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Abstract Let M be a Riemannian manifold. For p ∈ M , the tensor algebra T (T̂pM
−
) of

the negative part of the affinization T̂pM of the tangent space TpM of M at p has a natural
structure of a meromorphic open-string vertex algebra. These meromorphic open-string
vertex algebras form a vector bundle over M with a connection. The author constructs a
sheaf V of meromorphic open-string vertex algebras on the sheaf of parallel sections of this
vector bundle. Using covariant derivatives, he constructs a representation on the space of
smooth functions of the algebra of parallel tensor fields. These representations are used
to construct a sheaf W of left V-modules generated by the sheaf of smooth functions. In
particular, the author obtains a meromorphic open-string vertex algebra VM as the global
sections on M of the sheaf V and a left VM -module WM as the global sections on M of the
sheaf W. He shows that the Laplacian on M is in fact a component of a vertex operator
for the left VM -module WM restricted to the space of smooth functions.
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1 Introduction

Conjectures by physicists on nonlinear sigma models, especially supersymmetric nonlinear

sigma models with Calabi-Yau manifolds as targets, are one of the most influential sources

of inspiration and motivation for many works in geometry in the past two or three decades.

Classically, a nonlinear sigma model is given by the set of all harmonic maps from a two-

dimensional Riemannian manifold to a Riemannian manifold (the target). The main challenge

for mathematicians is the construction of the corresponding quantum nonlinear sigma model.

The difficulties lie in the fact that the target is not flat, the nonlinear sigma model is a quantum

field theory with interaction. In physics, a quantum field theory with interaction is studied

by using the methods of path integrals, perturbative expansion (more precisely, asymptotic

expansion) and renormalization. Unfortunately, it does not seem to be mathematically possible

to directly rigorize these physical methods to construct the correlation functions for such a

quantum field theory.
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Assuming the existence of nonlinear sigma models, physicists have obtained many surprising

mathematical conjectures. Some of these conjectures have been proved by mathematicians

using methods developed in mathematics. But there are still many deep conjectures to be

understood and proved. Besides proving these conjectures from physics, it is also of great

importance to understand mathematically what is going on underlying these deep conjectures.

A mathematical construction of nonlinear sigma models would allow us to obtain such a deep

conceptual understanding and at the same time to prove these conjectures.

In the present paper, we construct meromorphic open-string vertex algebras and their rep-

resentations (see [3] for definitions and constructions) from a Riemannian manifold. We hope

that these algebras and representations will provide a starting point for a new mathematical ap-

proach to the construction of nonlinear sigma models. In the case that the target is a Euclidean

space or a torus, the nonlinear sigma model becomes a linear sigma model and can be construct-

ed mathematically using the representations of Heisenberg algebras. In these constructions, a

crucial ingredient is the modules for the Heisenberg algebras generated by eigenfunctions of

the Laplacian of the target. The role of the eigenfunctions can be conceptually understood as

follows: Sigma models describe perturbative string theory. When the strings are degenerate to

points in the space, string theory becomes quantum mechanics. In particular, all the states in

quantum mechanics should also be states in sigma models. Mathematically, quantum mechan-

ics on a Riemannian manifold M (without additional potential terms describing interactions)

is essentially the study of the Schrödinger equation

i~∂tψ = ∆ψ,

where ψ is a function on M ×R. Using the method of separation of variables, we first study a

product solution fT of the equation above where f is a function onM and T is a function on R.

Then there exists λ ∈ C such that f is an eigenfunction of the Laplacian ∆ with the eigenvalue λ

and T = Ce−
λ
i~ t for some C ∈ C. Thus the study of the Schrödinger equation above is reduced

to the study of eigenvalues and eigenfunctions of the Laplacian ∆. Eigenfunctions of ∆ are

states in the quantum mechanics on M whose eigenvalues are the energies when the quantum

mechanical particle is in these states.

For a Riemannian manifoldM , its tangent spaces are Euclidean spaces. From these tangent

spaces, one can construct vertex operator algebras associated with Heisenberg algebras. These

vertex operator algebras form a vector bundle of vertex operator algebras over M . By tautolo-

gy, the space of smooth sections of this bundle is a vertex algebra, a variant of vertex operator

algebras satisfying fewer conditions. Geometrically this vertex algebra is not very interesting

because as a module for the ring of the smooth functions on M , the information about this

vertex algebra can all be obtained from the theory of vector bundles and the vertex operator

algebras over the fibers. Algebraically, since this vertex algebra does not satisfy the important

grading restriction condition and its weight 0 subspace is not one-dimensional (in fact, it is the

infinite-dimensional space of all smooth functions), not many interesting results for this vertex

algebra can be expected. To obtain a vertex algebra having better properties, it is natural to
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consider the subspace of parallel sections of this vector bundle. It was first observed by Tamanoi

[8–9] that the space of parallel sections of a vector bundle of vertex operator superalgebras con-

structed from suitable modules for Clifford algebras has a natural structure of a vertex operator

superalgebra. The same observation can be made to see the existence of a natural structure of

a vertex operator algebra on the space of parallel sections of the vector bundle of Heisenberg

vertex operator algebras mentioned above. However, the only functions on M belonging to this

vertex operator algebra are constant functions and, in particular, eigenfunctions on M are not

in this vertex operator algebra. In fact, we do not expect that eigenfunctions will in general be

in any vertex operator algebra because their eigenvalues in general are not integers.

On the other hand, it is known that the state space of a chiral rational conformal field

theory is mathematically the direct sum of irreducible modules for the chiral algebra (the vertex

operator algebra of meromorphic fields) of the conformal field theory (see [1–2]). Though the

nonlinear sigma model with target M is in general not even a conformal field theory, it would

still be natural to look for some modules or generalized modules that contain eigenfunctions on

M . To find such modules or generalized modules, one would have to construct a representation

of the symmetric algebra on the tangent space at a point p ∈ M on the space of smooth

functions on an open neighborhood of p. When M is not flat, however, such a representation

does not exist for obvious reasons: If we choose a coordinate patch near p and use the derivatives

with respect to the coordinates to give the representation, the representation images of higher

derivatives depend on the coordinate patch and thus are not covariant. If we use the covariant

derivatives, then we do not have a representation of the symmetric algebra on the tangent space

at a point p; the failure of being a representation is measured exactly by the curvature tensor.

This failure indicates that we should consider tensor algebras instead of symmetric algebras.

In [3], the author introduced a notion of meromorphic open-string vertex algebra. A mero-

morphic open-string vertex algebra is an open-string vertex algebra in the sense of Kong and

the author [4] satisfying additional rationality (or meromorphicity) conditions for vertex op-

erators. The vertex operator map for a meromorphic open-string vertex algebra in general

does not satisfy the Jacobi identity, commutativity, the commutator formula, skew-symmetry

or even the associator formula but still satisfies rationality and associativity. In particular, the

operator product expansion holds for vertex operators for a meromorphic open-string vertex

algebra. In [3], the author constructed such algebras on the tensor algebra of the negative part

of the affinization of a vector space and left modules over these algebras.

In the present paper, using covariant derivatives, parallel tensor fields and the constructions

in [3], we construct a sheaf of meromorphic open-string vertex algebras from a Riemannian

manifoldM and a sheaf of left modules for this sheaf generated by the space of smooth functions

on M .

More precisely, for a Riemannian manifold M , let TM be the tangent bundle ofM , T (TM)

the vector bundle of the tensor algebras on the tangent spaces at points onM and T (T̂M−) the

vector bundle overM whose fibers are the negative parts of the affinization of the tangent spaces

of M . Using the meromorphic open-string vertex algebras constructed in [3], we construct a
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sheaf V of meromorphic open-string vertex algebras on the sheaf of spaces of parallel sections

of the vector bundle T (T̂M−). In particular, the space VM of the global sections of V gives

a meromorphic open-string vertex algebra canonically associated to M . For an open subset

U of M , let C∞(U) be the space of smooth functions on M . For each open subset U of M ,

we construct a representation on the space of smooth functions on U of the algebra of parallel

sections of T (TM) on U . Using these representations and the constructions of left modules

for meromorphic open-string vertex algebras in [3], we construct a sheaf W of left modules for

V generated by C∞(U). In particular, the space WM of the global sections of W gives a left

VM -module canonically associated to M . As an example, we show that the Laplacian on M is

in fact a component of a vertex operator for the left VM -module WM restricted to the space of

smooth functions.

The construction in the present paper can be generalized to give constructions of left modules

generated by forms on M for suitable meromorphic open-string vertex algebra associated to a

Riemannian manifoldM . In the case thatM is Kähler or Calabi-Yau, we have stronger results.

These will be discussed in future publications.

The author studied differential geometry under the supervision of Professor Hesheng HU as

a master student from 1982 to 1984 in Fudan university. The publication of the present paper in

this issue is dedicated to the memory of her. This paper was finished in 2012 and was posted to

the arXiv on May 14, 2012. The present version is identical to the original version except that

some typos are corrected and two paragraphs (including this one) are added. In [6], Qi gave

the explicit examples of meromorphic open-string vertex algebras and their modules associated

to two-dimensional orientable space forms. In [7], to understand modules for meromorphic

open-string vertex algebras generated by eigenfunctions of the Laplacians on space forms, Qi

obtained results and formulated a conjecture on covariant derivatives of such eigenfunctions.

Research projects based on this paper have also been actively carried out by several people

including the author.

Here the author would also like to address one issue on which some mathematicians and the

author have different opinions. One opinion is that this paper is based on the parallel sections

of vector bundles and thus cannot lead to a construction of the two-dimensional quantum field

theory associated to a Riemannian manifold. For example, this opinion states that the conformal

field theories associated to tori cannot be constructed based on the approach developed in

this paper. People with this opinion obviously did not read the present paper carefully. In

the discussion in this introduction above, the author has indicated clearly that, though the

meromorphic open-string vertex algebra associated to a Riemannian manifold is obtained using

parallel sections, the modules are not. Here the author would like to point out another related

misunderstanding about the vertex-operator-algebraic approach to conformal field theory. Some

people mistakenly think that a vertex operator algebra determines a conformal field theory

completely. This is true only in the case of rational conformal field theories but is wrong in

general. One class of counterexamples to this statement is the conformal field theories associated

to irrational tori. For all irrational tori of the same dimension, the associated vertex operator
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algebras are all the same as the vertex operator algebra for the corresponding Euclidean space

(the Heisenberg vertex operator algebra in this dimension) since in this case there is no larger

vertex operator algebra such as the lattice vertex operator algebras in the rational tori case.

What determines a conformal field theory associated to a given irrational torus is the choice

of a subcategory of the category of modules for the Heisenberg vertex operator algebra. The

main difficulty that the author overcome in this paper is, as discussed above, the construction

of modules generated by eigenfunctions of the Laplacian. This construction is not given by

parallel sections and uses the geometry of the Riemannian manifold in a crucial way. Note that

eigenfunctions of the Laplacian on a Riemannian manifold contain a lot of information about

the Riemannian manifold. Though it has been known for a long time that we cannot hear the

shape of a Riemannian manifold (that is, the eigenvalues of the Laplacian cannot determine the

Riemannian manifold up to isometries), eigenfunctions can indeed determine at least a compact

Riemannian manifold since every function in a suitable Sobolev space can be expanded as a

(finite or infinite) sum of eigenfunctions. Also for a torus, no matter whether it is rational or

irrational, it is easy to use the construction of the present paper to construct the corresponding

conformal field theory. This is in fact one of the reasons why the author always believes that

the approach developed in this paper is correct.

In this paper, we shall fix a Riemannian manifold M . For basic material on Riemannian

geometry, we refer the reader to the book [5]. For meromorphic open-string vertex algebras

and left modules, see [3].

The present paper is organized as follows: In Section 2, we recall some basic constructions of

vector bundles and sheaves on a Riemannian manifoldM . In Section 3, we construct the sheaf V

of meromorphic open-string vertex algebras onM . In particular, we construct the meromorphic

open-string vertex algebra VM of the global sections of V canonically associated toM . In Section

4, using covariant derivatives, we construct a homomorphism of algebras from the algebra of

parallel tensor fields on an open subset of M to the algebra of linear operators on the space

of smooth functions on the same open subset. In particular, we obtain a representation on the

space of smooth functions of the algebra of parallel tensor fields. We construct in Section 5 the

sheaf W of left modules for V generated by the sheaf of smooth functions on M . In particular,

we construct the left VM -module WM of W canonically associated to M . In particular, we

construct the left VM -module of the global sections of W canonically associated to M . In

Section 6, we show that the Laplacian on M is in fact a component of a vertex operator for the

left VM -module WM restricted to the space of smooth functions.

2 Vector Bundles and Sheaves from the Tangent Bundle of a Rieman-

nian Manifold M

In this section, we recall some basic constructions of vector bundles and sheaves on a Rie-

mannian manifold.

LetM be a Riemannian manifold and g the metric onM . Consider the tangent bundle TM

of M and the trivial bundles M ×C[t, t−1] and M ×Ck where t is a formal variable and k is a
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basis of a one-dimensional vector space Ck. Let

T̂M = TM ⊗ (M × C[t, t−1])⊕M × Ck

be the vector bundle whose fiber at p ∈M is

T̂pM = TpM ⊗ C[t, t−1]⊕ Ck.

Since T̂pM for p ∈ M has a structure of Heisenberg algebra and the transition functions at

points of M preserve the gradings of the Heisenberg algebras, T̂M has a structure of a vector

bundle of Heisenberg algebras. For p ∈M , T̂pM has a decomposition

T̂pM = T̂pM−
⊕ T̂pM0 ⊕ T̂pM+,

where

T̂pM−
= TpM ⊗ t−1C[t−1],

T̂pM0 = TpM ⊗ Ct0 ⊕ Ck

≃ TpM ⊕ Ck,

T̂pM+ = TM ⊗ tC[t].

These triangle decompositions of the Heisenberg algebras give the triangle decomposition

T̂M = T̂M− ⊕ T̂M0 ⊕ T̂M+,

where

T̂M− = TM ⊗ (M × t−1C[t−1]),

T̂M0 = TM ⊗ (M × Ct0)⊕M × Ck

≃ TM ⊕ (M × Ck),

T̂M+ = TM ⊗ (M × tC[t]).

The connection on TM induces connections on T̂M , T̂M− and T̂M+. The product bundle

M × Ck has a trivial connection.

For p ∈ M , recall the subalgebra N(T̂PM) of the tensor algebra T (T̂pM) introduced in [3,

Section 3]. In fact, let I be the two-sided ideal of T (T̂pM) generated by elements of the form

(X ⊗ tm)⊗ (Y ⊗ tn)− (Y ⊗ tn)⊗ (X ⊗ tm)−m(a, b)δm+n,0k,

(X ⊗ tk)⊗ (Y ⊗ t0)− (Y ⊗ t0)⊗ (X ⊗ tk),

(X ⊗ tk)⊗ k− k⊗ (X ⊗ tk)

for X,Y ∈ TpM , m ∈ Z+, n ∈ −Z+, k ∈ Z. Then by [3, Proposition 3.1],

N(T̂pM) = T (T̂pM)/I

is isomorphic to

T (T̂pM−
)⊗ T (T̂pM+)⊗ T (TpM)⊗ T (Ck). (2.1)
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Let

T (T̂M−), T (T̂M+), T (TM), T (M × Ck)

be the vector bundles whose fibers at p ∈M are the tensor algebras

T (T̂pM−
), T (T̂pM+), T (TpM), T (Ck)

on the fibers of

T̂M−, T̂M+, TM, M × Ck,

respectively. Since (2.1) is the fiber of the vector bundle

T (T̂M−)⊗ T (T̂M+)⊗ T (TM)⊗ T (M × Ck) (2.2)

at p ∈M , we also have a vector bundle N(T̂M) whose fiber at p ∈M is N(T̂pM). By definition,

N(T̂M) as a vector bundle is isomorphic to the vector bundle (2.2).

For a vector bundle E over M , we shall use ΓU (E) to denote the space of smooth sections

of E on an open subset U of M . For a vector bundle E over M with a connection, we shall

use ΠU (E) to denote the space of parallel sections of E on U . By definition, ΠU (E) ⊂ ΓU (E).

When the fibers of E are associative algebras, ΓU (E) has a structure of an associative algebra.

If the covariant derivative with respect to every element of ΓU (TM) is a derivation of the

associative algebra ΓU (E), then ΠU (E) is a subalgebra of ΓU (E).

Taking E to be

N(T̂M), T (T̂M−), T (T̂M+), T (TM), T (M × Ck), (2.3)

we have the associative algebras

ΓU (N(T̂M)), ΓU (T (T̂M−)), ΓU (T (T̂M+)),

ΓU (T (TM)), ΓU (T (M × Ck)), (2.4)

respectively, of smooth sections. It is clear that

ΓU (T (T̂M−)), ΓU (T (T̂M+)), ΓU (T (TM)), ΓU (T (M × Ck))

can be embedded as subalgebras of ΓU (U(T̂M)). The connections on T̂M−, TM and T̂M+

uniquely determine connections on T (T̂M−), T (TM) and T (T̂M+), respectively, by requir-

ing that for every open subset U of M , the covariant derivatives with respect to every ele-

ment of ΓU (TM) are derivations of the associative algebras ΓU (T (T̂M−)), ΓU (T (T̂M+)) and

ΓU (T (TM)), respectively. We also have a canonical flat connection on the trivial bundle

T (M × Ck) ≃M × T (Ck).

Since N(T̂M) is isomorphic to (2.2), the connections on T (T̂M−), T (T̂M+), T (TM) and

T (M × Ck) further determine a connection on N(T̂M).

By definition, the covariant derivatives with respect to elements of the space ΓU (TM) of

the vector bundles in (2.3) are derivations of the corresponding associative algebras in (2.4).

Thus we have the associative algebras

ΠU (N(T̂M)), ΠU (T (T̂M−)),
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ΠU (T (T̂M+)), ΠU (T (TM)), ΠU (M × T (Ck))

of parallel sections.

For a vector bundle E, the spaces ΓE(U) of smooth sections on open subsets U of M and

the obvious restriction maps from ΓE(U) to ΓE(U
′) when U ′ ⊂ U give a sheaf ΓE . Similarly

for a vector bundle E with a connection, we also have the sheaf ΠE whose sections on an open

subset U is ΠE(U). The sheaf ΠE is a subsheaf of ΓE . Taking E to be the vector bundles in

(2.3), we have the sheaves

Γ(N(T̂M)), Γ(T (T̂M−)), Γ(T (T̂M+)),

Γ(T (TM)), Γ(T (M × Ck)),

Π(N(T̂M)), Π(T (T̂M−)), Π(T (T̂M+)),

Π(T (TM)), Π(M × T (Ck)).

We know that the space of parallel sections of a vector bundle with a connection is canoni-

cally isomorphic to the space of fixed points of a fiber under the action of the holonomy group.

In particular, we have the following result.

Proposition 2.1 Let U be an open subset of M . The spaces

ΠU (T (T̂M−)), ΠU (T (T̂M+)), ΠU (T (TM)), ΠU (N(T̂M))

are canonically isomorphic to the spaces of fixed points of

T (T̂pM−
), T (T̂pM+), T (TpM), N(T̂pM),

respectively, for p ∈ U under the actions of the holonomy groups of the restrictions of the vector

bundles

T (T̂M−), T (T̂M+), T (TM), N(T̂M),

respectively, to U .

3 A Sheaf V of Meromorphic Open-String Vertex Algebras on M

In this section, we construct a sheaf of meromorphic open-string vertex algebras on M . In

particular, the global sections of this sheaf give a canonical meromorphic open-string vertex

algebra associated to M .

First we have the following result.

Proposition 3.1 The fibers of the vector bundle T (T̂M−) have natural structures of mero-

morphic open-string vertex algebras and T (T̂M−) has a natural structure of vector bundle of

meromorphic open-string vertex algebras.

Proof Since the fibers of T (T̂M−) are the tensor algebras on the fibers of T̂M−, by

[3, Theorem 5.1], they have natural structures of meromorphic open-string vertex algebras.

It is clear that the transition functions of the vector bundle T (T̂M−) at points on M are

automorphisms of meromorphic open-string vertex algebras. Thus T (T̂M−) has a natural

structure of vector bundle of meromorphic open-string vertex algebras.
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Then we have the following corollary.

Corollary 3.1 For an open subset U of M , the space ΓU (T (T̂M−)) of sections of T (T̂M−)

has a natural structure of meromorphic open-string vertex algebra. The assignment

U → ΓU (T (T̂M−))

together with the restrictions of sections form a sheaf of meromorphic open-string vertex alge-

bras.

Proof The Z-gradings on the fibers of T (T̂M−) induce a Z-grading on ΓU (T (T̂M−)).

The constant section 1 is the vacuum. The vertex operator map is defined pointwise. It is

clear that with the Z-grading, the vacuum and the vertex operator map, ΓU (T (T̂M−)) is a

meromorphic open-string vertex algebra. The second conclusion is also clear.

The construction in Corollary 3.1 is simple. But these meromorphic open-string vertex

algebras are not what we are interested in. In fact, the sheaf of meromorphic open-string

vertex algebras obtained in Corollary 3.1 contains the sheaf of smooth functions on M and the

smooth functions commute with vertex operators. In particular, the vertex operators in this

sheaf of meromorphic open-string vertex algebras cannot contain differential operators acting

on the space of smooth functions. Since the quantum mechanics on M involves differential

operators, the sheaf of meromorphic open-string vertex algebras in Corollary 3.1 is not what

we are looking for.

Let S(T̂M−) be the vector bundle whose fiber at p ∈M is the symmetric algebra S(T̂pM−
)

of T̂pM−
. As we mentioned in the introduction, Tamanoi observed in [8–9] that the space

ΠU (S(T̂M−)) of parallel sections on U of S(T̂M−) is a vertex operator algebra. We now

construct our sheaf of meromorphic open-string vertex algebras similarly.

Given a meromorphic open-string vertex algebra (V, YV ,1) and a group H of automor-

phisms of V , let V H be the subspace of V consisting of elements that are fixed by H . Since

automorphisms of V preserve 1 ∈ V (see [3]), 1 ∈ V H . Also since for u, v ∈ V H and h ∈ H ,

hYV (u, x)v = YV (hu, x)hv = YV (u, x)v, the image of V H ⊗ V H under YV is in V H [[x, x−1]].

We shall denote the restriction of YV to V H ⊗ V H by YV H . Then YV H is a linear map from

V H ⊗ V H to V H [[x, x−1]]. The following result is obvious.

Proposition 3.2 The triple (V H , YV H ,1) is a meromorphic open-string vertex subalgebra

of (V, YV ,1).

For p ∈M and a connected open subset U ofM containing p, the holonomy group Hp(U) of

the restriction of the vector bundle T (T̂M−) to U acts on the fiber T (T̂pM−
) at p of the vector

bundle T (T̂M−). By Proposition 3.1, T (T̂pM−
) has a structure of meromorphic open-string

vertex algebra.

Lemma 3.1 For a connected open subset U of M , α ∈ Hp(U) and u, v ∈ T (T̂pM−
),

α(Y
T (T̂pM

−
)
(u, x)v) = Y

T (T̂pM
−
)
(α(u), x)α(v).

Proof Recall the notations in [3]. We need only prove the lemma in the case

u = X1(−n1) · · ·Xk(−nk)1
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for X1, · · · , Xk ∈ TpM and n1, · · · , nk ∈ Z+. Since the connection on T (T̂M−) is induced from

the connection on TM , the parallel transport in T (T̂M−) along a path in M is also induced

from the parallel transport in TM along the same path. Let γ be a loop in M based at p.

Denote both the parallel transports along γ in TM and in T (T̂M−) by αγ . Then we have

αγ(1) = 1

and

αγ(X1(−m1) · · ·Xk(−mk)1) = αγ(X1)(−m1) · · ·αγ(Xk)(−mk)1 (3.1)

for n1, · · · , nk ∈ Z.

By definition,

Y
S(T̂pM

−
)
(X1(−n1) · · ·Xk(−nk)1, x)v

=
(

◦

◦

1

(n1 − 1)!

( dn1−1

dxn1−1
X1(x)

)
· · ·

1

(nk − 1)!

( dnk−1

dxnk−1
Xk(x)

)
◦

◦

)
v,

where as in [3],

Xi(x) =
∑

n∈Z

Xi(n)x
−n−1

for i = 1, · · · , k and ◦

◦
· ◦

◦
is the normal ordering operation defined in [3]. Thus by Lemma 4.2

in [3] and (3.1), we have

αγ(YS(T̂pM
−
)
(u, x)v)

= αγ(YS(T̂pM
−
)
(X1(−n1) · · ·Xk(−nk)1, x)v)

= αγ

((
◦

◦

1

(n1 − 1)!

( dn1−1

dxn1−1
X1(x)

)
· · ·

1

(nk − 1)!

( dnk−1

dxnk−1
Xk(x)

)
◦

◦

)
v
)

= ◦

◦

1

(n1 − 1)!

( dn1−1

dxn1−1
(αγ(X1))(x)

)
· · ·

1

(nk − 1)!

( dnk−1

dxnk−1
(αγ(Xk))(x)

)
◦

◦
αγ(v)

= Y
S(T̂pM

−
)
(αγ(X1)(−n1) · · ·αγ(Xk)(−nk)1, x)αγ(v)

= Y
S(T̂pM

−
)
(αγ(X1(−n1) · · ·Xk(−nk)1), x)αγ(v)

= Y
S(T̂pM

−
)
(αγ(u), x)αγ(v).

From the lemma above, we obtain immediately the following corollary.

Corollary 3.2 For a connected open subset U of M , the holonomy group Hp(U) is a sub-

group of the automorphism group of the meromorphic open-string vertex algebra T (T̂pM−
). In

particular, (T (T̂pM−
))Hp(U) is a meromorphic open-string vertex subalgebra of T (T̂pM−

).

For an open subset U of M , let

VU = ΠU (T (T̂M−)).

Then the assignment U → VU and the restrictions of sections give a sheaf V . By Proposition

2.1, VU is canonically isomorphic to (T (T̂pM−
))Hp(U). Thus we have the following theorem.
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Theorem 3.1 For a connected open subset U of M and p ∈ U , the canonical isomorphism

from (T (T̂pM−
))Hp(U) to VU gives VU a natural structure of meromorphic open-string vertex

algebra. This structure of meromorphic open-string vertex algebra is independent of the choice

of p. For general open subset U of M , VU as a Z-graded vector space is isomorphic to the

underlying Z-graded vector space of the direct product meromorphic open-string vertex algebra∏
α∈A

VUα
(see [3, Definition 2.6]) where Uα for α ∈ A are the connected components of U . In

particular, VU also has a natural structure of meromorphic open-string vertex algebra. For

an open subset U of M and an open subset Ũ of U , the restriction map from VU to V
Ũ

is

a homomorphism of meromorphic open-string vertex algebras. In particular, the sheaf V is a

sheaf of meromorphic open-string vertex algebras.

Proof The first and second statements of the theorem are clear.

For general open subset U of M , choose a point pα in each connected component Uα of

U for α ∈ A (elements of A labeling the connected components of U), then ΠUα
(T (T̂pα

M
−
))

is isomorphic to (T (T̂pα
M

−
))Hpα (Uα) as a graded vector space, where Hpα

(Uα) is the holono-

my group of the connection on the vector bundle T (T̂M−) restricted to the connected com-

ponent Uα. But ΠU (T (T̂M−)) is isomorphic to
∏

α∈A

ΠUα
(T (T̂pα

M
−
)) as a graded vector s-

pace. Hence VU is isomorphic to
∏

α∈A

(T (T̂pα
M

−
))Hpα (Uα) as a graded vector space. Since

∏
α∈A

(T (T̂pα
M

−
))Hpα (Uα) has a structure of the direct product meromorphic open-string ver-

tex algebra of (T (T̂pα
M

−
))Hpα (Uα) for α ∈ A, VU has a natural structure of a meromorphic

open-string vertex algebra of central charge n.

For an open subset U of M and an open subset Ũ of U , let Uα for α ∈ A be the connected

components of U and let Ũβ for β ∈ B be the connected components of Ũ . Then for β ∈ B,

there exists α ∈ A such that Ũβ ⊂ Uα. For each β ∈ B, we choose a point p̃β ∈ Ũj . Then there

exists α ∈ A such that p̃β ∈ Uα. We choose pα ∈ Uα from those p̃β ’s such that p̃β ∈ Ũβ . Then

Hp̃β
(Ũβ) can be naturally embedded into Hpα

(Uα) when p̃β ∈ Uα. Thus the direct product

meromorphic open-string vertex algebra
∏

α∈A

(T (T̂pα
M

−
))Hpα (Uα) can be embedded into the di-

rect product meromorphic open-string vertex algebra
∏
β∈B

(T (T̂p̃β
M

−
))

Hp̃β
(Ũβ). The embedding

from
∏

α∈A

(T (T̂pα
M

−
))Hpα (Uα) to

∏
β∈B

(T (T̂p̃β
M

−
))

Hp̃β
(Ũβ) corresponds to the restriction map

from VU to V
Ũ
, that is, we have the following commutative diagram:

∏

α∈A

(T (T̂pα
M

−
))Hpα (Uα) −−−−→ VU

y
y

∏

β∈B

(T (T̂p̃β
M

−
))

Hp̃β
(Ũβ) −−−−→ V

Ũ
.

Since the embedding from
∏

α∈A

(T (T̂pα
M

−
))Hpα (Uα) to

∏
β∈B

(T (T̂p̃β
M

−
))

Hp̃β
(Ũβ) is a homomor-

phism of meromorphic open-string vertex algebras, the restriction map from VU to V
Ũ
is also a

homomorphism of meromorphic open-string vertex algebras.
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Remark 3.1 For an open subset U of M , VU is always nontrivial. In fact, the metric g

can be viewed as an element of the space ΓU (T
2(T ∗M)) of smooth sections on U of the second

symmetric tensor powers of the cotangent bundle T ∗M ofM . On the other hand, g also gives an

isomorphism of vector bundles from T ∗M to TM . It induces an isomorphism of vector bundles

from T 2(T ∗M) to T 2(TM), which in turn induces a linear isomorphism from ΓU (T
2(T ∗M))

to ΓU (T
2(TM)). The image of the element g ∈ ΓU (T

2(T ∗M)) under this isomorphism is an

element of ΓU (T
2(TM)) and is denoted g−1. Since g is parallel, g−1 is also parallel. For

k, l ∈ Z+, the vector bundles TM ⊗ t−k and TM ⊗ t−l are isomorphic to TM . In particular,

the space

ΓU ((TM ⊗ t−k)⊗ (TM ⊗ t−l))

of sections of the vector bundle

(TM ⊗ t−k)⊗ (TM ⊗ t−l)

is isomorphic to the space ΓU (T
2(TM)). In particular, g−1 ∈ ΓU (T

2(TM)) corresponds to an

element

g−1(−k,−l) ∈ ΓU ((TM ⊗ t−k)⊗ (TM ⊗ t−l).

Since g−1 is in fact parallel, that is, g−1 ∈ ΠU (T
2(TM)), and the connection on (TM ⊗ t−k)⊗

(TM ⊗ t−l) is obtained from the connection on T 2(TM), g−1(−k,−l) is also parallel, that is,

g−1(−k,−l) ∈ ΠU ((TM ⊗ t−k)⊗ (TM ⊗ t−l)) ⊂ ΠU (T (T̂M−)) = VU

for k, l ∈ Z+, giving infinitely many nonzero elements of VU of different weights.

Remark 3.2 It is well known that for p ∈ M , the symmetric algebra S(T̂pM−
) has a

natural structure of a vertex operator algebra. These symmetric algebras form a vector bundle

S(T̂M−) of vertex operator algebras with a connection. The same construction as the one for V

above shows that the space ΠU (S(T̂M−)) of parallel sections of S(T̂M−) on an open subset U

of M form a sheaf of conformal vertex algebras such that when U is connected, ΠU (S(T̂M−))

is a vertex operator algebra. From [3, Remark 5.2], for p ∈ M , we have a homomorphism of

meromorphic open-string vertex algebras from T (T̂pM−
) to S(T̂pM−

). Thus we have a homo-

morphism of vector bundles from T (T̂M−) to S(T̂M−) such that the connection on T (T̂M−)

is mapped to the connection on S(T̂M−). In particular, we have a homomorphism of sheaves

of meromorphic open-string vertex algebras from the sheaf V to the sheaf ΠU (S(T̂M−)) of

parallel sections of the vector bundle S(T̂M−).

4 Covariant Derivatives and Parallel Tensor Fields

Given an open subset U of M , let C∞(U) be the space of smooth functions on U . For

m ∈ N, let Tm(TM) be the m-th tensor power of the tangent bundle TM and ΓU (T
m(TM))

the space of sections of Tm(TM). Then ΓU (T (TM)) is the coproduct of ΓU (T
m(TM)). Given

f ∈ C∞(U), there is an m-th order covariant derivative ∇mf which can be viewed as a (0,m)-

tensor. Since ∇mf is a (0,m) tensor, we can view it as a module map from the C∞(U)-module

ΓU (T
m(TM)) to the C∞(U)-module C∞(U). Since ∇mf is linear in f , we can view ∇m as a
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linear map from C∞(U) to HomC∞(U)(ΓU (T
m(TM)), C∞(U)). Since such a map corresponds

to a linear map from ΓU (T
m(TM)) to L(C∞(U)), we have a linear map

ψm
U : ΓU (T

m(TM)) → L(C∞(U))

corresponding to ∇m, where L(C∞(U)) is the space of all linear operators on C∞(U). By

definition, for X ∈ ΓU (T
m(TM)),

(ψm
U (X ))f = (∇mf)(X ).

The linear maps ψm for m ∈ N give a single linear map

ψU : ΓU (T (TM)) → L(C∞(U)).

As we mentioned in the preceding section, ΓU (T (TM)) is an associative algebra. The space

L(C∞(U)) is in fact also an associative algebra. But in general, the isomorphism ψ is not

an isomorphism of associative algebras. The associative algebra ΓU (T (TM)) has a subalgebra

ΠU (T (TM)).

Let

φU : ΠU (T (TM)) → L(C∞(U))

be the restriction of ψU to ΠU (T (TM)). Then we have the following theorem.

Theorem 4.1 For X ∈ ΓU (T (TM)) and Y ∈ ΠU (T (TM)), we have

ψ
Ũ
(X ⊗ Y) = ψU (X )ψU (Y). (4.1)

In particular, the linear map φU is a homomorphism of associative algebras and gives C∞(U)

a ΠU (T (TM))-module structure.

Proof We need only prove (4.1) for m, l ∈ N, X ∈ ΓU (T (TM)) and Y ∈ ΠU (T (TM)). We

use induction on m. When m = 0, (4.1) certainly holds. Now assume that when m = k, (4.1)

holds. To prove (4.1) in the case m = k+1, we need only prove that for f ∈ C∞(U) and p ∈ U ,

(ψ
Ũ
(X ⊗ Y)f)(p) = (ψU (X )ψU (Y)f)(p). (4.2)

For p ∈ U , there exists an open subset Ũ of U containing p such that the restriction X|
Ũ
of

X to Ũ is a sum of elements of the form X ⊗ X̃ for X ∈ Γ
Ũ
(TM) and X̃ ∈ Π

Ũ
(TM). Hence

we can prove (4.2) for those X such that

X|
Ũ
= X ⊗ X̃

for X ∈ Γ
Ũ
(TM) and X̃ ∈ Π

Ũ
(TM). In this case for f ∈ C∞(U), by definition,

(ψ
Ũ
(X|

Ũ
)ψ

Ũ
(Y|

Ũ
))f

= (ψ
Ũ
(X|

Ũ
))((ψ

Ũ
(Y|

Ũ
))f)
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= (∇k+1((ψ
Ũ
(Y|

Ũ
))f))(X ⊗ X̃ )

= X((∇k((ψ
Ũ
(Y|

Ũ
))f))(X̃ ))− (∇k((ψŨ (Y|Ũ )f))(∇X X̃ )

= X((ψŨ (X̃ ))((ψŨ (Y|Ũ )f))− (ψŨ (∇XX̃ ))((ψŨ (Y|Ũ ))f)

= X((ψ
Ũ
(X̃ )ψ

Ũ
(Y|

Ũ
))f)− (ψ

Ũ
(∇XX̃ )ψ

Ũ
(Y|

Ũ
))f. (4.3)

By the induction assumption, the right-hand side of (4.3) is equal to

X((ψ
Ũ
(X̃ ⊗ Y|

Ũ
))f)− (ψ

Ũ
((∇X X̃ )⊗ Y|

Ũ
))f. (4.4)

Since Y is parallel, we have

∇XY|
Ũ
= 0

and thus

(∇XX̃ )⊗ Y|
Ũ
= ∇X(X̃ ⊗ Y|

Ũ
). (4.5)

Using (4.5), (4.4) becomes

X((ψ
Ũ
(X̃ ⊗ Y|

Ũ
))f)− (ψ

Ũ
(∇X(X̃ ⊗ Y|

Ũ
)))f

= X((∇k+lf)(X̃ ⊗ Y|
Ũ
))− (∇k+lf)(∇X(X̃ ⊗ Y)|

Ũ
)

= (∇k+1+lf)(X ⊗ X̃ ⊗ Y|
Ũ
)

= (ψ
Ũ
(X|

Ũ
⊗ Y|

Ũ
))f. (4.6)

The calculations from (4.3) to (4.6) show that the left-hand side of (4.3) is equal to the

right-hand side of (4.6). In particular, the value of the left-hand side of (4.3) at p is equal to

the value of the right-hand side of (4.6) at p. But the value of the left-hand side of (4.3) at p is

equal to the right-hand side of (4.2) and the value of the right-hand side of (4.6) at p is equal

to the left-hand side of (4.2). Thus (4.1) holds. Since p and f are arbitrary, (4.1) in the case

m = k + 1 is proved.

5 A Sheaf W of Modules for V Generated by the Sheaf of Smooth

Functions on M

In this section, we construct a sheaf W modules for the sheaf V of meromorphic open-string

vertex algebras in the preceding section from the sheaf C∞ of smooth functions on M .

Let U be an open subset ofM . For simplicity, we discuss only the case that U is connected.

The general case is similar. By Theorem 4.1, C∞(U) is a ΠU (T (TM))-module. For p ∈ U , by

Proposition 2.1, ΠU (T (TM)) is isomorphic to (T (TpM))Hp(U). We shall identify ΠU (T (TM))

with (T (TpM))Hp(U). In particular, C∞(U) is a (T (TpM))Hp(U)-module. Since (T (TpM))Hp(U)

is a subalgebra of T (TpM), we have the induced T (TpM)-module

Cp(U) = T (TpM)⊗(T (TpM))Hp(U) C∞(U).
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By Theorems 5.1 (or Proposition 3.1 in Section 3 above) and 6.5 in [3], T (T̂pM−
) has a natural

structure of meromorphic open-string vertex algebra and T (T̂pM−
)⊗C(U) has a natural struc-

ture of left T (T̂pM−
)-module. By Corollary 3.2, (T (T̂pM−

))Hp(U) is a meromorphic open-string

vertex subalgebra of T (T̂pM−
). In particular, T (T̂pM−

)⊗Cp(U) is also a left (T (T̂pM−
))Hp(U)-

module. Let WU be the left (T (T̂pM−
))Hp(U)-submodule of T (T̂pM−

) ⊗ Cp(U) generated by

elements of the form 1 ⊗ (1 ⊗(T (TpM))Hp(U) f) for f ∈ C∞(U), where 1 ⊗(T (TpM))Hp(U) f is

the image of 1 ⊗ f under the projection from T (TpM) ⊗ C∞(U) to Cp(U). By Theorem 3.1,

the meromorphic open-string vertex subalgebra (T (T̂pM−
))Hp(U) is canonically isomorphic to

VU = ΠU (T (T̂M−)). We shall identify (T (T̂pM−
))Hp(U) and VU . Thus WU has a natural

structure of left VU -module.

The construction of WU here depends on p. But WU is in fact independent of p. Let q

be another point in U . Then the subspace of T (T̂pM−
)⊗ Cp(U) consisting of elements of the

form 1 ⊗ (1 ⊗(T (TpM))Hp(U) f) for f ∈ C∞(U) is canonically isomorphic to the subspace of

T (T̂qM−
)⊗ Cq(U) consisting of elements of the form 1⊗ (1⊗(T (TqM))Hq(U) f) for f ∈ C∞(U).

Also both the meromorphic open-string vertex algebras (T (T̂pM−
))Hp(U) and (T (T̂qM−

))Hq(U)

are canonically isomorphic to the meromorphic open-string vertex algebra ΠU (T (T̂M−)) =

VU . Thus the left VU -module generated by elements of the form 1 ⊗ (1 ⊗(T (TpM))Hp(U) f)

for f ∈ C∞(U) is isomorphic to the left VU -module generated by elements of the form 1 ⊗

(1 ⊗(T (TqM))Hq(U) f) for f ∈ C∞(U). Since the subspace of T (T̂pM−
) ⊗ Cp(U) consisting of

elements of the form 1 ⊗ (1 ⊗(T (TpM))Hp(U) f) for f ∈ C∞(U) is canonically isomorphic to

C∞(U), we can view WU as a canonical left VU -module generated by C∞(U). We have proved

the following result in the case that U is connected; the general case can be obtained using

direct products as in the case of open-string vertex algebras in Section 3.

Theorem 5.1 For an open subset U of M and p ∈ U , WU has a natural structure of left

VU -module. For different choices of p, we obtain canonically isomorphic left VU -modules. In

particular, we have a canonical left VU -module WU generated by C∞(U).

In Theorem 5.1, taking U =M , we obtain the following corollary.

Corollary 5.1 The space C∞(M) on M generates a canonical left VM -module.

Let V1 and V2 be meromorphic open-string vertex algebras, and W1 and W2 be left V1- and

V2-modules, respectively. Let f : V1 → V2 be a homomorphism of meromorphic open-string

vertex algebras. ThenW2 is also a left V1-module. A homomorphism fromW1 toW2 associated

to f is a homomorphism from W1 to W2 as a left V1-module.

By definition, WU is the left (T (T̂pM−
))Hp(U)-submodule of T (T̂pM−

)⊗C(U) generated by

elements of the form 1⊗ (1 ⊗(T (TpM))Hp(U) f) for f ∈ C∞(U). For open subsets U and Ũ such

that Ũ ⊂ U , we have a restriction map from VU to V
Ũ
which corresponding to a restriction map

from (T (T̂pM−
))Hp(U) to (T (T̂pM−

))Hp(Ũ). Using the restriction map from (T (T̂pM−
))Hp(U)

to (T (T̂pM−
))Hp(Ũ) and the restriction map from C∞(U) to C∞(Ũ), we obtain a restriction

map from WU to W
Ũ
. By definition, we obtain the following theorem.
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Theorem 5.2 For open subsets U and Ũ such that Ũ ⊂ U , the restriction map from WU

to W
Ũ
is a homomorphism from WU to W

Ũ
associated with the restriction map from VU to V

Ũ
.

In particular, W is a sheaf of V-modules.

6 The Laplacian on M as a Component of a Vertex Operator

Many conjectures on geometry were obtained from quantum field theory by interpreting

some geometric or analytic objects as quantum-field-theoretic objects. In this section, as an

example, we show that the Laplacian of M is in fact a component of a vertex operator for WM

acting on C∞(M).

Let {Ei}
n
i=1 be an orthonormal frame in an open neighborhood U of a point p ∈M . Recall

the element g−1(−1,−1) ∈ VU . Then in U ,

g−1(−1,−1) =

n∑

i=1

(Ei ⊗ t−1)⊗ (Ei ⊗ t−1).

We identify VU = ΠU (T (T̂M−)) with (T (T̂pM−
))Hp(U). Under this identification, g−1(−1,−1)

is identified with

n∑

i=1

(Ei|p ⊗ t−1)⊗ (Ei|p ⊗ t−1) =
n∑

i=1

(Ei|p)(−1)(Ei|p)(−1)1,

where 1
T (T̂pM

−
)
is the vacuum of the meromorphic open-string vertex algebra T (T̂pM−

) and

(Ei|p)(−1) is the representation image of Ei|p ⊗ t−1 on T (T̂pM−
).

Recall that WU by definition is the left (T (T̂pM−
))Hp(U)-submodule of T (T̂pM−

)⊗ Cp(U)

generated by elements of the form 1 ⊗ (1 ⊗(T (TpM))Hp(U) f) for f ∈ C∞(U). Let f ∈ C∞(U).

Consider

YWU
(g−1(−1,−1), x)(1⊗ (1 ⊗(T (TpM))Hp(U) f)).

Since WU is a (T (T̂pM−
))Hp(U)-submodule of T (T̂pM−

) ⊗ Cp(U) and the (T (T̂pM−
))Hp(U)-

module T (T̂pM−
) ⊗ Cp(U) is induced from the T (T̂pM−

)-module structure on T (T̂pM−
) ⊗

Cp(U), the vertex operator map YWU
is the restriction of the vertex operator map Y

T (T̂pM
−
)
to

(T (T̂pM−
))Hp(U) ⊗WU . In particular,

YWU
(g−1(−1,−1), x) = Y

T (T̂pM
−
)
(g−1(−1,−1), x)

=

n∑

i=1

Y
T (T̂pM

−
)
((Ei|p)(−1)(Ei|p)(−1)1, x)

=

n∑

i=1

◦

◦
(Ei|p)(x)(Ei|p)(x) ◦

◦
.

Then the coefficient of the x−2 term of YWU
(g−1(−1,−1), x) is

n∑

i=1

∑

k∈Z

◦

◦
(Ei|p)(−k)(Ei|p)(k) ◦

◦
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= 2

n∑

i=1

∑

k∈Z+

(Ei|p)(−k)(Ei|p)(k) +

n∑

i=1

(Ei|p)(0)(Ei|p)(0).

This coefficient or component of the vertex operator YWU
(g−1(−1,−1), x) acting on (1 ⊗

(1⊗(T (TpM))Hp(U) f)) is equal to

n∑

i=1

(Ei|p)(0)(Ei|p)(0)(1 ⊗ (1⊗(T (TpM))Hp(U) f))

= 1⊗
( n∑

i=1

(Ei|p ⊗ Ei|p)⊗(T (TpM))Hp(M) f
)

= 1⊗
(
1⊗(T (TpM))Hp(U)

(
φ
( n∑

i=1

Ei ⊗ Ei

)
f
))

= 1⊗
(
1⊗(T (TpM))Hp(U)

(
(∇2f)

( n∑

i=1

Ei ⊗ Ei

)))

= 1⊗
(
1⊗(T (TpM))Hp(U)

( n∑

i=1

∇2
Ei,Ei

f
))

= 1⊗ (1 ⊗(T (TpM))Hp(U) ∆f).

Thus we see that this component of the vertex operator YWU
(g−1(−1,−1), x) acting on (1 ⊗

(1 ⊗(T (TpM))Hp(U) f)) can be interpreted as the Laplacian ∆ acting on the smooth function f

on U .

Since V and W are sheaves, the conclusion above for a small open neighborhood of ev-

ery p ∈ M implies that the same conclusion holds for any open subset U of M and f ∈

C∞(U). In particular, the component of the vertex operator YWM
(g−1(−1,−1), x) acting on

(1⊗(1⊗(T (TpM))Hp(M) f)) is equal to 1⊗(1⊗(T (TpM))Hp(M)∆f) and corresponds to the Laplacian

∆ acting on the smooth function f defined on M .
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