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1 Introduction

Various notions of q-convexity have been extensively studied in complex analysis and com-

plex geometry since Rothstein [15] first introduced the concept in 1955. Andreotti-Grauert [1]

established a celebrated finiteness theorem for any coherent analytic sheaf over q-convex spaces,

which generalized a result of Grauert [5]. In [8], Ho defined a notion of q-subharmonicity for

a function in terms of the trace of its complex Hessian restricted to a q-dimensional space, in

order to study the ∂-problem in a more general setting than pseudoconvex domains. Zampieri

[17–18] also considered the q-pseudoconvexity to explore the regularity at the boundary for

solutions of the ∂-problem. For a comprehensive overview of the q-convexity conditions, we

refer the reader to [6, 14] and the references therein.

Given a complex manifold M of dimension n, we recall that the Hermitian form of a real

valued function ϕ ∈ C2(M) at a point z ∈M is defined as

ϕij(z) :=
√
−1∂∂ϕ(Li, Lj), (1.1)

where {Lj}nj=1 ⊆ T 1,0
z M is a basis. We are interested in the vanishing theorems for Dolbeault

cohomology groups Hp,q(M) in bidegree (p, q), relying on some refined q-convexity conditions

due to Hörmander [9] and Andreotti-Grauret [1] as follows.

Definition 1.1 Let ϕ ∈ C2(M) be a real valued function and z0 ∈M .
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(1) We shall say that ϕ satisfies the condition a+q (or a−q ) at z0, if gradϕ(z0) 6= 0 and

the form (1.1) restricted to the space T 1,0
z0
M ∩ Ker(dϕ) has at least n − q positive eigenvalues

(respectively at least q + 1 negative eigenvalues). Furthermore, ϕ is said to fulfill the condition

aq (which Folland-Kohn [4] also refers to as the condition Z(q)) at z0, if ϕ satisfies either the

condition a+q or the condition a−q at z0.

(2) The condition G+
q (or G

−
q ) for ϕ at z0 means that the form (1.1) has at least n− q + 1

positive eigenvalues (respectively at least q + 1 negative eigenvalues). Additionally, ϕ is said to

fulfill the condition Gq at z0, if ϕ satisfies either the condition G+
q or the condition G−

q at z0.

It is clear that functions satisfying the condition G+
1 are precisely the smooth strictly

plurisubharmonic functions, and a manifold with a smooth boundary is strongly pseudoconvex

indicates that the defining function satisfies the condition a+1 on the boundary. The condition

a−q and the condition G−
q enable the Hermitian form (1.1) to exhibit pure negativity, and these

conditions are closely related to the concept of q-concavity. Moreover, for 1 ≤ q ≤ n− 1,

{
condition a+q (or G+

q ) ⇒ condition a+q+1 (respectively G+
q+1),

condition G−
q ⇒ condition G−

q−1

(1.2)

and

condition a−q ⇒ condition a−q−1 for 1 ≤ q ≤ n− 2.

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the quadratic form (1.1) and µ1 ≤ µ2 ≤ · · · ≤ µn−1

be the eigenvalues of the same form restricted to the space T 1,0
z0
M ∩Ker(dϕ). According to the

minimum-maximum principle for the eigenvalues, we have

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λq ≤ µq ≤ λq+1 ≤ µq+1 ≤ · · · ≤ µn−1 ≤ λn,

which implies that if gradϕ 6= 0 at z0, then

{
condition G+

q ⇒ condition a+q for 1 ≤ q ≤ n,

condition a−q ⇒ condition G−
q for 0 ≤ q ≤ n− 2.

(1.3)

In [9], Hörmander proved that the condition aq is equivalent to the basic estimate, which is

used to establish the regularity of the ∂-problem on the strongly pseudoconvex manifolds with

smooth boundary by Morrey [13] and Kohn [11–12]. There are many notable developments on

this topic; see [7, 16–18] and the references therein. In contrast to this direction, this paper

is devoted to establishing several existence results for the ∂-problem using the condition aq.

Denote the set of critical points of ϕ by

Cϕ := {z ∈M | dϕ(z) = 0}. (1.4)

Inspired by (1.3), we formulate our main result as follows.

Theorem 1.1 Let 1 ≤ q ≤ n. Assume that M has an exhaustion function ϕ ∈ C∞(M)

satisfying the condition G+
q on Cϕ and the condition aq outside Cϕ. Then Hp,q(M) = 0.
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Based on the relations (1.2), Theorem 1.1 allows us to give a condition that ensures the

vanishing of not only the qth cohomology, but also the kth cohomology for k ≥ q.

Corollary 1.1 Let 1≤ q≤ n. Suppose that M admits an exhaustion function ϕ ∈ C∞(M)

satisfying the condition G+
q on Cϕ and the condition a+q outside Cϕ. It follows that Hp,k(M) = 0

for k ≥ q.

In particular, on the further assumption that ϕ satisfies the condition G+
q outside Cϕ, by

means of the Dolbeault theorem, Corollary 1.1 recovers Andreotti-Grauert Theorem (see [1])

for the sheaf of germs of holomorphic p-forms on q-complete manifolds (a q-complete manifold

M means that there is a smooth exhaustion function with condition G+
q on M).

Corollary 1.2 Let 1 ≤ q ≤ n. Assume that M has an exhaustion function ϕ ∈ C∞(M)

satisfying the condition G+
q on M . Then Hp,k(M) = 0 for k ≥ q.

In comparison to Theorem 1.1, if we assume that Cϕ is compact, Hörmander provided an

alternative eigenvalue condition to guarantee the vanishing of the cohomology in [9]. Here is a

variant of his theorem.

Theorem 1.2 Let 1 ≤ q ≤ n, and ϕ ∈ C∞(M) be an exhaustion function. We assume that

Cϕ ⊆Mt1 ⊂⊂Mt0 , where Mt := {z ∈M | ϕ(x) < t} for t ∈ R and that ϕ satisfies

(1) the condition Gq on M t1 and the condition aq outside Mt0 ,

(2) the condition G+
q on Mt0 \M t1 ,

then Hp,q(M) = 0.

We will present a direct proof of Theorem 1.2 by L2-estimates, which differs from Hörmander’s

original approach.

2 Preliminaries

To prove Theorems 1.1–1.2, we first require some preliminary results. The following refined

proposition originally due to Andreotti-Vesentine in [2] (see also [3]), plays a crucial role in our

argument.

Proposition 2.1 Let ϕ ∈ C∞(M) fulfill the condition G+
q (or G−

q ) on a closed subset E

of M , then for any number ε > 0, there exists a Hermitian metric ω on M such that the

eigenvalues of the quadratic form (1.1) (respectively the form (1.1) for −ϕ) with respect to ω

satisfy λ1 ≥ −ε and λq = · · · = λn = 1 (respectively λn ≤ ε and λq+1 = · · · = λ1 = −1) on E.

Proof The proof for the case where ϕ satisfies the condition G+
q is parallel to that of the

case where ϕ satisfies the condition G−
q , thus we will focus exclusively on the latter case. Our

arguments essentially follow those in Lemma 3.1 of Chapter IX in [3].

Let ω0 be a fixed Hermitian metric, and −λ0n ≤ · · · ≤ −λ01 be the eigenvalues of A0 with

respect to the metric ω0, where A
0 is the Hermitian endomorphism associated to

√
−1∂∂ϕ with

respect to ω0. We can select a function 0 < η ∈ C∞(M) such that for z ∈ E,

η(z) ≤ −λ0q+1(z). (2.1)
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Indeed, since −λ0q+1 > 0 on E, there is an open neighborhood U of E with −λ0q+1 > 0 on

U . In view of the Whitney approximation theorem, one can find a function 0 < η1 ∈ C∞(U)

satisfying (2.1) on U . It is clear that {U,M \ E} forms an open covering of M because E is

closed. Let {ψ, 1− ψ} be a smooth partition of unity subordinate to the covering {U,M \ E}.
Then

η := ψη1 + 1− ψ

fulfills the desired property. We then choose a positive function θ ∈ C∞(R) such that

θ(t) ≥ |t|
ε

for t ≤ 0,

θ(t) ≥ t for t ≥ 0,

θ(t) = t for t ≥ 1.

Let ω be the Hermitian metric defined by the following Hermitian endomorphism:

A(z) := η(z)θ[(η(z))−1A0(z)].

Thus, the eigenvalues of A(z) are αn−j+1(z) = η(z)θ
(−λ0

j (z)

η(z)

)
> 0 and we have

αn−j+1(z) ≥
|λ0j(z)|
ε

, if − λ0j (z) ≤ 0,

αn−j+1(z) ≥ −λ0j(z), if − λ0j (z) ≥ 0,

αn−j+1(z) = −λ0j(z), if j ≤ q + 1 and z ∈ E.

By construction, the eigenvalues of the quadratic form (1.1) for −ϕ with respect to ω are

−λj(z) = − λ0
j (z)

αn−j+1(z)
, and they have the required properties.

Remark 2.1 According to Proposition 2.1, a smooth function ϕ satisfies the condition G+
q

on a manifold means that ϕ is q-subharmonic with respect to some metric ω in the sense of Ho

[8] (i.e., the sum of any q eigenvalues of the Hermitian form for ϕ is positive with respect to ω).

The weighted L2-space L2
p,q(M,φ) for a real valued function φ ∈ C(M) is given by

L2
p,q(M,φ) =

{
f ∈ L2

p,q(M, loc)
∣∣∣
∫

M

|f(x)|e−φ < +∞
}
.

The notation (·, ·)φ stands for the inner product on L2
p,q(M,φ). We will apply the following

lemma to

L2
p,q−1(M,φ)

T−→ L2
p,q(M,φ)

S−→ L2
p,q+1(M,φ),

where T , S are the closed densely defined extensions of ∂ in the weak sense, and φ will be

determined in the sequel.

Lemma 2.1 (see [9]) Let T : H1 → H2 and S : H2 → H3 be closed, densely defined linear

operators such that Im(T ) ⊆ Ker(S). If there exists a constant C > 0 such that

‖g‖2H2
≤ C2(‖T ∗g‖2H1

+ ‖Sg‖2H3
), g ∈ Dom(T ∗) ∩Dom(S). (2.2)

Then for any f ∈ Ker(S), one can find u ∈ H1 such that Tu = f and ‖u‖H1
≤ C‖f‖H2

.
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3 Proofs of Theorems 1.1–1.2

First, we recall basic facts from [9] about L2-estimates on a Hermitian manifold M .

Proposition 3.1 Let U ⊆ M be a coordinate patch, and let {ω1, · · · , ωn} be a local or-

thonormal frame for forms of type (1, 0) in U and ϕ ∈ C2(M,R). Then for any positive number

ε < 1, any f ∈ Dp,q(U) with support in a fixed compact subset of U , we have

(1 + ε)(‖T ∗f‖2ϕ + ‖Sf‖2ϕ) ≥ (1− ε)
∑

I,J

n∑

j=1

∫

U

∣∣∣
∂fI,J
∂ωj

∣∣∣
2

e−ϕ +
∑

I,K

n∑

j,k=1

∫

U

ϕjkfI,jKfI,kKe−ϕ

+

∫

U

Cε(z)|f |2e−ϕ, (3.1)

where summations are extended to strictly increasing multi-indices, Dp,q(U) denotes the space

of smooth (p, q)-forms with compact support in U and Cε(z) ∈ C0(U) is independent of f .

The notation ∂
∂ωj

in the above proposition is consistent with that used by Hörmander in

[9], and we will adopt the same notation in what follows. In order to make another integration

by parts for the gradient term in (3.1), we shall use the following proposition.

Proposition 3.2 Let U ⊆ M be a coordinate patch and ϕ ∈ C2(M,R). Then for any

function w ∈ C2
c (U) vanishing outside a fixed compact subset of U , we have

∫

U

∣∣∣
∂w

∂ωj

∣∣∣
2

e−ϕ ≥ −
∫

U

ϕjj |w|2e−ϕ + C‖w‖ϕ‖|w|‖ϕ,

where C is a constant independent of w and ‖|w|‖2ϕ :=
n∑

j=1

‖ ∂w
∂ωj

‖2ϕ + ‖w‖2ϕ.

To obtain the final a priori estimate (2.2), we need some lemmas.

Lemma 3.1 Let 0 ≤ q ≤ n, and suppose that M has an exhaustion function ϕ ∈ C∞(M)

satisfying the condition aq outside a subset E′ ⊆M . Then for any open neighborhood Ω′ of E′

in M and any function C(z) ∈ C0(M), there exists a convex increasing function χ(t) ∈ C∞(R)

such that, on Ω :=M \ Ω′, for every f ∈ C∞
p,q(Ω) ∩ Dp,q(M),

‖T ∗f‖2χ(ϕ) + ‖Sf‖2χ(ϕ) ≥
∫

Ω

(C(z) + 1)|f |2e−χ(ϕ). (3.2)

Proof Given z0 ∈ Ω, there is a coordinate patch U around z0 such that gradϕ 6= 0 in

U . We choose a local orthonormal frame {ω1, · · · , ωn} in U so that ωn = ∂ϕ
|∂ϕ| , which yields

ϕj := ∂ϕ
∂ωj

= 0 for j < n and ϕn = |∂ϕ|. By a unitary transformation of ωj for j < n, we can

attain that

n−1∑

j,k=1

ϕij(z0)tjtk =
n−1∑

j=1

µj(z0)|tj |2,

where µj(z0) < 0 for j ≤ σ and µj(z0) ≥ 0 for j > σ. According to Propositions 3.1–3.2, we

know that for any g ∈ Dp,q(U) with support in a fixed compact subset of U and 0 < ε < 1
2 ,

(1 + ε)(‖T ∗g‖2ϕ + ‖Sg‖2ϕ)
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≥ (1− ε)
∑

I,J

n∑

j=1

∫

U

∣∣∣
∂gI,J
∂ωj

∣∣∣
2

e−ϕ +
∑

I,K

n∑

j,k=1

∫

U

ϕjkgI,jKgI,kKe−ϕ +

∫

U

Cε
U (z)|g|2e−ϕ

≥
∫

U

Qε
ϕ(z; g, g)e

−ϕ +

∫

U

Cε
U (z)|g|2e−ϕ, (3.3)

where Cε
U (z) denotes various continuous functions on U which are independent of g, and

Qε
ϕ(z; g, g) :=

∑

I,J

σ∑

j=1

−(1− 2ε)ϕjj |gI,J |2 +
∑

I,K

n∑

j,k=1

ϕjkgI,jKgI,kK .

Replace the function ϕ in (3.3) by χ(ϕ), where χ ∈ C∞(R) is a convex increasing function to

be determined in the sequel. This gives

(1 + ε)(‖T ∗g‖2χ(ϕ) + ‖Sg‖2χ(ϕ)) ≥
∫

U

(
χ′(ϕ)Qε

ϕ(z; g, g) + χ′′(ϕ)
∑

I,K

|ϕngI,nK |2
)
e−χ(ϕ)

+

∫

U

Cε
U (z)|g|2e−χ(ϕ). (3.4)

We may write

g = g1 + g2 :=
∑

I,J

′g1I,Jω
I ∧ ωJ +

∑

I,J

′′g2I,Jω
I ∧ ωJ ,

where the notations
∑′

and
∑′′

mean that the summations only extend over strictly increasing

multi-indices J with n /∈ J and J with n ∈ J , respectively. Note that g1 = 0 when q = n.

Subsequently, for any positive number ε′, Qε
ϕ(z; g, g) can be bounded from below by the sum

of the following two terms:

Qε,ε′

ϕ (z; g1, g1) :=
∑

I,J

′
σ∑

j=1

−(1− 2ε)ϕjj |g1I,J |2 +
∑

I,K

′
n−1∑

j,k=1

ϕjkg
1
I,jKg

1
I,kK − ε′

∑

I,J

′|g1I,J |2

and

Qε,ε′

ϕ (z; g2, g2) :=
∑

I,J

′′
σ∑

j=1

−(1− 2ε)ϕjj |g2I,J |2 +
∑

I,J

′′ϕnn|g2I,J |2 +
∑

I,K

′′
n−1∑

j,k=1

ϕjkg
2
I,jKg

2
I,kK

− Cε′

U

∑

I,J

′′
n−1∑

j=1

|ϕjng
2
I,J |2,

where Cε′

U is a positive constant. If q ≤ n − 1, by the hypothesis that ϕ satisfies condition aq

at z0,

n−1∑

j=1

µ−
j (z0) +

q∑

j=1

µj(z0) > 0,

where µ−(z0) := max{−µ(z0), 0}. It follows that

Q0,0
ϕ (z0; g

1, g1) =
∑

I,J

′
( n−1∑

j=1

µ−
j (z0) +

∑

j∈J

µj(z0)
)
|g1I,J |2
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is positive definite. Thus there is a neighborhood V ⊆ U of z0 and a positive function µε,ε′

V (z) ∈
C0(V ) such that for fixed but sufficiently small ε and ε′,

Qε,ε′

ϕ (z; g1, g1) ≥ µε,ε′

V (z)|g1|2.

From the estimate (3.4) for g ∈ Dp,q(V ) with support in a fixed compact subset of V we read

off,

(1 + ε)(‖T ∗g‖2χ(ϕ) + ‖Sg‖2χ(ϕ))

≥
∫

V

(χ′(ϕ)(µε,ε′

V (z)|g1|2 +Qε,ε′

ϕ (z; g2, g2)) + χ′′(ϕ)|ϕng
2|2)e−χ(ϕ)

+

∫

V

Cε
V (z)|g|2e−χ(ϕ), (3.5)

where Cε
V (z) ∈ C0(V ) is independent of g and χ.

Let {Vν}ν≥1 be coordinate patches in Ω where (3.5) is applicable, and they form a locally

finite covering of Ω. We select a partition of unity {ψν}ν≥1 subordinate to the covering {Vν}ν≥1

such that ψν ∈ C∞
c (Vν) and

∑
ν≥1

ψ2
ν = 1 in Ω (shrinking Vν if necessary). Applying (3.5) to ψνf

and adding over ν, we obtain

(1 + ε)(‖T ∗f‖2χ(ϕ) + ‖Sf‖2χ(ϕ))

≥
∫

Ω

(χ′(ϕ)µε,ε′ (z)|f1|2 + (χ′(ϕ)Rε,ε′

ϕ (z)|f2|2 + χ′′(ϕ)|ϕnf
2|2))e−χ(ϕ)

+

∫

Ω

Cε
Ω(z)|f |2e−χ(ϕ), (3.6)

where

µε,ε′(z) :=
∑

ν≥1

ψ2
νµ

ε,ε′

Vν
(z)

and

Rε,ε′

ϕ (z) :=
∑

ν≥1

( σ∑

j=1

−(1− 2ε)ϕ
(ν)

jj
+ ϕ

(ν)
nn − Cε′

Vν

n−1∑

j=1

|ϕ(ν)
jn |2 −

√√√√
n−1∑

j,k=1

|ϕ(ν)

jk
|2

)
ψ2
ν ,

in which ϕ
(ν)

ij
’s are the functions defined by (1.1) over Vν . This implies that if we can choose χ

increasing so rapidly that for z ∈ Ω,
{
χ′(ϕ)µε,ε′ (z) ≥ (1 + ε)(|Cε

Ω(z)|+ C(z) + 1),

χ′(ϕ)Rε,ε′

ϕ (z) + χ′′(ϕ)|ϕn(z)|2 ≥ (1 + ε)(|Cε
Ω(z)|+ C(z) + 1),

(3.7)

then the desired estimate follows from (3.6). Therefore it only remains to prove (3.7). Indeed,

since ϕ is an exhaustion function, Mt := {ϕ < t} ⊂⊂ M for any t ∈ R. The fact Mt ∩ Ω ⊂⊂
M \ Cϕ (recall that Cϕ is defined by (1.4)) allows us to define the following functions on t ≥ t0,

where t0 is the largest number such that Mt ∩ Ω = ∅,

µ(t) := sup
Mt+1∩Ω

(1 + ε)(|Cε
Ω(z)|+ C(z) + 1)

µε,ε′
, R(t) := sup

Mt+1∩Ω

1−Rε,ε′

ϕ (z)

|ϕn|2
,
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C(t) := sup
Mt+1

(1 + ε)(|Cε
Ω(z)|+ C(z) + 1).

Hence, (3.7) is valid if we can choose χ ∈ C∞(R) such that on t ≥ t0,





χ′(t) ≥ µ(t),

χ′′(t)/χ′(t) ≥ R(t),

χ′(t) ≥ C(t),

(3.8)

which is obviously possible.

Our next goal is to derive the estimate as (3.2) near the critical points in Cϕ (see (1.4)). For

later use, we state a slightly more general version.

Lemma 3.2 Let 1 ≤ q ≤ n, and suppose thatM admits an exhaustion function ϕ ∈ C∞(M)

satisfying the condition G+
q on a closed subset E ⊆M . Then there exists an open neighborhood

Ω of E in M and a complete Hermitian metric such that, for any function C(z) ∈ C0(M), one

can construct a convex increasing function χ(t) ∈ C∞(R) with the following property : For any

f ∈ C∞
p,k(Ω) ∩ Dp,k(M) (k ≥ q),

‖T ∗f‖2χ(ϕ) + ‖Sf‖2χ(ϕ) ≥
∫

Ω

(C(z) + 1)|f |2e−χ(ϕ). (3.9)

Proof Let ω̃ denote the metric given by Proposition 2.1, and {λ̃j}nj=1 denote the eigenvalues

of the Hermitian form (1.1) with respect to ω̃. We choose a real valued function ρ ∈ C∞(M)

increasing so rapidly at infinity that the Hermitian metric ω := eρω̃ is complete on M ; then

the eigenvalues λj of (1.1) with respect to ω are e−ρλ̃j . We shall fix the metric in the proof.

For any z0 ∈ E and ε < 1
q
,

λ1 + · · ·+ λk = e−ρ(λ̃1 + · · ·+ λ̃q−1 + λ̃q + · · ·+ λ̃k) ≥ e−ρ(1− (q − 1)ε) > 0. (3.10)

We can select a coordinate patch U around z0 such that (3.10) holds on U . By means of

Proposition 3.1, we know that for any g ∈ Dp,k(U) with support in a fixed compact subset of

U ,

3

2
(‖T ∗g‖2ϕ + ‖Sg‖2ϕ) ≥

1

2

∑

I,J

n∑

j=1

∫

U

∣∣∣
∂gI,J
∂ωj

∣∣∣
2

e−ϕ +
∑

I,K

n∑

j,k=1

∫

U

ϕjkgI,jKgI,kKe−ϕ

+

∫

U

CU (z)|g|2e−ϕ

≥
∫

U

(λ1 + · · ·+ λk)|g|2e−ϕ +

∫

U

CU (z)|g|2e−ϕ, (3.11)

where CU (z) ∈ C0(U) is independent of g.

Let {Uν}ν≥1 be coordinate patches set in M such that (3.11) holds on each patch, and

they form a locally finite covering of E. Set Ω :=
⋃
ν

Uν ; then we choose a partition of unity

{ψµ}µ≥1 subordinate to a refinement {Vµ}µ≥1 of the covering {Uν}ν≥1, where ψµ ∈ C∞
c (Vµ)

with
∑
µ≥1

ψ2
µ = 1 in Ω. Applying (3.11) to ψµf and χ(ϕ) gives

3

2
(‖T ∗f‖2χ(ϕ) + ‖Sf‖2χ(ϕ)) ≥

∫

Ω

χ′(ϕ)(λ1 + · · ·+ λk)|f |2e−χ(ϕ)
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+

∫

Ω

CΩ(z)|f |2e−χ(ϕ). (3.12)

Thanks to (3.12), the proof can be finished by choosing χ appropriately such that

χ′(ϕ)(λ1 + · · ·+ λk) ≥
3

2
(|CΩ(z)|+ C(z) + 1) in Ω. (3.13)

Now the proof of the rest part is analogous to that of (3.7). Since Mt := {ϕ < t} ⊂⊂M for

any t ∈ R, by shrinking Ω a little bit, we can introduce

λ(t) := sup
Mt+1∩Ω

3

2
(|CΩ(z)|+ C(z) + 1)

λ1 + · · ·+ λk
, t ≥ t0, (3.14)

where t0 is the largest number such that Mt ∩ Ω = ∅. Thus, (3.13) holds true if we select a

convex increasing χ ∈ C∞(R) satisfying

χ′(t) ≥ λ(t), t ≥ t0. (3.15)

The proof is thus complete.

Remark 3.1 If ϕ satisfies the condition G−
q for q ≤ n − 1 on the closed set E, according

to Proposition 2.1 again, one can find a complete metric such that for any z0 ∈ E,

−λn − · · · − λq − λq+1 − · · · − λk+1 > 0 at z0. (3.16)

Then there exists a coordinate patch U such that (3.16) holds. Using the Hodge star

operator, we can deduce the following estimate for any g ∈ Dp,k(U) (k ≤ q) with support in a

fixed compact subset of U ,

3

2
(‖T ∗g‖2ϕ + ‖Sg‖2ϕ) ≥

∫

U

−(λn + · · ·+ λk+1)|g|2e−ϕ +

∫

U

CU (z)|g|2e−ϕ.

However, it seems that we are unable to derive the estimate (3.9) in a neighborhood of E, since

(3.12) breaks down when we replace ϕ by χ(ϕ) where χ is a convex increasing function with

χ′′(t) 6= 0. This is the reason why we cannot deal with the case where ϕ satisfies the condition

G−
q .

Proof of Theorem 1.1 Employing Lemma 3.2 to the exhaustion function ϕ and the closed

set Cϕ (see (1.4)), there is a complete metric ω and an open neighborhood Ω1 of Cϕ such that

(3.9) holds for ω. We fix the metric ω in the proof. Let Ω′ be an open subset of Ω1 containing Cϕ
so that Ω1 and Ω2 :=M \Ω′ coverM . Choose a smooth partition of unity {ψ1, ψ2} subordinate

to {Ω1,Ω2} with ψ2
1 + ψ2

2 = 1. For any f ∈ Dp,q(M), applying Lemma 3.1 and Lemma 3.2 to

(Ω2, ψ2f) and (Ω1, ψ1f) respectively yields






∫

Ω1

|T ∗(ψ1f)|2e−χ(ϕ) +

∫

Ω1

|S(ψ1f)|2e−χ(ϕ) ≥
∫

Ω1

(C(z) + 1)|ψ1f |2e−χ(ϕ),

∫

Ω2

|T ∗(ψ2f)|2e−χ(ϕ) +

∫

Ω2

|S(ψ2f)|2e−χ(ϕ) ≥
∫

Ω2

(C(z) + 1)|ψ2f |2e−χ(ϕ),
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where

C(z) := |T ∗ψ1|2 + |Sψ1|2 + |T ∗ψ2|2 + |Sψ2|2

and the convex function χ ∈ C∞(R) is so rapidly increasing that (3.8) and (3.15) are fulfilled.

It follows that

‖T ∗f‖2χ(ϕ) + ‖Sf‖2χ(ϕ) ≥ ‖f‖2χ(ϕ), ∀f ∈ Dp,q(M).

Since any f ∈ L2
p,q(M, loc) belongs to L2

p,q(M,χ(ϕ)) for some choice of χ satisfying (3.8) and

(3.15), now the conclusion follows from Hörmander’s density lemma in [10] and Lemma 2.1.

To prove Theorem 1.2, we begin with the following lemma.

Lemma 3.3 Let 0 ≤ q ≤ n and E be a compact set of M . Suppose that the function

ϕ ∈ C∞(M) satisfies the condition Gq on E. Then there exists an open neighborhood Ω ⊂⊂M

of E such that, for each function C(z) ∈ C0(M), there is a positive constant τ0 satisfying, for

any f ∈ Dp,q(Ω) with support in a fixed compact subset K of Ω,

‖T ∗f‖2τϕ + ‖Sf‖2τϕ ≥
∫

Ω

(C(z) + 1)|f |2e−τϕ, ∀τ > τ0. (3.17)

Proof According to [9, Theorem 3.3.1], for any point z0 ∈ E, there is a coordinate patch

U around z0 and constants C, τ0 depending on U , such that for any g ∈ Dp,q(U),

C(‖T ∗g‖2τϕ + ‖Sg‖2τϕ) ≥
∫

U

τ |g|2e−τϕ, ∀τ > τ0. (3.18)

Since E is compact, we can choose finite coordinate patches U1, · · · , Us in M to cover E where

(3.18) is applicable and set Ω :=
s⋃

ν=1
Uν ⊂⊂M . Let {ψµ}s

′

µ=1 be a partition of unity subordinate

to a finite refinement {Vµ}s
′

µ=1 of the covering {Uν ∩K}sν=1 of K, so that ψµ ∈ C∞
c (Vµ) and

s′∑
µ=1

ψ2
µ = 1 in Ω. Applying (3.18) to ψµg and adding over µ gives

s′∑

µ=1

Cµ(‖T ∗g‖2τϕ + ‖Sg‖2τϕ) ≥
∫

Ω

s′τ |g|2e−τϕ, ∀τ > max
µ

{τ (µ)0 }, (3.19)

where Cµ and τ
(µ)
0 are the constants depending on Vµ in (3.18). Put

τ0 := max
{
τ
(1)
0 , · · · , τ (s

′)
0 ,

s′∑

µ=1

Cµ

(
sup
Ω

|C(z)|+ 1
)

s′

}
, (3.20)

thus the desired estimate can be deduced from (3.19).

Proof of Theorem 1.2 We apply Lemma 3.3 to ϕ and M t1 , then there exists an open

neighborhood Ω1 such that (3.17) is valid for any metric. By shrinking Ω1 if necessary, we can

assume that

Cϕ ⊆Mt1 ⊂⊂Mt2 ⊂⊂ Ω1 ⊂⊂Mt3 ⊂⊂Mt4 ⊂⊂Mt0 .
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According to Lemma 3.2, one can find a complete Hermitian metric ω and an open neighborhood

Ω2 ⊆Mt0 \M t1 ofM t4 \Mt2 such that (3.9) holds for ω. We fix the metric in the proof. Clearly,

the open sets Ω1, Ω2 and Ω3 := M \M t4 form a finite covering of M . As usual we choose a

smooth partition of unity {ψ1, ψ2, ψ3} subordinate to {Ω1,Ω2,Ω3} satisfying ψ2
1 +ψ2

2 +ψ2
3 = 1

and ψ1 ∈ C∞
c (Ω1). Then for any f ∈ Dp,q(M), employing Lemma 3.1, Lemma 3.2 and Lemma

3.3 to (Ω3, ψ3f), (Ω2, ψ2f) and (Ω1, ψ1f) respectively, we have






∫

Ω1

|T ∗(ψ1f)|2e−χ(ϕ) +

∫

Ω1

|S(ψ1f)|2e−χ(ϕ) ≥
∫

Ω1

(C(z) + 1)|ψ1f |2e−χ(ϕ),

∫

Ω2

|T ∗(ψ2f)|2e−χ(ϕ) +

∫

Ω2

|S(ψ2f)|2e−χ(ϕ) ≥
∫

Ω2

(C(z) + 1)|ψ2f |2e−χ(ϕ),

∫

Ω3

|T ∗(ψ3f)|2e−χ(ϕ) +

∫

Ω3

|S(ψ3f)|2e−χ(ϕ) ≥
∫

Ω3

(C(z) + 1)|ψ3f |2e−χ(ϕ),

where

C(z) := |T ∗ψ1|2 + |Sψ1|2 + |T ∗ψ2|2 + |Sψ2|2 + |T ∗ψ3|2 + |Sψ3|2,

and the convex increasing function χ ∈ C∞(R) is selected to satisfy (3.8) on t ≥ t0 and (3.15)

on t ≥ t3 respectively, and we further require that χ is linear for t ≤ t3 with a large slope τ ,

the constant τ is chosen such that

τ > τ0 + λ(t3),

where τ0 and λ(t3) are defined by (3.20) and (3.14). Consequently,

‖T ∗f‖2χ(ϕ) + ‖Sf‖2χ(ϕ) ≥ ‖f‖2χ(ϕ), ∀f ∈ Dp,q(M).

Since any f ∈ L2
p,q(M, loc) belongs to L2

p,q(M,χ(ϕ)) for some choice of χ increasing rapidly

at infinity such that (3.8) and (3.15) hold true for t ≥ t0, the conclusion is derived from

Hörmander’s density lemma in [10] and Lemma 2.1.
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