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Abstract The authors introduce the coupled discrete 2-component nonlinear Schrödinger
equation with M -solutions and prove that this type of discrete equation is an integrable
discretization of the integrable Manakov equation of mixed type. Moreover, the integrable
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1 Introduction

It is well known that many 1+1 equations, such as the nonlinear Schrödinger equation (NLS

for short), the Korteweg-de Vries equation (KdV for short), the Manakov equation and the

coupled 2-component nonlinear Schrödinger equation and so on, are prototypical integrable

partial differential equations in mathematical physics that model a wide range of physical

phenomena, such as nonlinear optical pulse propagation, hydrodynamics, biophysics and so on

(see, for example, [23–24] for a list of physical motivations). Since most work in nonlinear

wave propagation involves to some extent a numerical study of the problem, the issue of the

discretization of integrable equations was addressed in [1]. Among a large number of possible

discretizations of an integrable equation/system, there may be one that is integrable. For

example, Ablowitz and Ladik noticed in [2] that there is a discrete version of the NLS equation,

usually referred to as the AL equation, which is exactly integrable. Since then, the analytic

or geometric studies of integrable discrete equations have attracted considerable attention in

the theory of integrable systems. It should be mentioned that there are many other discrete

versions of an integrable equation considered physically (see, for example, [11, 16]) which are
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not integrable. The investigation of these discrete equations/systems is also very meaningful

and remarkable (see [8]).

In this paper, we shall focus on displaying some nice mathematical properties, such as the

geometric realization (for the concept of geometric realization, see [19]) of the integrable discrete

Manakov equation of mixed type. The motivation of this study is as follows. Recall that the

general Manakov equation, or in other words, the general 2-component nonlinear Schrödinger

equation, reads (see [20])

{
iϕ1t + ϕ1xx + (b1|ϕ1|

2 + b2|ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx + (c1|ϕ1|
2 + c2|ϕ2|

2)ϕ2 = 0,
(1.1)

where ϕ1 = ϕ1(x, t), ϕ2 = ϕ2(x, t) are unknown complex functions, subscript t and x denote

differentiation with respect to time and position, respectively, and b1, b2, c1, c2 are nonzero

real parameters. (1.1) has important applications in nonlinear optics, superfluids, plasmas,

Bose-Einstein condensed matter physics etc. (see [4, 6–7, 10, 18, 21–22, 26–27]). Although

involving 4 free real parameters, looking complicated and being generally non-integrable, the

analytic properties of (1.1) have been explored deeply and summarized in [5]. Recently, some

geometric properties of (1.1) have been described. For example, in [14], three models of moving

curves evolving in three different symmetric Lie algebras are shown to be simultaneously the

geometric realizations of (1.1) by the first author and Zhong. In this process, the following

integrable equations:

{
iϕ1t + ϕ1xx + 2(|ϕ1|

2 + |ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx + 2(|ϕ1|
2 + |ϕ2|

2)ϕ2 = 0,

{
iϕ1t + ϕ1xx − 2(|ϕ1|

2 + |ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx − 2(|ϕ1|
2 + |ϕ2|

2)ϕ2 = 0

and
{
iϕ1t + ϕ1xx ± 2(|ϕ1|

2 − |ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx ± 2(|ϕ1|
2 − |ϕ2|

2)ϕ2 = 0

play important roles. These equations are called in the literature the Manakov equations of

focusing, defocusing and mixed types, respectively. Because the two systems in the mixed type

are actually equivalent to each other by the change of variables ϕ1 → ϕ2 and ϕ2 → ϕ1, we set

{
iϕ1t + ϕ1xx − 2(|ϕ1|

2 − |ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx − 2(|ϕ1|
2 − |ϕ2|

2)ϕ2 = 0
(1.2)

as their representation. The above three integrable Manakov equations are respectively gauge

equivalent to the equations of 1-d Schrödinger flows to the projective 2-spaces U(3)/U(2) ×

U(1), U(2, 1)/U(2)× U(1) and U(2, 1)/U(1, 1)× U(1) (see [15]). The results for the equations

of focusing and defocusing types are obtained respectively, as special cases, by Terng and
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Uhlenbeck in [25] and Chen in [9] for the matrix nonlinear Schödinger equations of focusing and

defocusing types. However, (1.2) of mixed type cannot be involved as a special case of the matrix

nonlinear equations, since the third term in the left hand side of (1.2) admits a minus symbol

(see [13]). It seems that (1.2) of mixed type may possess some different characters comparing

to those of focusing and defocusing types. This leads us to display geometric characters of the

discrete Manakov equation of mixed type.

Discrete Manakov equations have already been investigated in the literature and have impor-

tant applications in physical phenomena (see, for example, [3, 17] and the references therein).

However, most of such studies concentrate mainly on discretizations of focusing and defocus-

ing types. The geometric studies of integrable discrete Manakov equations of the focusing or

defocusing type can be described as special cases from those of the integrable coupled discrete

matrix nonlinear Schrödinger equation by the first author in [12]. Little geometric information

is known for the integrable discrete Manakov equation of mixed type. One notes that there is

naturally a discrete version of the Manakov equation of mixed type:

i
drn
dt

+ (rn+1 + rn−1 − 2rn) + (rn+1r
†
nrn + rnr

†
nrn−1) = 0, (1.3)

where rn = (ϕ1n, ϕ2n) and r
†
n =

(−ϕ
1n

ϕ
2n

)
denotes the pseudo-complex transposed conjugate of

rn, which is a parallel version of the following discrete matrix nonlinear Schrödinger equation:

i
dqn
dt

+ (qn+1 + qn−1 − 2qn) + (qn+1q
∗
nqn + qnq

∗
nqn−1) = 0, (1.4)

where qn is a (k × m) complex matrix. (1.4) reduces to the integrable AL equation when

k = m = 1. However, in spite of the fact that the continuous limit of (1.4) (resp. (1.3)) is

the classical matrix nonlinear Schrödinger equation (resp. (1.2)), to the best knowledge of the

authors, the integrability of (1.4) with k ≥ 2 orm ≥ 2 (resp. (1.3)) is not known in literature up

to now. Therefore, at this time, (1.3) cannot be regarded and treated as an integrable discrete

equation of the Manakov equation (1.2) of mixed type.

The aim of this paper is to show that the following coupled discrete 2-component nonlinear

Schrödinger system:





i
dqn
dt

+ (qn+1 + qn−1 − 2qn) + (qn+1rnqn + qnrnqn−1) = 0,

−i
drn
dt

+ (rn+1 + rn−1 − 2rn) + (rn+1qnrn + rnqnrn−1) = 0,

(1.5)

where rn is a complex row 2-vector and qn is a complex column 2-vector, together with a class

of solutions which we call M -solutions, is an integrable discretization of the Manakov equation

(1.2) of mixed type. In fact, we know that (1.5) is an integrable discretization of the coupled

2-component nonlinear Schrödinger system:

{
iqt + qxx + 2qrq = 0,

−irt + rxx + 2rqr = 0,
(1.6)
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since the continuous limit of (1.5) is (1.6). When r = (ϕ1, ϕ2) and q = −r†, the coupled 2-

component nonlinear Schrödinger system (1.6) reduces exactly to the Manakov equation (1.2)

of mixed type. As we will see below, the continuous limit of an M -solution to (1.5) is a solution

to (1.6) with q = −r†. Hence, according to the quantum correspondence principle, we have

that (1.5) with the class of M -solutions is actually an integrable discretization of the Manakov

equation (1.2) and we call it (i.e., (1.5) together with M -solutions) the integrable discrete

Manakov equation of mixed type. Furthermore, we shall show that the integrable discrete

equation of 1-d Schrödinger flow to U(2, 1)/U(1, 1) × U(1) is a geometric realization of the

integrable discrete Manakov equation of mixed type. This exploration leads us to give a unified

geometric interpretation for the integrable discrete Manakov equations of focusing, defocusing

and mixed types.

The paper is organized as follows. Section 2 gives a detailed discussion of the integrability

of (1.5) and calculates its continuous limit. We also give a brief description of 1-d Schrödinger

flow to the pseudo-projective space U(2, 1)/U(1, 1) × U(1) and a detailed verification of the

integrability of its integrable discrete equation. In Section 3, we show that (1.5) with the class

ofM -solutions is gauge equivalent to the integrable discrete equation of 1-d Schrödinger flow to

U(2, 1)/U(1, 1)× U(1). A unified geometric interpretation for the discrete integrable Manakov

equations of focusing, defocusing and mixed types is described in this section.

2 Integrable Discretization

First, we come to verify the integrability of (1.5) and calculate its continuous limit. The

Lax pair of (1.5) is explicitly constructed as follows:

φn+1 = Lnφn,
dφn
dt

=Mnφn, (2.1)

where {φn} is a column 3-vector-valued potential sequence and

Ln =

(
z rnz

−1

−qnz I2z
−1

)
, (2.2)

Mn = i

(
1− z2 + z − z−1 − rnqn−1 −rn + rn−1z

−2

−qn + qn−1z
2 (−1 + z−2 + z − z−1)I2 + qnrn−1

)
, (2.3)

in which z is a spectral parameter, rn and qn are respectively complex row and column 2-vectors

and Ik stands for the k× k unit matrix (k ≥ 2). It is a direct verification that the integrability

condition:

dLn
dt

+ LnMn −Mn+1Ln = 0 (2.4)

of (2.1) is equivalent to the validity of (1.5). Furthermore, by taking the continuous limit of

(2.1), i.e., when ∆x→ 0,

z ∼ 1 + λ∆x, rn ∼ r∆x, qn ∼ q∆x, n∆x = x(fixed), t∆x2 ∼ t,
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and φn ∼ φ with the expansion φn±1 ∼ ∆x(φ±∆xφx +
∆x2

2
φxx ± · · · ), we obtain

φx = Lφ, φt =Mφ, (2.5)

where

L = −2iλσ3 + U, M = −4λ2σ3 − 2iλU + 2(U2 + Ux)σ3, (2.6)

in which U =
(

0 r
−q 0

)
, σ3 = i

2

(
1 0
0 −I2

)
and λ is a spectral parameter. It is also a direct verification

that the integrability condition of the Lax pair (2.5) is equivalent to the validity of (1.6).

Next, we come to demonstrate the integrable discrete equation of 1-d Schrödinger flow to

the pseudo-projective 2-space U(2, 1)/U(1, 1)× U(1). Recall that U(2, 1) is the set of complex

linear transformations that preserve the metric ds2 = |dz1|
2 + |dz2|

2 − |dz3|
2 invariant on C3,

which is a Lie group. The Lie algebra u(2, 1) of U(2, 1) admits a decomposition: u(2, 1) = k⊕m

with

k = Kernel(adσ3
) =








ia 0 0
0 ib α
0 α ic


 ∈ u(2, 1)

∣∣∣a, b, c ∈ R, α ∈ C





and

m =








0 ψ ϕ

−ψ 0 0
ϕ 0 0


 ∈ u(2, 1)

∣∣∣ψ, ϕ ∈ C



 ,

in which σ3 is indicated previously. Therefore, U(2, 1)/U(1, 1)× U(1) can be presented as an

adjoint orbit in the symmetric Lie algebra u(2, 1) as follows:

U(2, 1)/U(1, 1)× U(1) = {E−1σ3E | ∀E ∈ U(2, 1)} →֒ u(2, 1).

We would mention that there is another decomposition of u(2, 1) (in other words, its isomorphic

algebra u(1, 2)) that produces the adjoint orbit space U(2, 1)/U(2)× U(1) in u(2, 1) (refer to

[14–15] for details). For such U(2, 1) with u(2, 1) = k⊕m fixed above, a map from R1 ×R1 to

U(2, 1)/U(1, 1)× U(1) may be denoted by S = E−1σ3E with E = E(t, x) ∈ U(2, 1) and Ex =

PE with P ∈ m. We have that the equation of 1-d Schrödinger flow to U(2, 1)/U(1, 1)× U(1)

is expressed explicitly by (also refer to [15])

St = −[S, Sxx]. (2.7)

This is an integrable equation, since its Lax pair is

ψx = L̃ψ, ψt = M̃ψ, (2.8)

in which

L̃ = −2iλS, M̃ = −4λ2S + 2iλ[S, Sx]

and λ is a spectral parameter. In order to verify this conclusion, one needs to use the constriction

condition: S2 = − 1

4
I3.
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We claim that the following differential-difference equation:

dSn
dt

= 2(I3 − 4Sn+1Sn)
−1 − 2(I3 − 4SnSn−1)

−1, (2.9)

where Sn is U(2, 1)/U(1, 1)× U(1)-valued, in other words, Sn = E−1
n σ3En with En ∈ U(2, 1)

and the Lie algebra u(2, 1) of U(2, 1) has the decomposition indicated above, is an integrable

discretization of (2.7). In fact, the integrability of (2.9) comes from that it has a Lax pair:

ψn+1 = L̃nψn,
dψn
dt

= M̃nψn, (2.10)

where {ψn} is a column 3-vector-valued potential sequence and

L̃n =
z + z−1

2
I3 − i(z − z−1)Sn,

M̃n = 4
(
1−

z2 + z−2

2

)
(I3 − 4SnSn−1)

−1Sn + i(z − z−1)I3

− i(z2 − z−2)(I3 − 4SnSn−1)
−1,

in which z is a spectral parameter. We should point out that the verification of this conclusion

is not so easy. One needs to use the following matrix identities carefully in the calculation

(notice again that S2
n = − 1

4
I3 for any n):

(I3 − 4SnSn−1)
−1SnSn−1 = −

1

4
(I3 − (I3 − 4SnSn−1)

−1),

(I3 − 4SnSn−1)
−1Sn = (I3 − (I3 − 4SnSn−1)

−1)Sn−1 = Sn−1(I3 − 4SnSn−1)
−1,

Sn(I3 − 4SnSn−1)
−1 = (I3 − (I3 − 4SnSn−1)

−1)Sn,

Sn(I3 − 4SnSn−1)
−1Sn = −

1

4
(I3 − (I3 − 4SnSn−1)

−1).

Taking the continuous limit of (2.10) (when ∆x → 0, z ∼ 1 + λ∆x, n∆x = x(fixed), t∆x2 ∼ t,

Sn ∼ S and ψn ∼ ψ), we clearly obtain that the limit equation is just (2.8) with S being

U(2, 1)/U(1, 1)× U(1)-valued. This shows that the differential-difference equation (2.9) is ac-

tually an integrable discretization of (2.7).

Quite interestingly, we would like to point out that (2.9) with Sn = E−1
n σ3En and En ∈

GL(3,C) is also integrable, and it contains three different types of integrable discrete equa-

tions, say, (2.9) with Sn being respectively U(3)/U(2) × U(1)-, U(2, 1)/U(2) × U(1)- and

U(2, 1)/U(1, 1) × U(1)-valued. The continuous limit of (2.9) with Sn = E−1
n σ3En and En ∈

GL(3,C) is just (2.7) with S = E−1σ3E and E ∈ GL(3,C). The latter also contains three inte-

grable equations, say, (2.7) with S being respectively U(3)/U(2)×U(1)-, U(2, 1)/U(2)×U(1)-

and U(2, 1)/U(1, 1)×U(1)-valued, which are respectively the equations of 1-d Schrödinger flows

to the projective 2-spaces U(3)/U(2)× U(1), U(2, 1)/U(2)× U(1) and U(2, 1)/U(1, 1)× U(1).

These equations are also gauge equivalent to the integrable Manakov equations of focusing,

defocusing and mixed types respectively.
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3 Gauge Equivalence

In this section we come to prove that the integrable discrete equation (2.9) is gauge equivalent

to the integrable discrete Manakov equation of mixed type, i.e., (1.5) together withM -solutions.

First, we come to establish the following lemma.

Lemma 3.1 Solutions to (2.9) are gauge equivalent to solutions to (1.5).

Proof Let {Sn(t)} be a solution to (2.9), and a corresponding solution to the Lax pair

(2.10) is denoted by {ψn(t, z)}. We may now choose a sequence of 3× 3-matrices {Gn(t)} such

that σ3 = GnSnG
−1
n and

Gn+1G
−1
n =

(
1 rn

−qn I2

)
(3.1)

for some complex row 2-vector sequence {rn} and column 2-vector sequence {qn}. In fact,

because the given solution {Sn} is expressed by Sn = E−1
n σ3En (∀n) for some given sequence

{En} with En ∈ U(2, 1), we see that general solutions to σ3 = GnSnG
−1
n are of the form

Gn = diag(an, Bn)En, (3.2)

where {an} is a complex-valued sequence and {Bn} is a complex 2× 2-matrix valued sequence.

Now we first fix a0 and B0 (the choice of them is referred to Remark 3.1 below), and then come

to prove that an and Bn (∀n 6= 0) can be chosen progressively such that (3.1) holds for some

rn and qn. Substituting (3.2) into (3.1), we have
(
a−1
n+1 0

0 B−1
n+1

)(
1 rn

−qn I2

)(
an 0

0 Bn

)
= En+1E

−1
n .

Notice that for E ∈ U(2, 1), E−1 = J3E
∗J3, where E∗ stands for the complex transposed

conjugate of E and J3 = diag(1, J2) with J2 = diag(1,−1). If we denote En by En =
(
E1

n
E2

n

E3

n
E4

n

)
,

then we obtain the following from the above matrix equation:

an+1 = an(E
1
n+1E

1∗
n + E2

n+1J2E
2∗
n )−1, (3.3)

Bn+1 = BnJ2(E
3
n+1E

3∗
n + E4

n+1J2E
4∗
n )−1, (3.4)

rn = an(E
1
n+1E

1∗
n + E2

n+1J2E
2∗
n )−1(E1

n+1E
3∗
n + E2

n+1J2E
4∗
n )J2B

−1
n , (3.5)

qn = BnJ2(E
3
n+1E

3∗
n + E4

n+1J2E
4∗
n )−1(E3

n+1E
1∗
n + E4

n+1J2E
2∗
n )a−1

n , (3.6)

where the invertibility of E1
n+1E

1∗
n +E2

n+1J2E
2∗
n and E3

n+1E
3∗
n +E4

n+1J2E
4∗
n is due to the fact

that I − 4Sn+1Sn = E−1
n+1(En+1E

−1
n − 4σ3En+1E

−1
n σ3)En is invertible in (2.9) and the fact

that En+1E
−1
n − 4σ3En+1E

−1
n σ3 = 2diag(E1

n+1E
1∗
n +E2

n+1J2E
2∗
n , (E

3
n+1E

3∗
n +E4

n+1J2E
4∗
n )J2).

Therefore, we may choose an and Bn for n 6= 0 progressively by relations (3.3) and (3.4)

respectively and choose rn and qn by (3.5) and (3.6) respectively. This proves the existence of

{Gn}. By using {Gn}, we make the following gauge transformation:

LGn = Gn+1L̃nG
−1
n =

(
z rnz

−1

−qnz z−1I2

)
,
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MG
n =

dGn
dt

G−1
n +GnM̃nG

−1
n

=
dGn
dt

G−1
n + i

(
1− z2 + z − z−1 rn−1(z

−2 − 1)

−qn−1(1 − z2) (−1 + z−2 + z − z−1)I2

)
,

where L̃n = L̃n(t, z) and M̃n = M̃n(t, z) are the coefficients in the Lax pair (2.10). Since L̃n

and M̃n satisfy the integrability condition, we thus have

dLGn
dt

+ LGnM
G
n −MG

n+1L
G
n = 0.

If we set dGn

dt
G−1
n = i

(
αn βn

µn νn

)
, in which αn, βn, µn and νn do not depend on z (since {Gn} does

so) and will be determined later, then the vanishing (i.e., the coefficients of z and z−1) of the

diagonal part of the above identity leads to (∀n)

βn = −rn + rn−1, µn = −qn + qn−1,

αn + rnqn−1 = αn+1 + rn+1qn, νn − qnrn−1 = νn+1 − qn+1rn.

Hence,

dGn
dt

G−1
n = i

(
−rnqn−1 −rn + rn−1

−qn + qn+1 qnrn−1

)
+ i

(
τ(t) 0

0 π(t)

)
(3.7)

for some function τ(t) and 2×2-matrix valued function π(t), which do not depend on n but may

be on t, a0 and B0. Notice that the above restrictions on {Gn} allow an arbitrary transformation

of the form

Gn → G̃n =

(
p(t) 0

0 Q(t)

)
Gn

for a nonzero function p(t) and a non-singular 2 × 2-matrix Q(t). In fact, under this transfor-

mation, we have

G̃n+1G̃
−1
n =

(
1 r̃n

−q̃n I2

)

for r̃n = p(t)rnQ
−1(t) and q̃n = Q(t)qnp

−1(t), and the relation Sn = G̃−1
n σ3G̃n is still preserved.

A straightforward calculation shows that

dG̃n
dt

G̃−1
n = i

(
−r̃nq̃n−1 −r̃n + r̃n−1

−q̃n + q̃n+1 q̃nr̃n−1

)
+

(
ptp

−1 + iτ(t) 0

0 QtQ
−1 + iQπ(t)Q−1

)
.

It is obvious that we may find a nonzero p = p(t) such that ptp
−1+iτ(t) = 0 and a non-singular

Q = Q(t) such that QtQ
−1+ iQπ(t)Q−1 = 0. Hence, {Gn} can be modified so that for the new

{Gn}, the second term on the right of (3.7) vanishes. This implies that LGn andMG
n constructed

above by the gauge transformation are respectively the coefficients Ln and Mn in the Lax pair

(2.1) with {(rn, qn)} given above. So the obtained {(rn, qn)} is a solution to (1.5).

Now we give the following definition based on Lemma 3.1.
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Definition 3.1 A solution to (1.5) constructed in Lemma 3.1 is called anM -solution, which

means that it relates to the mixed type.

All the M -solutions consist of a class of solutions to (1.5). One notes that an M -solution

{(rn, qn)} to (1.5) is of the property that there exists U(2, 1)-sequence {En} such that Gn (∀n)

given by (3.2) fulfills




Gn+1 =
(

1 rn
−qn I2

)
Gn,

dGn
dt

= i
( −rnqn−1 −rn + rn−1

−qn + qn+1 qnrn−1

)
Gn.

(3.8)

One notes that (3.8) is a matrix-version of the Lax pair (2.1) at z = 1.

Remark 3.1 It is easy to see that, from (3.5)–(3.6), the continuous limits of an and Bn are

U(1)- and U(1, 1)-valued, respectively, is equivalent to that the continuous limits of a0 and B0

are U(1)- and U(1, 1)-valued, respectively. Therefore, in order to guarantee that the continuous

limit (r, q) of an M -solution {(rn, qn)} is a solution to (1.6) satisfying q = −r†, and hence r is a

solution to the Manakov equation (1.2) of mixed type, we require that the choices of a0 and B0

fulfill these restrictions. The choices of a0 and B0 are always assumed to fulfill the restrictions

in this paper.

Next, we shall prove that the above process is reversible, that is to say, an M -solution to

(1.5) is gauge equivalent to a solution to (2.9).

Lemma 3.2 An M -solution to (1.5) is gauge equivalent to a solution to (2.9).

Proof Let {(rn(t), qn(t))} be an M -solution to (1.5), and a corresponding solution to the

Lax pair (2.1) be denoted by {φn(t, z)}. Since {(rn, qn)} is M -solution, from the definition, we

see there is a sequence {Gn(t)} given by (3.2) fulfills (3.8).

We now consider the following gauge transformation:

φn(t, z) = Gn(t)ψn(t, z) (3.9)

and come to prove that {ψn(t, z)} determined by (3.9) is a solution to the Lax pair (2.10)

of (2.9) for some U(2, 1)/U(1, 1) × U(1)-valued sequence {Sn}. In order to do this, we put

ψn+1 = L̃nψn and dψn

dt
= M̃nψn for some L̃n and M̃n which will be determined later. Applying

the first equation of Lax pair (2.1), from (3.9) we have

L̃n = G−1
n+1LnGn. (3.10)

Substituting Gn+1 =
(

1 rn
−qn I2

)
Gn into (3.10), we obtain

L̃n =
z + z−1

2
I3 +

z − z−1

2
G−1
n σ3Gn :=

z + z−1

2
I3 +

z − z−1

2
Sn,

where Sn = G−1
n σ3Gn with S2

n = − 1

4
I3. In what follows, we have to show that Sn is

U(2, 1)/U(1, 1)×U(1)-valued, that is to say, Sn = E−1
n σ2En, En ∈ U(2, 1) (again, here the Lie
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algebra u(2, 1) = k⊕m is indicated in §2). In fact, from the definition of M -solutions, we see

that, ∀n,

Gn = Gn(t) = diag(an(t), Bn(t))En(t)

for some an(t), Bn(t) and En = En(t) ∈ U(2, 1) with u(2, 1) = k ⊕ m. Thus, we have that

Sn = G−1
n σ3Gn = E−1

n σEn is U(2, 1)/U(1, 1)×U(1)-valued. Now, from the second equation of

Lax pair (2.1) and by applying the identity: G−1
n−1Gn = 2(I3 − 4SnSn−1)

−1, we have

M̃n = G−1
n MnGn −G−1

n

dGn
dt

= G−1
n (Mn(t, z)−Mn(t, 1))Gn

= 4
(
1−

z2 + z−2

2

)
(I3 − 4SnSn−1)

−1Sn + i(z − z−1)I3 − i(z2 − z−2)(I3 − 4SnSn−1)
−1.

Hence, we see that L̃n and M̃n defined above are exactly the same coefficients as in (2.10) with

Sn being U(2, 1)/U(1, 1)×U(1)-valued. This proves that {Sn} constructed from theM -solution

{(rn, qn)} to (1.5) is a solution to (2.9) with Sn being U(2, 1)/U(1, 1)×U(1)-valued. The proof

of Lemma 3.2 is completed.

Combining Lemma 3.1 with Lemma 3.2, we arrive finally at the following main result of the

paper.

Theorem 3.1 The integrable discrete equation (2.9) is gauge equivalent to the integrable

discrete Manakov equation of mixed type.

Theorem 3.1 indicates that the integrable discrete equation (2.9) with Sn being U(2, 1)/

U(1, 1) × U(1)-valued is a geometric realization of the integrable discrete Manakov equation

of mixed type. This exhibition leads us to give a unified geometric interpretation for the

integrable discrete Manakov equations of focusing, defocusing and mixed types as follows. If we

call solutions to (1.5) that are constructed similarly in Lemma 3.1 from solutions {Sn} to (2.9)

with Sn being U(2, 1)/U(2) × U(1)-valued, as D-solutions (defocusing type), and meanwhile,

call solutions to (1.5) that are constructed similarly in Lemma 3.1 from solutions {Sn} to (2.9)

with Sn being U(3)/U(2)×U(1)-valued, as F -solutions (focusing type), then we see that (1.5)

together with D-solutions is an integrable discretization of the Manakov equation of defocusing

type, and meanwhile, (1.5) together with F -solutions is an integrable discretization of the

Manakov equation of focusing type. The unified geometric interpretations are described as

follows. (2.9) with Sn being U(3)/U(2)×U(1)-valued, (2.9) with Sn being U(2, 1)/U(2)×U(1)-

valued and (2.9) with Sn being U(2, 1)/U(1, 1)× U(1)-valued are geometric realizations of the

integrable discrete Manakov equation of focusing, defocusing and mixed types, respectively.

Furthermore, the continuous limits of these geometric models are just respectively the Manakov

equations of focusing, defocusing and mixed types.

It is obvious that Theorem 3.1 is not only a geometric interpretation for the integrable

discrete Manakov equation of mixed type, but also a very useful property which may be applied

in constructing solutions or in the numerical study of related problems. The applications of

Theorem 3.1 deserve future investigations.
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Stud. Appl. Math., 101, 1998, 267–287.

[25] Terng, C. L. and Uhlenbeck, K., Schrödinger flows on Grassmannians, Integrable Systems, Geometry,
and Topology, AMS/IP Studies in Advanced Mathematics, 36, Amer. Math. Soc., Providence, RI, 2006,
235–256.

[26] Vijayajayanthi, M., Kanna, T. and Lakshmanan, M., Bright-dark solitons and their collisions in mixed
N-coupled nonlinear Schrödinger equations, Phys. Rev. A, 77, 2008, 013820.

[27] Yeh, C. and Bergman, L., Enhanced pulse compression in a nonlinear fiber by a wavelength division
multiplexed optical pulse, Phys. Rev. E, 57, 1998, 2398–2404.


