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Abstract In this paper, the authors introduce a Morse-theoretic condition under which
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1 Introduction

Various notions of g-convexity have been extensively studied in complex analysis and com-
plex geometry since Rothstein [15] first introduced the concept in 1955. Andreotti-Grauert [1]
established a celebrated finiteness theorem for any coherent analytic sheaf over g-convex spaces,
which generalized a result of Grauert [5]. In [8], Ho defined a notion of g-subharmonicity for
a function in terms of the trace of its complex Hessian restricted to a g-dimensional space, in
order to study the d-problem in a more general setting than pseudoconvex domains. Zampieri
[17-18] also considered the g-pseudoconvexity to explore the regularity at the boundary for
solutions of the d-problem. For a comprehensive overview of the g-convexity conditions, we
refer the reader to [6, 14] and the references therein.

Given a complex manifold M of dimension n, we recall that the Hermitian form of a real
valued function p € C%(M) at a point z € M is defined as

0i7(2) = V=100p(L, L), (L1)

where {L;}7_, € T}°M is a basis. We are interested in the vanishing theorems for Dolbeault
cohomology groups HP*?(M) in bidegree (p, q), relying on some refined g-convexity conditions

due to Hormander [9] and Andreotti-Grauret [1] as follows.

Definition 1.1 Let ¢ € C*(M) be a real valued function and zo € M.
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(1) We shall say that ¢ satisfies the condition a} (or a;) at zo, if gradp(zg) # 0 and
the form (1.1) restricted to the space Tle’OM N Ker(dy) has at least n — q positive eigenvalues
(respectively at least q + 1 negative eigenvalues). Furthermore, o is said to fulfill the condition
aq (which Folland-Kohn [4] also refers to as the condition Z(q)) at zo, if ¢ satisfies either the
condition al‘; or the condition a, at 2.

(2) The condition Gf (or G) for ¢ at zg means that the form (1.1) has at least n —q + 1
positive eigenvalues (respectively at least ¢ + 1 negative eigenvalues). Additionally, ¢ is said to
fulfill the condition Gy at 2o, if ¢ satisfies either the condition G;‘ or the condition G at 2.

It is clear that functions satisfying the condition Gf are precisely the smooth strictly
plurisubharmonic functions, and a manifold with a smooth boundary is strongly pseudoconvex
indicates that the defining function satisfies the condition aj” on the boundary. The condition
a, and the condition G enable the Hermitian form (1.1) to exhibit pure negativity, and these

conditions are closely related to the concept of g-concavity. Moreover, for 1 < ¢ <mn — 1,

q

{condition aj (or Gf) = condition a/,, (respectively G ,), 12)
1.2

condition G, = condition G__4

and
condition a, = condition Ay forl1<g<n-—2.

Let Ay < X\p < -+ <\, be the eigenvalues of the quadratic form (1.1) and g1 < po < -+ < pp—q
be the eigenvalues of the same form restricted to the space T7:°M NKer(dy). According to the

minimum-maximum principle for the eigenvalues, we have
AISMIS)\ZS"'S)\qgﬂqSAq-‘rI Sﬂq+1§"'§Mn—1§)\na

which implies that if grad ¢ # 0 at zp, then

! (1.3)

condition G = condition af for 1 < ¢ <mn,
condition a, = condition G, for 0 <¢<n-—2.

In [9], Hérmander proved that the condition a4 is equivalent to the basic estimate, which is
used to establish the regularity of the d-problem on the strongly pseudoconvex manifolds with
smooth boundary by Morrey [13] and Kohn [11-12]. There are many notable developments on
this topic; see [7, 16-18] and the references therein. In contrast to this direction, this paper
is devoted to establishing several existence results for the d-problem using the condition a,.

Denote the set of critical points of ¢ by
Cy, :={z€ M | dy(z) =0}. (1.4)

Inspired by (1.3), we formulate our main result as follows.

Theorem 1.1 Let 1 < g <n. Assume that M has an exhaustion function ¢ € C(M)
satisfying the condition G;‘ on Cy, and the condition ag outside C,. Then HP4(M) = 0.
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Based on the relations (1.2), Theorem 1.1 allows us to give a condition that ensures the

vanishing of not only the gth cohomology, but also the kth cohomology for k > q.

Corollary 1.1 Let 1< g<n. Suppose that M admits an exhaustion function ¢ € C°(M)
satisfying the condition G;‘ on C, and the condition a(‘; outside Cy. It follows that HP*(M) = 0
for k> q.

In particular, on the further assumption that ¢ satisfies the condition G; outside C,, by
means of the Dolbeault theorem, Corollary 1.1 recovers Andreotti-Grauert Theorem (see [1])
for the sheaf of germs of holomorphic p-forms on g-complete manifolds (a g-complete manifold
M means that there is a smooth exhaustion function with condition G} on M).

Corollary 1.2 Let 1 < g < n. Assume that M has an exhaustion function ¢ € C°(M)
satisfying the condition G;}‘ on M. Then HP*(M) =0 for k > q.

In comparison to Theorem 1.1, if we assume that C, is compact, Hérmander provided an
alternative eigenvalue condition to guarantee the vanishing of the cohomology in [9]. Here is a

variant of his theorem.

Theorem 1.2 Let 1 < g <mn, and ¢ € C°(M) be an ezhaustion function. We assume that
C, C My, CC My, where My :={z € M | p(z) < t} fort € R and that ¢ satisfies

(1) the condition G, on My, and the condition a, outside My,

(2) the condition G on My, \ My,
then HP9(M) = 0.

We will present a direct proof of Theorem 1.2 by L?-estimates, which differs from Hérmander’s

original approach.

2 Preliminaries

To prove Theorems 1.1-1.2, we first require some preliminary results. The following refined
proposition originally due to Andreotti-Vesentine in [2] (see also [3]), plays a crucial role in our

argument.

Proposition 2.1 Let ¢ € C*°(M) fulfill the condition G} (or G7) on a closed subset E
of M, then for any number € > 0, there exists a Hermitian metric w on M such that the
eigenvalues of the quadratic form (1.1) (respectively the form (1.1) for —p) with respect to w
satisfy M1 > —e and Ay = --- = A\, = 1 (respectively A, < e and Agy1 =--- =X 1 = —1) on E.

Proof The proof for the case where ¢ satisfies the condition G;‘ is parallel to that of the
case where ( satisfies the condition G, thus we will focus exclusively on the latter case. Our
arguments essentially follow those in Lemma 3.1 of Chapter IX in [3].

Let wp be a fixed Hermitian metric, and —\) < ... < —\? be the eigenvalues of A° with
respect to the metric wp, where A° is the Hermitian endomorphism associated to v/—190¢ with
respect to wg. We can select a function 0 < n € C°°(M) such that for z € E,

0(z) < —Ap (2). (2.1)
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Indeed, since —)\2+1 > 0 on FE, there is an open neighborhood U of E with —/\2+1 > 0 on
U. In view of the Whitney approximation theorem, one can find a function 0 < 7, € C>°(U)
satisfying (2.1) on U. It is clear that {U, M \ E} forms an open covering of M because F is
closed. Let {1,1 — ¢} be a smooth partition of unity subordinate to the covering {U, M \ E}.
Then

n=¢ym+1-1v

fulfills the desired property. We then choose a positive function § € C°°(R) such that
ot
ot
o(t)

) >
) >t for t >0,
=1 fort > 1.

Let w be the Hermitian metric defined by the following Hermitian endomorphism:

A(z) = n(2)0[(n(2)) " A°(2)].

—A(z
Thus, the eigenvalues of A(z) are ap—j41(2) = 1(2)0( 7;\(];) )) > 0 and we have
N (z
o2 L e <o,

an—j+1(2) > =A)(2), if —AJ(z) >0,
an—jr1(2) = =N)(2), ifj<qg+landzeE.
By construction, the eigenvalues of the quadratic form (1.1) for —¢ with respect to w are

0
—Ai(z) = —#i)(z), and they have the required properties.

Remark 2.1 According to Proposition 2.1, a smooth function ¢ satisfies the condition G;
on a manifold means that ¢ is g-subharmonic with respect to some metric w in the sense of Ho

[8] (i-e., the sum of any ¢ eigenvalues of the Hermitian form for ¢ is positive with respect to w).

The weighted L2-space Lf))q(M , @) for a real valued function ¢ € C(M) is given by

12, (M, ¢) = {f € I2,(M,loc) ‘ /M If(2)|e=® < +oo}.

The notation (), stands for the inner product on Lg,q(M ,0). We will apply the following

lemma to

L2 (Mu ¢) L L1277q(M7 (b) i> L127,q+1(M7 ¢)7

P,q—1
where T, S are the closed densely defined extensions of 9 in the weak sense, and ¢ will be

determined in the sequel.

Lemma 2.1 (see [9]) LetT : Hy — Hy and S : Hy — Hj be closed, densely defined linear
operators such that Im(T') C Ker(S). If there exists a constant C' > 0 such that

lgllz, < C*(IT"gll7, +1S9ll%,). g € Dom(T™) N Dom(S). (2.2)

Then for any f € Ker(S), one can find uw € Hy such that Tu = f and ||u| g, < C||f]lm,-
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3 Proofs of Theorems 1.1-1.2

First, we recall basic facts from [9] about L2-estimates on a Hermitian manifold M.

Proposition 3.1 Let U C M be a coordinate patch, and let {w',--- ,w™} be a local or-
thonormal frame for forms of type (1,0) in U and ¢ € C?>(M,R). Then for any positive number
e <1, any f € D, 4(U) with support in a fized compact subset of U, we have

A+ (T FI2 + ISFI2) = (1 - <) ZZ/ ‘af” LYY / o frix Frane™®

1,7 j=1 I.K jk=1

2,—¢
+ /U C.(2)| 2%, (3.1)

where summations are extended to strictly increasing multi-indices, Dy, o(U) denotes the space

of smooth (p, q)-forms with compact support in U and C.(z) € C°(U) is independent of f.

The notation % in the above proposition is consistent with that used by Hormander in
J
[9], and we will adopt the same notation in what follows. In order to make another integration
by parts for the gradient term in (3.1), we shall use the following proposition.

Proposition 3.2 Let U C M be a coordinate patch and ¢ € C*(M,R). Then for any

function w € C?(U) vanishing outside a fized compact subset of U, we have
ow |2 / 9
| € 7=~ [ pilwle™ + Cllwl|wlle,
A= 5 el

where C'is a constant independent of w and |||w|||? = Z 2212 + [Jw|]2.
J

To obtain the final a priori estimate (2.2), we need some lemmas.

Lemma 3.1 Let 0 < g < n, and suppose that M has an ezhaustion function ¢ € C°(M)
satisfying the condition aq outside a subset E' C M. Then for any open neighborhood Q' of E’
in M and any function C(z) € C°(M), there exists a convex increasing function x(t) € C*°(R)
such that, on Q := M\ SV, for every f € C3% () N Dy (M),

1T 50 + 1S F 150 /Q(C(Z)+1)|f|2€"‘(“")- (3-2)

Proof Given zg € €, there is a coordinate patch U around zy such that grade # 0 in
U. We choose a local orthonormal frame {w!, - ,w"} in U so that w" = %, which yields
;= 667“2_ =0 for j < n and @, = |d¢|. By a unitary transformation of w’ for j < n, we can
attain that

Z%] Zotfk—Zug (201t
J,k=1

where p;(20) < 0 for j < o and p;(z9) > 0 for j > 0. According to Propositions 3.1-3.2, we
know that for any g € D, ,(U) with support in a fixed compact subset of U and 0 < € < %

(L+e)ITgll3 + 1591I3)
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=033 [ e+ 505 [ cposnammme + [ Ciolgbe

1,0 j=1 IK jk=1

> /U Q. (:0.9)e % + /U 5 (2)lgl%e %, (3.3)

where C5;(2) denotes various continuous functions on U which are independent of g, and

Q5(2:9.9) ZZ 2e)p 51910+ Z P 791 KITRK -

1,J j=1 K jk=1

Replace the function ¢ in (3.3) by x(¢), where x € C*°(R) is a convex increasing function to

be determined in the sequel. This gives

(L4 )T gl ) + 15911 ) = / (V)5 (=19, 9) + X ( angmm Jox(®)

+ [ Coelapete 3.9

We may write
g=g"+g* :=2:’9})%1[/\5‘14—2:”92 wh nw’!

where the notations Z’ and Z" mean that the summations only extend over strictly increasing
multi-indices J with n ¢ J and J with n € J, respectively. Note that g = 0 when ¢ = n.
Subsequently, for any positive number &', QF,(2; g, g) can be bounded from below by the sum
of the following two terms:

n—1
Q5% (219", 9" Z Z (1=20)p591 P+ D" D 091 ix0isk — Y 19141
1,7 j=1 1K jh=1 1,7
and
o n—1
(20507 =" (0 =2)p5l97 P+ Y ewmlei P+ D" D et ik
1,7 j—1 1,7 IK jh=1
n—1
—Cy Y " leimet g
1.7 =1

where 05 is a positive constant. If ¢ < n — 1, by the hypothesis that ¢ satisfies condition a,

at zg,

n—1 q
> w5 (z0) + > pi(z0) >0
j=1 j=1

where ™ (20) := max{—pu(z9),0}. It follows that

Q% (209", 9") Z (Zuj 20) + > 15 ZO)|91J|2
i=

jed



A Note on Vanishing Theorems on Non-pseudoconvexr Complex Manifolds 151

is positive definite. Thus there is a neighborhood V' C U of z; and a positive function uf}sl (2) €
C°(V) such that for fixed but sufficiently small € and €/,

Q%% (299" = 1y (2)lg" .

From the estimate (3.4) for g € D, 4(V') with support in a fixed compact subset of V' we read
off,

(L +)UIT*gll3() + 15905,

> /V(x'(w)(uis (2)]g" 1 + Q5% (2192 07) + X" (9)lpng?[?)e X
+ [ ColgPe®, (3.5)
L

where C%,(z) € C°(V) is independent of g and .

Let {V,},>1 be coordinate patches in € where (3.5) is applicable, and they form a locally
finite covering of Q. We select a partition of unity {t, },>1 subordinate to the covering {V, },>1
such that v, € C°(V,) and Y %2 =1 in Q (shrinking V,, if necessary). Applying (3.5) to 1, f

v>1
and adding over v, we obtain

A+ UT* ) + 155130
Z/Q(x’(w)u57€ @+ @RS )1+ X (9)on f?[?)e )
+ [ ca@lfre, -

where
e (2) = waufff( )
v>1

and

Ry ()= 30 (3o -1 -2 + %) cv,,D

v>1l gj=1

_2)¢2

’s are the functions defined by (1.1) over V,,. This implies that if we can choose x

in which cpf;—' )

increasing so rapidly that for z € €,
{X/(SD)NE’EI (2) = (1+e)(ICq(2) + C(2) + 1),

X ()RS (2) + X" (9)len(2)]* = (1 +2)(IC(2)] + C(2) + 1),
then the desired estimate follows from (3.6). Therefore it only remains to prove (3.7). Indeed,
since @ is an exhaustion function, M; := {p < t} CC M for any t € R. The fact M; NQ CC
M\ C, (recall that C, is defined by (1.4)) allows us to define the following functions on ¢ > t,
where tg is the largest number such that M; N Q =0,

(1+e)(Ca(2)| + C(2) +1) L— R ()

p(t) == sup ; , R(t):= sup ,
Mi110Q pee Mi11NQ |90n|2

(3.7)
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C(t) := sup (1 +e)(|Cq(2)| + C(z) + 1).
M1
Hence, (3.7) is valid if we can choose y € C°°(R) such that on ¢ > o,
X' (t) = p(t),
X'(t)/X'(t) = R(t), (3.8)
X (t) = C(),

which is obviously possible.

Our next goal is to derive the estimate as (3.2) near the critical points in C, (see (1.4)). For

later use, we state a slightly more general version.

Lemma 3.2 Let 1 < g < n, and suppose that M admits an exhaustion function ¢ € C°(M)
satisfying the condition G;‘ on a closed subset E C M. Then there exists an open neighborhood
Q of E in M and a complete Hermitian metric such that, for any function C(z) € C°(M), one

can construct a convex increasing function x(t) € C°°(R) with the following property: For any
f e Cra(@)NDy (M) (k= q),

1T Il + IS FII30) Z/Q(C(Z)+1)|f|2e_"(“’)- (3.9)

Proof Let w denote the metric given by Proposition 2.1, and {Xj }}‘:1 denote the eigenvalues
of the Hermitian form (1.1) with respect to w. We choose a real valued function p € C*° (M)
increasing so rapidly at infinity that the Hermitian metric w := efw is complete on M; then
the eigenvalues A; of (1.1) with respect to w are e_”xj. We shall fix the metric in the proof.
For any zp € F and € < %,

MA - Fd=e P+ F A1+ A+ + M) >e (1 —(g—1)) > 0. (3.10)

We can select a coordinate patch U around zo such that (3.10) holds on U. By means of
Proposition 3.1, we know that for any g € D,, 1(U) with support in a fixed compact subset of
U,

N W

(I7*g]12 + 1Sgll%) > 222/ ‘Bgu fee+ 3 3 / 591 KTTFRE

I.J j= IK jk=1

+ [ cugie
U
2/()\1+---+)\k)|g|26_“"+/ Cu(2)|g|*e™?, (3.11)
U U

where Cyy(2) € C°(U) is independent of g.
Let {U,},>1 be coordinate patches set in M such that (3.11) holds on each patch, and
they form a locally finite covering of E. Set Q := |JU,; then we choose a partition of unity

{tu}>1 subordinate to a refinement {V,,},>1 of the covering {U,},>1, where ¢, € C>(V,)
with ;1 @[Jﬁ =11in Q. Applying (3.11) to ¢, f and x(¢) gives
>
3 -
SUT TR+ 15 ) = [ (@) +-+ 2 e
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+ [ Cata)lfpe. (3.12)

Thanks to (3.12), the proof can be finished by choosing y appropriately such that
(@) + 4 4 > 5(Cale)| +C) +1) i 6 (313)

Now the proof of the rest part is analogous to that of (3.7). Since M, := {¢ <t} CC M for
any t € R, by shrinking  a little bit, we can introduce

2(Ca(z)] + () + 1)
A(t) == sup

My410Q AL+ A

. t>to, (3.14)

where t( is the largest number such that M; N Q = (). Thus, (3.13) holds true if we select a

convex increasing x € C°(R) satisfying
X'(t) > A1), t>to. (3.15)

The proof is thus complete.

Remark 3.1 If ¢ satisfies the condition G for ¢ < n —1 on the closed set F, according
to Proposition 2.1 again, one can find a complete metric such that for any zy € E,

“An— = Ag—Ag1 — o — Aep1 > 0 at z. (3.16)

Then there exists a coordinate patch U such that (3.16) holds. Using the Hodge star
operator, we can deduce the following estimate for any g € D, 1 (U) (k < ¢) with support in a
fixed compact subset of U,

3 N _ _
ST 82 +18912) = [ =0+ dlale + [ Culloe.

However, it seems that we are unable to derive the estimate (3.9) in a neighborhood of E, since
(3.12) breaks down when we replace ¢ by x(p) where x is a convex increasing function with
X" (t) # 0. This is the reason why we cannot deal with the case where ¢ satisfies the condition
G .

q

Proof of Theorem 1.1 Employing Lemma 3.2 to the exhaustion function ¢ and the closed
set C, (see (1.4)), there is a complete metric w and an open neighborhood € of C, such that
(3.9) holds for w. We fix the metric w in the proof. Let €’ be an open subset of {; containing C,,
so that ©; and Qs := M\ €’ cover M. Choose a smooth partition of unity {11, } subordinate
to {Qy,Qa} with ¥? +¢3 = 1. For any f € D, ,(M), applying Lemma 3.1 and Lemma 3.2 to
(Qa, 12 f) and (21,91 f) respectively yields

/ |T*(¢1f)|2e—x(sa)+/ |S(w1f)|2e—x(sa) 2/ (C(Z)+1)|1b1f|26_x<‘/’),
Q1

1 Q1

/ |T*(¢2f)|2e—x(ga)_|_/ |S(¢2f)|2e—x(@) 2/ (O(Z)+1)|,(/)2f|26—x(gp)’
Qs o

Q2
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where
C(z) i= [T 1 |* + [Sr|* + |T* | + |Stpa|?

and the convex function y € C*°(R) is so rapidly increasing that (3.8) and (3.15) are fulfilled.
It follows that

1T F3 ) + 1S F o) = 1130y Y € Dpg(M).

i 2 . 2 . . bt
Since any f € Lz ,(M,loc) belongs to Lz (M, x(¢)) for some choice of x satisfying (3.8) and
(3.15), now the conclusion follows from Hormander’s density lemma in [10] and Lemma 2.1.

To prove Theorem 1.2, we begin with the following lemma.

Lemma 3.3 Let 0 < g < n and E be a compact set of M. Suppose that the function
p € C®(M) satisfies the condition G4 on E. Then there exists an open neighborhood Q@ CC M
of E such that, for each function C(z) € C°(M), there is a positive constant T satisfying, for
any f € Dy 4(Q) with support in a fived compact subset K of 2,

IT* 12, + IS 17, > /Q(C(Z) +DIfPe77, V1> . (3.17)

Proof According to [9, Theorem 3.3.1], for any point 2y € F, there is a coordinate patch
U around zp and constants C, 79 depending on U, such that for any g € D, 4(U),

(T glZ, + 1Sgll,) = /UT|Q|29_W7 VT > 7. (3.18)

Since E is compact, we can choose finite coordinate patches Uy, --- ,Us in M to cover E where

(3.18) is applicable and set 2 := |J U, CC M. Let {w#}f;:l be a partition of unity subordinate

v=1

to a finite refinement {Vu}i/:l of the covering {U, N K'}_, of K, so that ¢, € C>(V},) and
> ¢n =1in Q. Applying (3.18) to g and adding over u gives
p=1

’
S

S CUIT gl + 1012, > [ SriglPee. Ve max(ny,  (@19)

p=1

where C), and Té“ ) are the constants depending on V), in (3.18). Put

SZ CM(S?ZP |C(2)| + 1)

7o = max {Tél)’ ST . } (3.20)

thus the desired estimate can be deduced from (3.19).

Proof of Theorem 1.2 We apply Lemma 3.3 to ¢ and My, , then there exists an open
neighborhood €27 such that (3.17) is valid for any metric. By shrinking € if necessary, we can

assume that

C, € My, CC My, CC Qy CC My, CC My, CC My,.
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According to Lemma 3.2, one can find a complete Hermitian metric w and an open neighborhood
Q9 C My, \ My, of My, \ My, such that (3.9) holds for w. We fix the metric in the proof. Clearly,
the open sets Qp, Qo and Q3 := M \ M;, form a finite covering of M. As usual we choose a
smooth partition of unity {11, 2,3} subordinate to {Q,Q2, Q3} satisfying ¢? + 3 + 32 =1
and ¥1 € C2°(Q4). Then for any f € D, ,(M), employing Lemma 3.1, Lemma 3.2 and Lemma
3.3 to (Q3,%3f), (Q2,92f) and (1,11 f) respectively, we have

/ |T*(¢1f)|2e—x(sa)+/ |S(w1f)|2e—x(sa) 2/ (C(Z)+1)|¢1f|Ze_X(‘/’),
Q1

1 Q1

[ P [ |S@anPe ) 2 [ (C) + lbafre),
Qo Qs Qs

/ |T*(1/)3f)|2e—x(sa)_|_/ |S(1/)3f)|2e_X(sa) 2/ (O(Z)+1)|1/)3f|Ze_X(‘/’),
Q3

3 Q3

where
C(z) = [T*1 > + |S1|? + [T o |* + [Se2|? + |T*3|* + |Sevs)?,

and the convex increasing function y € C*°(R) is selected to satisfy (3.8) on t > ¢y and (3.15)
on t > tg respectively, and we further require that x is linear for ¢ < t3 with a large slope T,

the constant 7 is chosen such that
T>T0+ /\(tg),

where 19 and A(t3) are defined by (3.20) and (3.14). Consequently,

1T 130y + 1SS 1300y = 1 130y VS € Dpg(M).

Since any f € thq(M7 loc) belongs to Lg_’q(M,X(gp)) for some choice of x increasing rapidly
at infinity such that (3.8) and (3.15) hold true for ¢ > tp, the conclusion is derived from
Hormander’s density lemma in [10] and Lemma 2.1.
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