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Abstract Let M be a Riemannian manifold. For p € M, the tensor algebra T(m_) of

the negative part of the affinization m of the tangent space T, M of M at p has a natural
structure of a meromorphic open-string vertex algebra. These meromorphic open-string
vertex algebras form a vector bundle over M with a connection. The author constructs a
sheaf V of meromorphic open-string vertex algebras on the sheaf of parallel sections of this
vector bundle. Using covariant derivatives, he constructs a representation on the space of
smooth functions of the algebra of parallel tensor fields. These representations are used
to construct a sheaf W of left V-modules generated by the sheaf of smooth functions. In
particular, the author obtains a meromorphic open-string vertex algebra Vs as the global
sections on M of the sheaf V and a left Vis-module Wy as the global sections on M of the
sheaf WW. He shows that the Laplacian on M is in fact a component of a vertex operator
for the left Vis-module Wi, restricted to the space of smooth functions.
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1 Introduction

Conjectures by physicists on nonlinear sigma models, especially supersymmetric nonlinear
sigma models with Calabi-Yau manifolds as targets, are one of the most influential sources
of inspiration and motivation for many works in geometry in the past two or three decades.
Classically, a nonlinear sigma model is given by the set of all harmonic maps from a two-
dimensional Riemannian manifold to a Riemannian manifold (the target). The main challenge
for mathematicians is the construction of the corresponding quantum nonlinear sigma model.
The difficulties lie in the fact that the target is not flat, the nonlinear sigma model is a quantum
field theory with interaction. In physics, a quantum field theory with interaction is studied
by using the methods of path integrals, perturbative expansion (more precisely, asymptotic
expansion) and renormalization. Unfortunately, it does not seem to be mathematically possible
to directly rigorize these physical methods to construct the correlation functions for such a

quantum field theory.

Manuscript received March 7, 2025.

IDepartment of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019,
USA; Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.
E-mail: yzhuang@math.rutgers.edu

*This work was supported by the National Science Foundation Grant (No. PHY-0901237).



128 Y.-Z. Huang

Assuming the existence of nonlinear sigma models, physicists have obtained many surprising
mathematical conjectures. Some of these conjectures have been proved by mathematicians
using methods developed in mathematics. But there are still many deep conjectures to be
understood and proved. Besides proving these conjectures from physics, it is also of great
importance to understand mathematically what is going on underlying these deep conjectures.
A mathematical construction of nonlinear sigma models would allow us to obtain such a deep
conceptual understanding and at the same time to prove these conjectures.

In the present paper, we construct meromorphic open-string vertex algebras and their rep-
resentations (see [3] for definitions and constructions) from a Riemannian manifold. We hope
that these algebras and representations will provide a starting point for a new mathematical ap-
proach to the construction of nonlinear sigma models. In the case that the target is a Euclidean
space or a torus, the nonlinear sigma model becomes a linear sigma model and can be construct-
ed mathematically using the representations of Heisenberg algebras. In these constructions, a
crucial ingredient is the modules for the Heisenberg algebras generated by eigenfunctions of
the Laplacian of the target. The role of the eigenfunctions can be conceptually understood as
follows: Sigma models describe perturbative string theory. When the strings are degenerate to
points in the space, string theory becomes quantum mechanics. In particular, all the states in
quantum mechanics should also be states in sigma models. Mathematically, quantum mechan-
ics on a Riemannian manifold M (without additional potential terms describing interactions)

is essentially the study of the Schrodinger equation
1h6t'l/1 = A%

where 9 is a function on M x R. Using the method of separation of variables, we first study a
product solution f7T of the equation above where f is a function on M and T is a function on R.
Then there exists A € C such that f is an eigenfunction of the Laplacian A with the eigenvalue A
and T = Ce~ ! for some C € C. Thus the study of the Schrodinger equation above is reduced
to the study of eigenvalues and eigenfunctions of the Laplacian A. Eigenfunctions of A are
states in the quantum mechanics on M whose eigenvalues are the energies when the quantum
mechanical particle is in these states.

For a Riemannian manifold M, its tangent spaces are Euclidean spaces. From these tangent
spaces, one can construct vertex operator algebras associated with Heisenberg algebras. These
vertex operator algebras form a vector bundle of vertex operator algebras over M. By tautolo-
gy, the space of smooth sections of this bundle is a vertex algebra, a variant of vertex operator
algebras satisfying fewer conditions. Geometrically this vertex algebra is not very interesting
because as a module for the ring of the smooth functions on M, the information about this
vertex algebra can all be obtained from the theory of vector bundles and the vertex operator
algebras over the fibers. Algebraically, since this vertex algebra does not satisfy the important
grading restriction condition and its weight 0 subspace is not one-dimensional (in fact, it is the
infinite-dimensional space of all smooth functions), not many interesting results for this vertex

algebra can be expected. To obtain a vertex algebra having better properties, it is natural to
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consider the subspace of parallel sections of this vector bundle. It was first observed by Tamanoi
[8-9] that the space of parallel sections of a vector bundle of vertex operator superalgebras con-
structed from suitable modules for Clifford algebras has a natural structure of a vertex operator
superalgebra. The same observation can be made to see the existence of a natural structure of
a vertex operator algebra on the space of parallel sections of the vector bundle of Heisenberg
vertex operator algebras mentioned above. However, the only functions on M belonging to this
vertex operator algebra are constant functions and, in particular, eigenfunctions on M are not
in this vertex operator algebra. In fact, we do not expect that eigenfunctions will in general be
in any vertex operator algebra because their eigenvalues in general are not integers.

On the other hand, it is known that the state space of a chiral rational conformal field
theory is mathematically the direct sum of irreducible modules for the chiral algebra (the vertex
operator algebra of meromorphic fields) of the conformal field theory (see [1-2]). Though the
nonlinear sigma model with target M is in general not even a conformal field theory, it would
still be natural to look for some modules or generalized modules that contain eigenfunctions on
M. To find such modules or generalized modules, one would have to construct a representation
of the symmetric algebra on the tangent space at a point p € M on the space of smooth
functions on an open neighborhood of p. When M is not flat, however, such a representation
does not exist for obvious reasons: If we choose a coordinate patch near p and use the derivatives
with respect to the coordinates to give the representation, the representation images of higher
derivatives depend on the coordinate patch and thus are not covariant. If we use the covariant
derivatives, then we do not have a representation of the symmetric algebra on the tangent space
at a point p; the failure of being a representation is measured exactly by the curvature tensor.
This failure indicates that we should consider tensor algebras instead of symmetric algebras.

In [3], the author introduced a notion of meromorphic open-string vertex algebra. A mero-
morphic open-string vertex algebra is an open-string vertex algebra in the sense of Kong and
the author [4] satisfying additional rationality (or meromorphicity) conditions for vertex op-
erators. The vertex operator map for a meromorphic open-string vertex algebra in general
does not satisfy the Jacobi identity, commutativity, the commutator formula, skew-symmetry
or even the associator formula but still satisfies rationality and associativity. In particular, the
operator product expansion holds for vertex operators for a meromorphic open-string vertex
algebra. In [3], the author constructed such algebras on the tensor algebra of the negative part
of the affinization of a vector space and left modules over these algebras.

In the present paper, using covariant derivatives, parallel tensor fields and the constructions
in [3], we construct a sheaf of meromorphic open-string vertex algebras from a Riemannian
manifold M and a sheaf of left modules for this sheaf generated by the space of smooth functions
on M.

More precisely, for a Riemannian manifold M, let TM be the tangent bundle of M, T(T'M)
the vector bundle of the tensor algebras on the tangent spaces at points on M and T(f]\\4 _) the
vector bundle over M whose fibers are the negative parts of the affinization of the tangent spaces

of M. Using the meromorphic open-string vertex algebras constructed in [3], we construct a
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sheaf V of meromorphic open-string vertex algebras on the sheaf of spaces of parallel sections
of the vector bundle T(f]\\/[_). In particular, the space Vj; of the global sections of V gives
a meromorphic open-string vertex algebra canonically associated to M. For an open subset
U of M, let C*°(U) be the space of smooth functions on M. For each open subset U of M,
we construct a representation on the space of smooth functions on U of the algebra of parallel
sections of T(TM) on U. Using these representations and the constructions of left modules
for meromorphic open-string vertex algebras in [3], we construct a sheaf W of left modules for
V generated by C°°(U). In particular, the space Wy of the global sections of W gives a left
Var-module canonically associated to M. As an example, we show that the Laplacian on M is
in fact a component of a vertex operator for the left Vj;-module Wy, restricted to the space of

smooth functions.

The construction in the present paper can be generalized to give constructions of left modules
generated by forms on M for suitable meromorphic open-string vertex algebra associated to a
Riemannian manifold M. In the case that M is Kéhler or Calabi-Yau, we have stronger results.
These will be discussed in future publications.

The author studied differential geometry under the supervision of Professor Hesheng HU as
a master student from 1982 to 1984 in Fudan university. The publication of the present paper in
this issue is dedicated to the memory of her. This paper was finished in 2012 and was posted to
the arXiv on May 14, 2012. The present version is identical to the original version except that
some typos are corrected and two paragraphs (including this one) are added. In [6], Qi gave
the explicit examples of meromorphic open-string vertex algebras and their modules associated
to two-dimensional orientable space forms. In [7], to understand modules for meromorphic
open-string vertex algebras generated by eigenfunctions of the Laplacians on space forms, Qi
obtained results and formulated a conjecture on covariant derivatives of such eigenfunctions.
Research projects based on this paper have also been actively carried out by several people
including the author.

Here the author would also like to address one issue on which some mathematicians and the
author have different opinions. One opinion is that this paper is based on the parallel sections
of vector bundles and thus cannot lead to a construction of the two-dimensional quantum field
theory associated to a Riemannian manifold. For example, this opinion states that the conformal
field theories associated to tori cannot be constructed based on the approach developed in
this paper. People with this opinion obviously did not read the present paper carefully. In
the discussion in this introduction above, the author has indicated clearly that, though the
meromorphic open-string vertex algebra associated to a Riemannian manifold is obtained using
parallel sections, the modules are not. Here the author would like to point out another related
misunderstanding about the vertex-operator-algebraic approach to conformal field theory. Some
people mistakenly think that a vertex operator algebra determines a conformal field theory
completely. This is true only in the case of rational conformal field theories but is wrong in
general. One class of counterexamples to this statement is the conformal field theories associated

to irrational tori. For all irrational tori of the same dimension, the associated vertex operator
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algebras are all the same as the vertex operator algebra for the corresponding Euclidean space
(the Heisenberg vertex operator algebra in this dimension) since in this case there is no larger
vertex operator algebra such as the lattice vertex operator algebras in the rational tori case.
What determines a conformal field theory associated to a given irrational torus is the choice
of a subcategory of the category of modules for the Heisenberg vertex operator algebra. The
main difficulty that the author overcome in this paper is, as discussed above, the construction
of modules generated by eigenfunctions of the Laplacian. This construction is not given by
parallel sections and uses the geometry of the Riemannian manifold in a crucial way. Note that
eigenfunctions of the Laplacian on a Riemannian manifold contain a lot of information about
the Riemannian manifold. Though it has been known for a long time that we cannot hear the
shape of a Riemannian manifold (that is, the eigenvalues of the Laplacian cannot determine the
Riemannian manifold up to isometries), eigenfunctions can indeed determine at least a compact
Riemannian manifold since every function in a suitable Sobolev space can be expanded as a
(finite or infinite) sum of eigenfunctions. Also for a torus, no matter whether it is rational or
irrational, it is easy to use the construction of the present paper to construct the corresponding
conformal field theory. This is in fact one of the reasons why the author always believes that
the approach developed in this paper is correct.

In this paper, we shall fix a Riemannian manifold M. For basic material on Riemannian
geometry, we refer the reader to the book [5]. For meromorphic open-string vertex algebras
and left modules, see [3].

The present paper is organized as follows: In Section 2, we recall some basic constructions of
vector bundles and sheaves on a Riemannian manifold M. In Section 3, we construct the sheaf V
of meromorphic open-string vertex algebras on M. In particular, we construct the meromorphic
open-string vertex algebra V) of the global sections of V canonically associated to M. In Section
4, using covariant derivatives, we construct a homomorphism of algebras from the algebra of
parallel tensor fields on an open subset of M to the algebra of linear operators on the space
of smooth functions on the same open subset. In particular, we obtain a representation on the
space of smooth functions of the algebra of parallel tensor fields. We construct in Section 5 the
sheaf W of left modules for V generated by the sheaf of smooth functions on M. In particular,
we construct the left Vj;-module Wy, of W canonically associated to M. In particular, we
construct the left Vjs-module of the global sections of W canonically associated to M. In
Section 6, we show that the Laplacian on M is in fact a component of a vertex operator for the

left Vas-module W), restricted to the space of smooth functions.

2 Vector Bundles and Sheaves from the Tangent Bundle of a Rieman-
nian Manifold M

In this section, we recall some basic constructions of vector bundles and sheaves on a Rie-
mannian manifold.

Let M be a Riemannian manifold and ¢ the metric on M. Consider the tangent bundle 7'M
of M and the trivial bundles M x C[t,t~!] and M x Ck where ¢ is a formal variable and k is a
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basis of a one-dimensional vector space Ck. Let
TM =TM® (M x C[t,t™]) & M x Ck
be the vector bundle whose fiber at p € M is
T,M = T,M ® C[t,t"'] & Ck.

Since m for p € M has a structure of Heisenberg algebra and the transition functions at
points of M preserve the gradings of the Heisenberg algebras, T'M has a structure of a vector
bundle of Heisenberg algebras. For p € M, T,,M has a decomposition

——

T,M =T,M_&T,M,®T,M,,

where
T,M_=T,M ot 'Clt™],
T,M, = T,M @ Ct* & Ck
~ T,M @ Ck,
T,M, = TM ®(C[t].
These triangle decompositions of the Heisenberg algebras give the triangle decomposition

TM =TM_ & TMy®TM,,

where
TM_ =TM® (M x t'C[t™"]),
TMo=TM ® (M x Ct°) & M x Ck
~TM & (M x Ck),
TM, =TM ® (M x tCt]).

The connection on 7'M induces connections on f]\\J, TM_ and f—]\\Lr. The product bundle
M x Ck has a trivial connection.

For p € M, recall the subalgebra N (Im ) of the tensor algebra T(Y{p]\\@ introduced in [3,
Section 3]. In fact, let I be the two-sided ideal of T(IT,]V[ ) generated by elements of the form

Xt e Y at")— (Y ot") e (X @t™) —m(a,b)dmn,ok,
(XotHe (Y ot®) — (Y et’) e (X oth),
(Xt ok-ke (X @tF)
for X, Y € T,M, m € Zy,n € —Zy, k € Z. Then by [3, Proposition 3.1],

—

N(T,M) = T(T,M)/I

is isomorphic to

T(T,M ) T(T,M,) @ T(T,M) © T(Ck). (2.1)
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Let
T(TM_), T(TM,), T(TM), T(M xCk)

be the vector bundles whose fibers at p € M are the tensor algebras
T(T,M), T(Ck)
on the fibers of

TM_, TM., TM, M xCk,

respectively. Since (2.1) is the fiber of the vector bundle
T(TM_)® T(TM4) @ T(TM) ® T(M x Ck) (2.2)

at p € M, we also have a vector bundle N(ﬁ\\/[) whose fiber at p € M is N(I{p]\\J). By definition,
N (f]\\J) as a vector bundle is isomorphic to the vector bundle (2.2).

For a vector bundle E over M, we shall use 'y (E) to denote the space of smooth sections
of ¥ on an open subset U of M. For a vector bundle E over M with a connection, we shall
use Iy (E) to denote the space of parallel sections of E on U. By definition, Il (E) C T'y (E).
When the fibers of E are associative algebras, I'iy(F) has a structure of an associative algebra.
If the covariant derivative with respect to every element of I'y(T'M) is a derivation of the
associative algebra I'yy (E), then Il (E) is a subalgebra of T'y (E).

Taking F to be

N(TM), T(TM_.), T(TM,), T(TM), T(M x Ck), (2.3)
we have the associative algebras

Ty(N(TM)), Ty(T(TM-)), Ty(T(TM.)),
Ty (T(TM)), Ty(T(M x Ck)), (2.4)

respectively, of smooth sections. It is clear that
Ty(T(TM-)), Ty(T(TM.)), Tu(T(TM)), Tuy(T(M x Ck))

can be embedded as subalgebras of FU(U(m)). The connections on f]\\J_, TM and f]\\Lr
uniquely determine connections on T(I/“J\\J_), T(TM) and T(f—]\\/br), respectively, by requir-
ing that for every open subset U of M, the covariant derivatives with respect to every ele-
ment of T'y (T M) are derivations of the associative algebras FU(T(@_)), I‘U(T(f]\\Lr)) and
Ty (T(TM)), respectively. We also have a canonical flat connection on the trivial bundle

T(M x Ck) ~ M x T(Ck).

Since N(ﬁ\\/[) is isomorphic to (2.2), the connections on T(f—]\z/_), T(I/“J\\JJF), T(TM) and
T(M x Ck) further determine a connection on N (f—]\\J)

By definition, the covariant derivatives with respect to elements of the space I'yy(T'M) of
the vector bundles in (2.3) are derivations of the corresponding associative algebras in (2.4).
Thus we have the associative algebras

y(N(TM)), Ty (T(TM-)),
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Iy (T(TMy)), Hy(T(TM)), Ty (M x T(Ck))

of parallel sections.

For a vector bundle FE, the spaces I'g(U) of smooth sections on open subsets U of M and
the obvious restriction maps from T'g(U) to T'g(U’) when U’ C U give a sheaf I'g. Similarly
for a vector bundle F with a connection, we also have the sheaf IIp whose sections on an open
subset U is IIg(U). The sheaf I is a subsheaf of I'p. Taking E to be the vector bundles in
(2.3), we have the sheaves

L(N(TM)), T(T(TM-)), T(T(TMy)),
D(I(TM)), T(T(M x Ck)),
I(N(TM)), T(T(TM-)), I(T(TM,)),
I(T(TM)), II(M x T(Ck)).
We know that the space of parallel sections of a vector bundle with a connection is canoni-

cally isomorphic to the space of fixed points of a fiber under the action of the holonomy group.

In particular, we have the following result.

Proposition 2.1 Let U be an open subset of M. The spaces
My (T(TM-)), Ty(T(TMy)), Ty(T(TM)), Ty (N(TM))
are canonically isomorphic to the spaces of fixed points of
T(T,M_). T(LM,). T(T,M). N(T,M).

respectively, for p € U under the actions of the holonomy groups of the restrictions of the vector

bundles
T(TM-), T(TM,), T(TM), N(TM),

respectively, to U.

3 A Sheaf V of Meromorphic Open-String Vertex Algebras on M

In this section, we construct a sheaf of meromorphic open-string vertex algebras on M. In
particular, the global sections of this sheaf give a canonical meromorphic open-string vertex
algebra associated to M.

First we have the following result.

Proposition 3.1 The fibers of the vector bundle T(m_) have natural structures of mero-
morphic open-string vertex algebras and T(TM_) has a natural structure of vector bundle of

meromorphic open-string vertex algebras.

Proof Since the fibers of T(m_) are the tensor algebras on the fibers of TM-_, by
[3, Theorem 5.1], they have natural structures of meromorphic open-string vertex algebras.
It is clear that the transition functions of the vector bundle T(TM_) at points on M are
automorphisms of meromorphic open-string vertex algebras. Thus T(@ —) has a natural
structure of vector bundle of meromorphic open-string vertex algebras.
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Then we have the following corollary.

Corollary 3.1 For an open subset U of M, the space I‘U(T(m_)) of sections of T(f]T/[_)

has a natural structure of meromorphic open-string vertex algebra. The assignment
U —Ty(T(TM_))

together with the restrictions of sections form a sheaf of meromorphic open-string vertex alge-

bras.

Proof The Z-gradings on the fibers of T(f]\\/[_) induce a Z-grading on FU(T(fJ\\/l_)).
The constant section 1 is the vacuum. The vertex operator map is defined pointwise. It is
clear that with the Z-grading, the vacuum and the vertex operator map, I'y (T (T'M_)) is a

meromorphic open-string vertex algebra. The second conclusion is also clear.

The construction in Corollary 3.1 is simple. But these meromorphic open-string vertex
algebras are not what we are interested in. In fact, the sheaf of meromorphic open-string
vertex algebras obtained in Corollary 3.1 contains the sheaf of smooth functions on M and the
smooth functions commute with vertex operators. In particular, the vertex operators in this
sheaf of meromorphic open-string vertex algebras cannot contain differential operators acting
on the space of smooth functions. Since the quantum mechanics on M involves differential
operators, the sheaf of meromorphic open-string vertex algebras in Corollary 3.1 is not what
we are looking for.

Let S (@ _) be the vector bundle whose fiber at p € M is the symmetric algebra S (fp]\\/l_)
of m_. As we mentioned in the introduction, Tamanoi observed in [8-9] that the space
HU(S(m_)) of parallel sections on U of S(f]\\J_) is a vertex operator algebra. We now
construct our sheaf of meromorphic open-string vertex algebras similarly.

Given a meromorphic open-string vertex algebra (V,Yy,1) and a group H of automor-
phisms of V, let V¥ be the subspace of V consisting of elements that are fixed by H. Since
automorphisms of V preserve 1 € V (see [3]), 1 € V. Also since for u,v € V# and h € H,
hYy (u,x)v = Yy (hu, 2)hv = Yy (u, z)v, the image of VH @ VH under Yy is in VH[[z,271]].
We shall denote the restriction of Yy to VH @ VH by Yi,#. Then Yy # is a linear map from
VH @ VH to VH[[x,27]]. The following result is obvious.

Proposition 3.2 The triple (V,Yyu,1) is a meromorphic open-string vertex subalgebra
Of (‘/7 YVa 1)

For p € M and a connected open subset U of M containing p, the holonomy group H,(U) of
the restriction of the vector bundle T'(T"M_) to U acts on the fiber T'(T,M _) at p of the vector
bundle T(I/’]\\/[_). By Proposition 3.1, T(m_) has a structure of meromorphic open-string

vertex algebra.
Lemma 3.1 For a connected open subset U of M, o € Hy(U) and u,v € T(I{p]\\J_),
a(YT(mi)(u,x)v) = YT(m,)(a(U)’ x)a(v).
Proof Recall the notations in [3]. We need only prove the lemma in the case

u = Xl(—nl) c -Xk(—nk)l
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for Xy,---, X, € T,M and ny,--- ,n; € Z,. Since the connection on T(f]\\J_) is induced from
the connection on T'M, the parallel transport in T(m_) along a path in M is also induced
from the parallel transport in T'M along the same path. Let v be a loop in M based at p.
Denote both the parallel transports along v in TM and in T(f]\\4 _) by ay. Then we have

and
oy (X1 (=ma) -+ Xip(=mp)1) = oy (X1)(=ma) - - - oy (X ) ()1 (3.1)

for ny,--- ,ni € Z.
By definition,

Y. ﬁ/[ﬁ)(Xl(_nl) oo Xp(—ng)l,z)v

ni—1 nE—1
- (g (n1 1— 1)! (di:”l—le(x))  ( 1— 1)! (ddxnk—lX’“(x)) 3)“’

where as in [3],

x) = Z Xi(n)z—"!

nez
fori=1,--- ,k and ° - ° is the normal ordering operation defined in [3]. Thus by Lemma 4.2
n [3] and (3.1), we have
O‘V(Yg(mi)(u T)v)
= ay (Vg ((Xa(=m) - Xg(=np)1, 2)v)
1 qri—t 1 dre—1
B OC'Y((O (nq —1)! (dx"l_l Xl(z)) (e — 1) (dx”k—le(x)) O)U)
1 am-t 1 dmt
— (nl - 1! (dx”l 1 (aw(Xl))(z)) (ng — 1)! (dx”k 1 (0n(Xp)) (= )) 2ay(v)

s (@ (X)(=n1) -y (X ) (=np) 1, 2)ay (v)
=Yy T’m y(ay (Xa(=n1) - Xp(=ng)1), 7)oy (v)

it (0 (1) 2)as (v).
From the lemma above, we obtain immediately the following corollary.

Corollary 3.2 For a connected open subset U of M, the holonomy group Hy,(U) is a sub-
group of the automorphism group of the meromorphic open-string vertex algebra T(T,M _). In

particular, (T(m_))HP(U) is a meromorphic open-string vertex subalgebra of T(m_).
For an open subset U of M, let
Vi = Hy(T(TM_)).

Then the assignment U — Vi and the restrictions of sections give a sheaf V. By Proposition
2.1, Vi is canonically isomorphic to (T(T,M _))"»(¥). Thus we have the following theorem.
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Theorem 3.1 For a connected open subset U of M and p € U, the canonical isomorphism
from (T(m_))HP(U) to Vy gives Viy a natural structure of meromorphic open-string vertex
algebra. This structure of meromorphic open-string vertex algebra is independent of the choice
of p. For general open subset U of M, Vi; as a Z-graded vector space is isomorphic to the
underlying Z-graded vector space of the direct product meromorphic open-string vertex algebra

1T Vu. (see [3, Definition 2.6]) where U, for a € A are the connected components of U. In
acA
particular, Vi also has a natural structure of meromorphic open-string vertex algebra. For

an open subset U of M and an open subset U of U, the restriction map from Vy to Vg is
a homomorphism of meromorphic open-string vertex algebras. In particular, the sheaf V is a
sheaf of meromorphic open-string vertex algebras.

Proof The first and second statements of the theorem are clear.

For general open subset U of M, choose a point p, in each connected component U, of
U for a € A (elements of A labeling the connected components of U), then Iy, (T(m_))
is isomorphic to (T(m_))HPQ(UQ) as a graded vector space, where H,_ (U,) is the holono-

my group of the connection on the vector bundle T(f]\\/l_) restricted to the connected com-

ponent U,. But HU(T(ﬁ\\/l_)) is isomorphic to [] Ty, (T(m_)) as a graded vector s-
acA

pace. Hence Vi; is isomorphic to [] (T(m/[_))HPa(UW) as a graded vector space. Since
acA

11 (T(m/[_))HPa(Ua) has a structure of the direct product meromorphic open-string ver-
acA

tex algebra of (T(m_))Hpa(UW) for « € A, Vi has a natural structure of a meromorphic
open-string vertex algebra of central charge n.

For an open subset U of M and an open subset UofU , let U, for a € A be the connected
components of U and let (75 for 8 € B be the connected components of U. Then for 8 e B,
there exists a € A such that (73 C U,. For each 8 € B, we choose a point pg € ﬁj. Then there
exists o € A such that pg € U,. We choose p, € U, from those pg’s such that pg € (73. Then
Hﬁﬁ(ﬁ,@) can be naturally embedded into Hp, (U,) when pg € U,. Thus the direct product

meromorphic open-string vertex algebra [[ (T'(Z,, M _))H#=(U=) can be embedded into the di-
acA

rect product meromorphic open-string vertex algebra [] (T(T/@;]\\4 _))Hﬁﬁ Us) | The embedding
BeB

from [] (T(m/[_))HPa(Ua) to 1 (T(TgBM_))Hﬁﬁ(UB) corresponds to the restriction map
acA BeB
from Viy to Vi, that is, we have the following commutative diagram:

[T (@@ 0 )) =) s vy

acA l l

| R R ——
BeB

Since the embedding from [] (T(W_))Hpawa) to 1] (T(@_))Hﬁﬁwa) is a homomor-
acA peB
phism of meromorphic open-string vertex algebras, the restriction map from Vi to Vj is also a

homomorphism of meromorphic open-string vertex algebras.
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Remark 3.1 For an open subset U of M, Vi is always nontrivial. In fact, the metric g
can be viewed as an element of the space I'y;(T?(T*M)) of smooth sections on U of the second
symmetric tensor powers of the cotangent bundle T*M of M. On the other hand, g also gives an
isomorphism of vector bundles from 7% M to T'M. It induces an isomorphism of vector bundles
from T2(T*M) to T?(T M), which in turn induces a linear isomorphism from Ty (T%(T*M))
to Ty (T?(T'M)). The image of the element g € I'yy(T?(T*M)) under this isomorphism is an
element of 'y (T?(TM)) and is denoted g—!. Since g is parallel, g~! is also parallel. For
k,l € Z,, the vector bundles TM ® t~* and TM ® t~! are isomorphic to 7M. In particular,
the space

Ty(TM @t %) @ (TM @)

of sections of the vector bundle
(TM @t @ (TM et

is isomorphic to the space I'y (T?(T'M)). In particular, g~ € Ty (T?*(T'M)) corresponds to an
element
g (~k,~) eTy(TM @t ) @ (TM at™).

Since g~! is in fact parallel, that is, g~ € Iy (T?(T'M)), and the connection on (TM @t~ %) ®
(TM ®t~') is obtained from the connection on T%(T'M), g~'(—k, —1) is also parallel, that is,

g =k, =) ey (TM @t ") @ (TM @ t™4)) c Hy(T(TM_)) = Vi

for k,l € Z, giving infinitely many nonzero elements of V; of different weights.

Remark 3.2 It is well known that for p € M, the symmetric algebra S (1{17]\\4_) has a
natural structure of a vertex operator algebra. These symmetric algebras form a vector bundle
S (f]\\J_) of vertex operator algebras with a connection. The same construction as the one for V
above shows that the space I (S (f]\\/[_)) of parallel sections of S (@ _) on an open subset U
of M form a sheaf of conformal vertex algebras such that when U is connected, Iy (S(TM_))
is a vertex operator algebra. From [3, Remark 5.2], for p € M, we have a homomorphism of
meromorphic open-string vertex algebras from T' (m_) to S (m_). Thus we have a homo-
morphism of vector bundles from T(m_) to S (f]T/[_) such that the connection on T(f]T/[_)
is mapped to the connection on S (f]T/[_) In particular, we have a homomorphism of sheaves
of meromorphic open-string vertex algebras from the sheaf V to the sheaf Iy (S (f]\\J_)) of
parallel sections of the vector bundle S (f]\\J_)

4 Covariant Derivatives and Parallel Tensor Fields

Given an open subset U of M, let C°°(U) be the space of smooth functions on U. For
m € N, let T™(TM) be the m-th tensor power of the tangent bundle TM and I'y (T™(TM))
the space of sections of T"*(T'M). Then 'y (T(TM)) is the coproduct of Ty (T™(TM)). Given
f € C>(U), there is an m-th order covariant derivative V" f which can be viewed as a (0, m)-
tensor. Since V™ f is a (0, m) tensor, we can view it as a module map from the C'*°(U)-module
Ly (T™(TM)) to the C°°(U)-module C*°(U). Since V™ f is linear in f, we can view V™ as a
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linear map from C*°(U) to Homeee ) (Py (T™(T'M)),C>°(U)). Since such a map corresponds
to a linear map from I'y (T™(TM)) to L(C*°(U)), we have a linear map

Y Ty (T™(TM)) = L(C™(U))

corresponding to V™, where L(C*°(U)) is the space of all linear operators on C*(U). By
definition, for X' € Ty (T™(TM)),

(g (X)) f = (V" [)(X).
The linear maps ., for m € N give a single linear map
Yy Ty (T(TM)) = L(C*(U)).

As we mentioned in the preceding section, I'y (T'(T'M)) is an associative algebra. The space
L(C*>=(U)) is in fact also an associative algebra. But in general, the isomorphism  is not
an isomorphism of associative algebras. The associative algebra I'y(T(T'M)) has a subalgebra
Iy (T(TM)).

Let

bu + Ty (T(TM)) — L(C®(U)

be the restriction of ¢y to Iy (T (TM)). Then we have the following theorem.

Theorem 4.1 For X € T'y(T(TM)) and Y € Iy (T(TM)), we have

V(X @) = Yu(X)y (V). (4.1)

In particular, the linear map ¢y is a homomorphism of associative algebras and gives C>°(U)
a Iy (T(TM))-module structure.

Proof We need only prove (4.1) for m,l e N, X € T'y(T(TM)) and Y € Iy (T(TM)). We
use induction on m. When m = 0, (4.1) certainly holds. Now assume that when m = k, (4.1)

holds. To prove (4.1) in the case m = k+ 1, we need only prove that for f € C*°(U) and p € U,

(Vg (X @) )p) = Wu(X)Pu (V) f)(p)- (4.2)

For p € U, there exists an open subset UofU containing p such that the restriction X|5 of
X to U is a sum of elements of the form X @ X for X € I'5(TM) and X e I5(T'M). Hence
we can prove (4.2) for those X such that



140 Y.-Z. Huang

(Vk+1((¢y( DX @ X)

X((VH((g VgD NE) = (V¥ (g V) VL)

X (g (XN V) ) = @ (Vx X)) (b V) f)

X ((g(X) g V) f) — (g (VxX)bg (V) f- (4.3)

By the induction assumption, the right-hand side of (4.3) is equal to

X(($g(X @VIg)f) — @g(VxX) @ V[))f- (4.4)
Since ) is parallel, we have
VxY|g =0
and thus
(VxX) @ Vg = Vx(X @ V|3). (4.5)

Using (4.5), (4.4) becomes

X(($g(X @VIg)f) — @g(Vx (X @ Vp)f
= X((VF' (X @ V[5) — (VT H(VX (X @ D)|5)
= (VM) (X @ X @ Vp)
= (Yg(X|g @ VIg)f- (4.6)

The calculations from (4.3) to (4.6) show that the left-hand side of (4.3) is equal to the
right-hand side of (4.6). In particular, the value of the left-hand side of (4.3) at p is equal to
the value of the right-hand side of (4.6) at p. But the value of the left-hand side of (4.3) at p is
equal to the right-hand side of (4.2) and the value of the right-hand side of (4.6) at p is equal
to the left-hand side of (4.2). Thus (4.1) holds. Since p and f are arbitrary, (4.1) in the case
m = k + 1 is proved.

5 A Sheaf W of Modules for V Generated by the Sheaf of Smooth
Functions on M

In this section, we construct a sheaf YW modules for the sheaf ) of meromorphic open-string
vertex algebras in the preceding section from the sheaf C'*° of smooth functions on M.

Let U be an open subset of M. For simplicity, we discuss only the case that U is connected.
The general case is similar. By Theorem 4.1, C*°(U) is a Uy (T(T'M))-module. For p € U, by
Proposition 2.1, Iy (T(T'M)) is isomorphic to (T(T,M))»(Y). We shall identify Ty (T(TM))
with (T(T,M))H»U). In particular, C=°(U) is a (T(T,M))"»(V)-module. Since (T(T;,M))»V)
is a subalgebra of T'(T,M ), we have the induced T'(T,, M )-module
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By Theorems 5.1 (or Proposition 3.1 in Section 3 above) and 6.5 in [3], T(I{p]\\/l_) has a natural
structure of meromorphic open-string vertex algebra and T(m_) ®C(U) has a natural struc-
ture of left T(m_)—module. By Corollary 3.2, (T(I{p]\\/l_))HP(U) is a meromorphic open-string
vertex subalgebra of T(T,M ). In particular, T(T,M_)@C,(U) is also a left (T(T,M _))H»(V)-
module. Let Wy be the left (T(m_))HP(U)-submodule of T(J{pJ\\J_) ® Cp(U) generated by
elements of the form 1 ® (1 ®p i ppyymewr [f) for fre C(U), where 1 & pp ppyymp) [ s
the image of 1 ® f under the projection from T(T,M) @ C*(U) to Cp(U). By Theorem 3.1,
the meromorphic open-string vertex subalgebra (T(I{p]\\/[_))HP(U) is canonically isomorphic to
Vy = Iy (T(TM_)). We shall identify (T(T,M _))H»W) and Viy. Thus Wy has a natural
structure of left Vy;-module.

The construction of Wy here depends on p. But Wy is in fact independent of p. Let ¢
be another point in U. Then the subspace of T(Z{pJ\\J_) ® Cp(U) consisting of elements of the
forg\l@ (1 (1 (T, M) Hr @) f) for f € C°°(U) is canonically isomorphic to the subspace of
T(TyM_) ® Cq(U) consisting of elements of the form 1 ® (1 ® (7 (1, M) Ha V) f) for f e C>(U).
Also both the meromorphic open-string vertex algebras (T(I{p]\\/[_))HP(U) and (T(Z{q]\\/[_))Hq(U)
are canonically isomorphic to the meromorphic open-string vertex algebra HU(T(m_)) =
V. Thus the left Vyy-module generated by elements of the form 1 @ (1 ® (1(T, M))Hr ) 1)
for f € C°°(U) is isomorphic to the left Vi-module generated by elements of the form 1 ®
(1 ®(1(1, M))Ha ) f) for f € C*°(U). Since the subspace of T(I{p]\\4_) ® Cp(U) consisting of
clements of the form 1 ® (1 & p(g, ppyympw) f) for f € C*(U) is canonically isomorphic to
C*(U), we can view Wy as a canonical left Vi7-module generated by C°°(U). We have proved
the following result in the case that U is connected; the general case can be obtained using

direct products as in the case of open-string vertex algebras in Section 3.

Theorem 5.1 For an open subset U of M and p € U, Wy has a natural structure of left
Vir-module. For different choices of p, we obtain canonically isomorphic left Viy-modules. In

particular, we have a canonical left Viy-module Wy generated by C°(U).
In Theorem 5.1, taking U = M, we obtain the following corollary.
Corollary 5.1 The space C°(M) on M generates a canonical left Vys-module.

Let V1 and V5 be meromorphic open-string vertex algebras, and W7 and W5 be left V;- and
Vo-modules, respectively. Let f : Vi — V5 be a homomorphism of meromorphic open-string
vertex algebras. Then Wy is also a left Vi-module. A homomorphism from W; to Wy associated
to f is a homomorphism from Wi to W5 as a left Vi-module.

By definition, Wy is the left (T(m_))HP(U)—submodule of T(J{pJ\\J_) ®C(U) generated by
elements of the form 1 ® (1 ® (1 (T, M) Hr V) f) for f € C°(U). For open subsets U and U such
that U C U, we have a restriction map from Viy to V7 which corresponding to a restriction map
from (T(I{p]\\/[_))HP(U) to (T(Z{p]\\J_))HP(ﬁ). Using the restriction map from (T(m_))HP(U)
to (T(IW_))HP@) and the restriction map from C>(U) to C>(U), we obtain a restriction
map from Wy to Wg. By definition, we obtain the following theorem.
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Theorem 5.2 For open subsets U and U such that U C U, the restriction map from Wy
to Wg is a homomorphism from Wy to W associated with the restriction map from Vi to V.

In particular, W is a sheaf of V-modules.

6 The Laplacian on M as a Component of a Vertex Operator

Many conjectures on geometry were obtained from quantum field theory by interpreting
some geometric or analytic objects as quantum-field-theoretic objects. In this section, as an
example, we show that the Laplacian of M is in fact a component of a vertex operator for W,
acting on C>°(M).

Let {F;}_, be an orthonormal frame in an open neighborhood U of a point p € M. Recall
the element g=!(—1,—1) € V7. Then in U,

n

-L,-n) =) (Eet)e(Eet!).
i=1
We identify Vi = HU(T(ﬁ\\/l_)) with (T(I{p]\\/[_))HP(U). Under this identification, g=*(—1, —1)
is identified with

n n

Z(Ei|p ® t_l) ® (Eilp ® t_l) = Z(Ei|p)(_1)(Ei|p)(_1)1v

i=1 =1
where lT(T/M ) is the vacuum of the meromorphic open-string vertex algebra T(I{p]\\/[_) and
(Eilp)(—1) is the representation image of E;|, ® t~! on T(m_).

Recall that Wy by definition is the left (T(T,M _))H»(V)-submodule of T(T,M ) ® C,(U)
generated by elements of the form 1® (1 ® p g, rpyymw) f) for f € C*(U). Let f € C*(U).
Consider

Yy (971 (=1, —1), z)(1 @ (1 ® (71, 1))@ f))-

Since Wy is a (T(m_))HP(U)-submodule of T(m_) ® Cp(U) and the (T(m_))HP(U)-
module T(I{p]\\J_) ® Cp(U) is induced from the T(I{p]\\/[_)—module structure on T(I{p]\\/[_) ®

Cyp(U), the vertex operator map Yy, is the restriction of the vertex operator map YT(ﬂL) to

(T(m_))HP(U) ® Wy . In particular,
Yivy (97 (-1, ~1).2) = Yy (07" (-1 -1).2)
= > Yom ) (Bil) (D (Eilp)(-1)1,2)
= 2(Bilp) (@) (Eily) (@)

Then the coefficient of the 272 term of Yy, (97 (=1, —1),2) is

ZZ (Eilp)(—k)(Eilp) (k)2
i=1 ke
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=2ZZ (Eilyp) (—k) (Eil,) (k) + ;<Ei|p><o><Ei|p><o>.

=1 ]CEZ+

This coefficient or component of the vertex operator Yy, (¢~(—1,—1),z) acting on (1 ®

(1 ® (71, )y [)) is equal to
S (OO © (100,901 1)

1®

M:

(E: |p ® E; |p) T(TpM))Hp (M) f)

Il
-

3

L&, ) o ( (ZE ®E) ))
L& (1, myyrr @ ( (ZEl@El)))

1®(T(TM Hp (U) Xn: Eq,E f))
)-

1®(1® HP(U)A

|
&

1®

1®

(X
(
(
(

Thus we see that this component of the vertex operator Yy, (¢7(—1,—1),z) acting on (1 ®
(1 (1 (1, M))Hp V) f)) can be interpreted as the Laplacian A acting on the smooth function f
on U.

Since V and W are sheaves, the conclusion above for a small open neighborhood of ev-
ery p € M implies that the same conclusion holds for any open subset U of M and f €
C°°(U). In particular, the component of the vertex operator Yy ,, (¢71(—1,—1),x) acting on
(1 (L& (7, ary) o2 1)) is equal to 1® (L& (1, ary)ympan Af) and corresponds to the Laplacian
A acting on the smooth function f defined on M.
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