nabla f|^2 \operatorname{div}_{\phi}(X) \right) e^{-\phi} dA \\ &= \int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \langle X, \nabla f \rangle - \frac{1}{2} |\nabla f|^2 \langle X, \nu \rangle \right) e^{-\phi} d\alpha, \end{aligned} \quad (2.2)$$

where $\operatorname{div}_{\phi} = \operatorname{div} - \langle \nabla \phi, \cdot \rangle$ denotes the weighted divergence operator on Ω .

Remark 2.2 We point out that when $\phi = \operatorname{const.}$, the formula (2.2) is the Pohozaev-type identity in [23].

3 The Construction of the Weight Function and Its Smooth Approximation

In this section, we concentrate on the construction of the weight function V . We first introduce the distance function to the boundary Σ .

Let $\rho = \rho(x) = d(x, \Sigma)$ be the distance function to the boundary Σ . Obviously, ρ is smooth on $\Omega \setminus \operatorname{Cut}(\Sigma)$, where $\operatorname{Cut}(\Sigma)$ is the set of the cut points of Σ . For this function, we have the following proposition (see [5, 12]).

Proposition 3.1 *Let (Ω^{n+1}, g) be as in Theorem 1.1. Then we have*

$$\max_{\Omega} \rho < \frac{1}{\sqrt{k}} \coth^{-1} \left(\frac{c}{\sqrt{k}} \right). \quad (3.1)$$

Now, we define the weight function V as

$$V = V(\rho) = \frac{c}{k} (\cosh)^2(\sqrt{k}\theta) \ln \left(\frac{\cosh(\sqrt{k}\theta)}{\cosh(\sqrt{k}(\rho - \theta))} \right), \quad (3.2)$$

where

$$\theta = \frac{1}{\sqrt{k}} \coth^{-1} \left(\frac{c}{\sqrt{k}} \right).$$

By Proposition 3.1, we conclude that $V \geq 0$ on Ω . A direct calculation shows

$$V'(\rho) = -\frac{c}{\sqrt{k}} (\cosh)^2(\sqrt{k}\theta) \frac{\sinh(\sqrt{k}(\rho - \theta))}{\cosh(\sqrt{k}(\rho - \theta))},$$

$$V|_{\Sigma} = 0$$

and

$$\frac{\partial V}{\partial \nu} \Big|_{\Sigma} = -\frac{c}{\sqrt{k}} \sinh(\sqrt{k}\theta) \cosh(\sqrt{k}\theta) = -\frac{c^2}{c^2 - k}.$$

For this weight function V , we also have the following proposition.

Proposition 3.2 *Let (Ω^{n+1}, g) be as in Theorem 1.1 and V be the weight function discussed above. Then $\forall x \in \Omega$ and $X \in T_x\Omega$ with $|X| = 1$, we have*

$$C(-V(\rho))(x; X) \geq c, \quad (3.3)$$

where

$$C(-V(\rho))(x; X) = \liminf_{r \rightarrow 0} \frac{-V(\rho(\exp_x(rX))) - V(\rho(\exp_x(-rX))) + 2V(\rho(x))}{r^2}.$$

In particular, if $x \in \Omega \setminus \text{Cut}(\Sigma)$, we also have

$$\nabla^2(-V)|_x(X, X) \geq c.$$

Proof $\forall x \in \Omega$, let $\gamma : [0, l] \rightarrow \Omega$ be the minimizing geodesic with arc length parameter such that $t = \rho(\gamma(t))$ for $t \in [0, l]$, where $\gamma(0) \in \Sigma$ and $\gamma(l) = x$.

By Proposition 3.1, we conclude that $-V$ is nonincreasing as a function of ρ . Then by [10, Theorem 2.31], for any $X \in T_x\Omega$ with $|X| = 1$, we have

$$C(-V(\rho))(x; X) \geq -V''(l)\langle \gamma'(l), X \rangle^2 - V'(l) \frac{f'(l)}{f(l)}(1 - \langle \gamma'(l), X \rangle^2),$$

where f is the solution of the following equation

$$\begin{cases} f'' - kf = 0, \\ f(0) = 1, \\ f'(0) = -c. \end{cases}$$

We know that

$$f = \cosh(\sqrt{k}t) - \frac{c}{\sqrt{k}} \sinh(\sqrt{k}t).$$

Then a direct calculation shows that

$$\begin{aligned} C(-V(\rho))(x; X) &\geq c \frac{(\cosh)^2(\sqrt{k}\theta)}{(\cosh)^2(\sqrt{k}(l-\theta))} \langle \gamma'(l), X \rangle^2 \\ &\quad + c(\cosh)^2(\sqrt{k}\theta)(1 - \langle \gamma'(l), X \rangle^2) \\ &> c. \end{aligned}$$

Since ρ is smooth on $\Omega \setminus \text{Cut}(\Sigma)$, we know that if $x \in \Omega \setminus \text{Cut}(\Sigma)$, $C(-V(\rho))(x; X) = \nabla^2(-V)|_x(X, X)$. Therefore,

$$\nabla^2(-V)|_x(X, X) \geq c.$$

We can use Proposition 3.2 to consider the convexity of $-V$. Let us first recall the definition of a ξ -convex function (see [9]).

Definition 3.1 *Let M be a Riemannian manifold, $f : M \rightarrow \mathbb{R}$ be a continuous function on M and ξ be a real number. We call f a ξ -convex function at a point $P \in M$ if there exists a positive constant δ such that the function $\psi(x) = f(x) - \frac{\xi+\delta}{2}d^2(P, x)$ is convex in a neighborhood of P .*

By a similar proof to that of [22, Lemma 3.4], we conclude the following result.

Proposition 3.3 *Let O be a neighborhood of $\text{Cut}(\Sigma)$ such that $\overline{O} \subset \Omega$. Then $\forall \eta > 0$, the function $-V$ discussed above is $(c - \eta)$ -convex on O .*

Since V is not smooth on Ω , we need to consider the smooth Greene-Wu-type approximation of V (i.e., the Riemannian convolution introduced by Greene-Wu [7–9]). In fact, we have the following result.

Proposition 3.4 *Let O be a neighborhood of $\text{Cut}(\Sigma)$ such that $\overline{O} \subset \Omega$. Then $\forall \epsilon > 0$, there exists a smooth nonnegative function V_ϵ on Ω such that $V_\epsilon = V$ on $\Omega \setminus O$ and*

$$\nabla^2(-V_\epsilon) \geq (c - \epsilon)g. \quad (3.4)$$

In particular, we also have

$$\lim_{\epsilon \rightarrow 0} \|V_\epsilon - V\|_{C^0(\Omega)} = 0.$$

The proof of Proposition 3.4 is also similar to that of [22, Proposition 3.3], so we omit it.

4 Proofs of Theorems 1.1–1.2

Now, let us concentrate on the proofs of Theorems 1.1–1.2. We have already completed the construction of the weight function. The following proposition will be a crucial step in the proof of Theorem 1.1.

Proposition 4.1 *Let (Ω^{n+1}, g) be as in Theorem 1.1 and f be a harmonic function on Ω . Then we have*

$$\int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 da \geq \left(c - \frac{k}{c} \right) \int_{\Omega} |\nabla f|^2 dA. \quad (4.1)$$

Proof By the construction of V_ϵ , we know that

$$V_\epsilon|_{\Sigma} = 0$$

and

$$\frac{\partial V_\epsilon}{\partial \nu} = -\frac{c^2}{c^2 - k}.$$

Then by the weighted Reilly-type formula in Proposition 2.1 (let $\phi \equiv 0$), we have

$$\begin{aligned} - \int_{\Omega} V_\epsilon |\nabla^2 f|^2 dA &= -\frac{c^2}{c^2 - k} \int_{\Sigma} |\nabla_{\Sigma} f|^2 da \\ &\quad + \int_{\Omega} (\nabla^2 V_\epsilon - \Delta V_\epsilon g + V_\epsilon \text{Ric}_{\Omega})(\nabla f, \nabla f) dA. \end{aligned} \quad (4.2)$$

In addition, by the Pohozaev-type identity in Proposition 2.2 (let $\phi \equiv 0$ and $X = \nabla V_\epsilon$), we have

$$\int_{\Omega} \left(\langle \nabla_{\nabla f}^{\Omega} \nabla V_\epsilon, \nabla f \rangle - \frac{1}{2} |\nabla f|^2 \text{div}(\nabla V_\epsilon) \right) dA$$

$$= \int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \langle \nabla V_{\epsilon}, \nabla f \rangle - \frac{1}{2} |\nabla f|^2 \langle \nabla V_{\epsilon}, \nu \rangle \right) da, \quad (4.3)$$

that is,

$$\int_{\Omega} (2\nabla^2 V_{\epsilon} - \Delta V_{\epsilon} g) (\nabla f, \nabla f) dA = \frac{c^2}{c^2 - k} \int_{\Sigma} \left(|\nabla_{\Sigma} f|^2 - \left(\frac{\partial f}{\partial \nu} \right)^2 \right) da. \quad (4.4)$$

We then have

$$\begin{aligned} & \frac{c^2}{c^2 - k} \int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 da \\ &= \int_{\Omega} (-\nabla^2 V_{\epsilon} (\nabla f, \nabla f) + V_{\epsilon} |\nabla^2 f|^2 + V_{\epsilon} \text{Ric}_{\Omega} (\nabla f, \nabla f)) dA. \end{aligned} \quad (4.5)$$

By Proposition 3.4 and the curvature assumptions in Theorem 1.1, we have

$$\frac{c^2}{c^2 - k} \int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 da \geq (c - \epsilon) \int_{\Omega} |\nabla f|^2 dA.$$

Then by letting $\epsilon \rightarrow 0$, we conclude that

$$\int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 da \geq \left(c - \frac{k}{c} \right) \int_{\Omega} |\nabla f|^2 dA.$$

Proof of Theorem 1.1 Let f be an eigenfunction corresponding to the first nonzero Steklov eigenvalue σ_1 . We then have

$$\int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 da = \sigma_1^2 \int_{\Sigma} f^2 da$$

and

$$\int_{\Omega} |\nabla f|^2 dA = \sigma_1 \int_{\Sigma} f^2 da.$$

Then by (4.1), we conclude that

$$\sigma_1 \geq c - \frac{k}{c}.$$

Now we assume that $\sigma_1 = c - \frac{k}{c}$. By (4.5), we have

$$\begin{aligned} c \int_{\Omega} |\nabla f|^2 dA &= \frac{c^2}{c^2 - k} \int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 da \\ &= \int_{\Omega} (-\nabla^2 V_{\epsilon} (\nabla f, \nabla f) + V_{\epsilon} |\nabla^2 f|^2 + V_{\epsilon} \text{Ric}_{\Omega} (\nabla f, \nabla f)) dA \\ &\geq \int_{\Omega} ((c - \epsilon) |\nabla f|^2 + V_{\epsilon} |\nabla^2 f|^2 + V_{\epsilon} \text{Ric}_{\Omega} (\nabla f, \nabla f)) dA. \end{aligned} \quad (4.6)$$

Then by Proposition 3.4 and letting $\epsilon \rightarrow 0$, we have

$$\int_{\Omega} (V |\nabla^2 f|^2 + V \text{Ric}_{\Omega} (\nabla f, \nabla f)) dA = 0.$$

We then have the following Obata equation:

$$\begin{cases} \nabla^2 f = 0 & \text{in } \Omega, \\ \frac{\partial f}{\partial \nu} = \left(c - \frac{k}{c} \right) f & \text{on } \Sigma. \end{cases}$$

Then by [22, Proposition 4.3], Ω is isometric to a Euclidean ball of radius $\frac{c}{c^2-k}$. Thus the second fundamental form h satisfies

$$h = \left(c - \frac{k}{c}\right)g_\Sigma,$$

which is a contradiction (since $k > 0$ and $h \geq cg_\Sigma$). We then conclude that

$$\sigma_1 > c - \frac{k}{c}.$$

By the proof of Theorem 1.1, we also have the following corollary.

Corollary 4.1 *Let (Ω^{n+1}, g) be an $(n+1)$ -dimensional smooth compact connected Riemannian manifold with smooth boundary Σ such that the Ricci curvature Ric_Ω is nonnegative, the sectional curvature $\text{Sec}_\Omega \geq -k$ and the second fundamental form $h \geq cg_\Sigma > 0$ for constants $k \geq 0$ and $c > \sqrt{k}$. Assume that the first nonzero Steklov eigenvalue σ_1 satisfies*

$$\sigma_1 = c - \frac{k}{c}.$$

Then $k = 0$ and Ω is isometric to a Euclidean ball of radius $\frac{1}{c}$.

Now we consider the proof of Theorem 1.2. Note that Proposition 3.4 still holds under the assumptions of Theorem 1.2. Thus, by a similar method, we have the following proposition.

Proposition 4.2 *Let $(\Omega^{n+1}, g, e^{-\phi}dA)$ be as in Theorem 1.2 and f be a smooth function on Ω such that $\mathbb{L}_\phi f = 0$. Then we have*

$$\int_\Sigma \left(\frac{\partial f}{\partial \nu}\right)^2 e^{-\phi} da \geq \left(c - \frac{k}{c}\right) \int_\Omega |\nabla f|^2 e^{-\phi} dA. \quad (4.7)$$

Proof By the weighted Reilly-type formula in Proposition 2.1 applied to V_ϵ , we have

$$\begin{aligned} - \int_\Omega V_\epsilon |\nabla^2 f|^2 e^{-\phi} dA &= -\frac{c^2}{c^2 - k} \int_\Sigma |\nabla_\Sigma f|^2 e^{-\phi} da \\ &\quad + \int_\Omega ((\nabla^2 V_\epsilon - \mathbb{L}_\phi V_\epsilon g + V_\epsilon \text{Ric}_\Omega^\phi)(\nabla f, \nabla f)) e^{-\phi} dA. \end{aligned} \quad (4.8)$$

In addition, by the Pohozaev-type identity in Proposition 2.2 (let $X = \nabla V_\epsilon$), we have

$$\begin{aligned} &\int_\Omega \left(\langle \nabla_{\nabla f}^\Omega \nabla V_\epsilon, \nabla f \rangle - \frac{1}{2} |\nabla f|^2 \text{div}_\phi(\nabla V_\epsilon) \right) e^{-\phi} dA \\ &= \int_\Sigma \left(\frac{\partial f}{\partial \nu} \langle \nabla V_\epsilon, \nabla f \rangle - \frac{1}{2} |\nabla f|^2 \langle \nabla V_\epsilon, \nu \rangle \right) e^{-\phi} da, \end{aligned} \quad (4.9)$$

that is,

$$\begin{aligned} &\int_\Omega ((2\nabla^2 V_\epsilon - \mathbb{L}_\phi V_\epsilon g)(\nabla f, \nabla f)) e^{-\phi} dA \\ &= \frac{c^2}{c^2 - k} \int_\Sigma \left(|\nabla_\Sigma f|^2 - \left(\frac{\partial f}{\partial \nu}\right)^2 \right) e^{-\phi} da. \end{aligned} \quad (4.10)$$

We then have

$$\begin{aligned} & \frac{c^2}{c^2 - k} \int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 e^{-\phi} da \\ &= \int_{\Omega} (-\nabla^2 V_{\epsilon}(\nabla f, \nabla f) + V_{\epsilon} |\nabla^2 f|^2 + V_{\epsilon} \text{Ric}_{\Omega}^{\phi}(\nabla f, \nabla f)) e^{-\phi} dA. \end{aligned} \quad (4.11)$$

By Proposition 3.4 and the assumptions in Theorem 1.2, we have

$$\frac{c^2}{c^2 - k} \int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 e^{-\phi} da \geq (c - \epsilon) \int_{\Omega} |\nabla f|^2 e^{-\phi} dA.$$

Then by letting $\epsilon \rightarrow 0$, we conclude that

$$\int_{\Sigma} \left(\frac{\partial f}{\partial \nu} \right)^2 e^{-\phi} da \geq \left(c - \frac{k}{c} \right) \int_{\Omega} |\nabla f|^2 e^{-\phi} dA.$$

By choosing f as an eigenfunction corresponding to τ_1 , we conclude that

$$\tau_1 \geq c - \frac{k}{c}.$$

Therefore, we just need to prove that the situation where the equality holds will not happen.

Proof of Theorem 1.2 Assume that $\tau_1 = c - \frac{k}{c}$. By a similar calculation in Proposition 4.1, we conclude that

$$\int_{\Omega} (V |\nabla^2 f|^2 + V \text{Ric}_{\Omega}^{\phi}(\nabla f, \nabla f)) e^{-\phi} dA = 0.$$

We then have the following Obata equation:

$$\begin{cases} \nabla^2 f = 0 & \text{in } \Omega, \\ \frac{\partial f}{\partial \nu} = \left(c - \frac{k}{c} \right) f & \text{on } \Sigma. \end{cases}$$

Then by a similar argument in the proof of Theorem 1.1, we conclude that

$$\tau_1 > c - \frac{k}{c}.$$

Similarly, we also have the following corollary.

Corollary 4.2 Let $(\Omega^{n+1}, g, e^{-\phi} dA)$ be an $(n+1)$ -dimensional smooth compact connected metric measure space with smooth boundary Σ , such that the Ricci curvature Ric_{Ω} is nonnegative, the sectional curvature $\text{Sec}_{\Omega} \geq -k$ and the second fundamental form $h \geq cg_{\Sigma} > 0$ for constants $k \geq 0$ and $c > \sqrt{k}$. Assume that ϕ is convex and that the first nonzero Steklov-type eigenvalue τ_1 satisfies

$$\tau_1 = c - \frac{k}{c}.$$

Then $k = 0$ and Ω is isometric to a Euclidean ball of radius $\frac{1}{c}$.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

- [1] Deng, Y. L., Du, F., Mao, J. and Zhao, Y., Sharp eigenvalue estimates and related rigidity theorems, 2020, arXiv: 2003.13231.
- [2] Duncan, Jonah A. J. and Kumar, A., The first Steklov eigenvalue on manifolds with non-negative Ricci curvature and convex boundary, *Journal of Geometric Analysis*, **35**(3), 2025, Paper No. 95, 18 pp.
- [3] Escobar, J. F., The geometry of the first non-zero Stekloff eigenvalue, *Journal of Functional Analysis*, **150**(2), 1997, 544–556.
- [4] Escobar, J. F., An isoperimetric inequality and the first Steklov eigenvalue, *Journal of Functional Analysis*, **165**(1), 1999, 101–116.
- [5] Ge, J., Comparison theorems for manifolds with mean convex boundary, *Communications in Contemporary Mathematics*, **17**(5), 2015, 1550010, 12 pp.
- [6] Girouard, A. and Polterovich, I., Spectral geometry of the Steklov problem, *Journal of Spectral Theory*, **7**(2), 2017, 321–359.
- [7] Greene, R. E. and Wu, H., On the subharmonicity and plurisubharmonicity of geodesically convex functions, *Indiana University Mathematics Journal*, **22**(7), 1973, 641–653.
- [8] Greene, R. E. and Wu, H., C^∞ convex functions and manifolds of positive curvature, *Acta Mathematica*, **137**(3–4), 1976, 209–245.
- [9] Greene, R. E. and Wu, H., C^∞ approximations of convex, subharmonic, and plurisubharmonic functions, *Annales Scientifiques de l’École Normale Supérieure, Quatrième Série*, **12**(1), 1979, 47–84.
- [10] Kasue, A., A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold, *Japanese Journal of Mathematics, New series*, **8**(2), 1982, 309–341.
- [11] Kuznetsov, N., Kulczycki, T., Kwaśnicki, M., et al., The legacy of Vladimir Andreevich Steklov, *Notices of the AMS*, **61**(1), 2014, 9–22.
- [12] Li, H. Z. and Wei, Y., Rigidity theorems for diameter estimates of compact manifold with boundary, *International Mathematics Research Notices, IMRN*, **2015**(11), 2015, 3651–3668.
- [13] Ma, L. and Du, S. H., Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians, *Comptes Rendus Mathématique, Académie des Sciences, Paris*, **348**(21–22), 2010, 1203–1206.
- [14] Montaño Carreño, Ó. A., The Stekloff problem for rotationally invariant metrics on the ball, *Revista Colombiana de Matemáticas*, **47**(3), 2013, 181–190.
- [15] Montaño Carreño, Ó. A., Escobars conjecture for the first Steklov eigenvalue on n -ellipsoids, *Revista de Ciencias*, **20**(2), 2016, 55–61.
- [16] Payne, L. E., Some isoperimetric inequalities for harmonic functions, *SIAM Journal on Mathematical Analysis*, **1**(3), 1970, 354–359.
- [17] Provenzano, L. and Stubbe, J., Weyl-type bounds for Steklov eigenvalues, *Journal of Spectral Theory*, **9**(1), 2018, 349–377.
- [18] Qiu, G. H. and Xia, C., A generalization of Reilly’s formula and its applications to a new Heintze–Karcher type inequality, *International Mathematics Research Notices, IMRN*, **2015**(17), 2015, 7608–7619.
- [19] Reilly, R., Applications of the Hessian operator in a Riemannian manifold, *Indiana University Mathematics Journal*, **26**(3), 1977, 459–472.
- [20] Stekloff, W., Sur les problèmes fondamentaux de la physique mathématique, *Annales Scientifiques de l’École Normale Supérieure, Troisième Série*, **19**, 1902, 455–490.
- [21] Wei, G. F. and Wylie, W., Comparison geometry for the Bakry–Émery Ricci tensor, *Journal of Differential Geometry*, **83**(2), 2009, 337–405.
- [22] Xia, C. and Xiong, C. W., Escobars conjecture on a sharp lower bound for the first nonzero Steklov eigenvalue, *Peking Mathematical Journal*, **7**(2), 2024, 759–778.

- [23] Xiong, C. W., Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds, *Journal of Functional Analysis*, **275**(12), 2018, 3245–3258.
- [24] Xiong, C. W., On the spectra of three Steklov eigenvalue problems on warped product manifolds, *The Journal of Geometric Analysis*, **32**(5), 2022, Paper No. 153, 35 pp.
- [25] Zhao, Y., Wu, C. X., Mao, J. and Du, F., Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates, *Revista Matemática Complutense*, **33**, 2020, 389–414.