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Abstract The authors introduce the coupled discrete 2-component nonlinear Schrédinger
equation with M-solutions and prove that this type of discrete equation is an integrable
discretization of the integrable Manakov equation of mixed type. Moreover, the integrable
discrete equation of 1-d Schrédinger flow to the pseudo-projective 2-space U(2,1)/U(1,1) x
U(1) is shown to be a geometric realization of the integrable discrete Manakov equation of
mixed type.
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1 Introduction

It is well known that many 141 equations, such as the nonlinear Schrodinger equation (NLS
for short), the Korteweg-de Vries equation (KdV for short), the Manakov equation and the
coupled 2-component nonlinear Schrédinger equation and so on, are prototypical integrable
partial differential equations in mathematical physics that model a wide range of physical
phenomena, such as nonlinear optical pulse propagation, hydrodynamics, biophysics and so on
(see, for example, [23-24] for a list of physical motivations). Since most work in nonlinear
wave propagation involves to some extent a numerical study of the problem, the issue of the
discretization of integrable equations was addressed in [1]. Among a large number of possible
discretizations of an integrable equation/system, there may be one that is integrable. For
example, Ablowitz and Ladik noticed in [2] that there is a discrete version of the NLS equation,
usually referred to as the AL equation, which is exactly integrable. Since then, the analytic
or geometric studies of integrable discrete equations have attracted considerable attention in
the theory of integrable systems. It should be mentioned that there are many other discrete

versions of an integrable equation considered physically (see, for example, [11, 16]) which are
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not integrable. The investigation of these discrete equations/systems is also very meaningful
and remarkable (see [8]).

In this paper, we shall focus on displaying some nice mathematical properties, such as the
geometric realization (for the concept of geometric realization, see [19]) of the integrable discrete
Manakov equation of mixed type. The motivation of this study is as follows. Recall that the
general Manakov equation, or in other words, the general 2-component nonlinear Schrodinger

equation, reads (see [20])

{i@1t+%01m+(bl|¢1|2+b2|%02|2)%01 =0, 1)

ip2; 4 02, + (crle1|® + calpa|*) 2 = 0,

where 1 = p1(x,t), 02 = @a(x,t) are unknown complex functions, subscript ¢ and = denote
differentiation with respect to time and position, respectively, and b1, bs,c1, co are nonzero
real parameters. (1.1) has important applications in nonlinear optics, superfluids, plasmas,
Bose-Einstein condensed matter physics etc. (see [4, 6-7, 10, 18, 21-22, 26-27]). Although
involving 4 free real parameters, looking complicated and being generally non-integrable, the
analytic properties of (1.1) have been explored deeply and summarized in [5]. Recently, some
geometric properties of (1.1) have been described. For example, in [14], three models of moving
curves evolving in three different symmetric Lie algebras are shown to be simultaneously the
geometric realizations of (1.1) by the first author and Zhong. In this process, the following

integrable equations:

1014 4 0140 + 2(|01]? + [02]?) 1 = 0
ip2s + P2y + 2(|p1]* + @2]*)p2 = 0,
2(|e1|? + le2]?)p1 =0,
2(

)
)
)
l1|? + |p2l*)p2 =0
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and

{ieﬁlt + @120 £ 2(l01* = [02]*)p1 =0,
iz + 0200 £ 2(|01]? = |p2l*)p2 = 0
play important roles. These equations are called in the literature the Manakov equations of

focusing, defocusing and mixed types, respectively. Because the two systems in the mixed type

are actually equivalent to each other by the change of variables ¢1 — @2 and po — 1, we set

{isplt + 0122 — 2(l1]* = |@2[*)p1 = 0, 12)

i2; + P25 = 2(l01]? — |2]?)p2 = 0
as their representation. The above three integrable Manakov equations are respectively gauge
equivalent to the equations of 1-d Schrédinger flows to the projective 2-spaces U(3)/U(2) x
U(1), U(2,1)/U(2) x U(1) and U(2,1)/U(1,1) x U(1) (see [15]). The results for the equations

of focusing and defocusing types are obtained respectively, as special cases, by Terng and
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Uhlenbeck in [25] and Chen in [9] for the matrix nonlinear Schédinger equations of focusing and
defocusing types. However, (1.2) of mixed type cannot be involved as a special case of the matrix
nonlinear equations, since the third term in the left hand side of (1.2) admits a minus symbol
(see [13]). It seems that (1.2) of mixed type may possess some different characters comparing
to those of focusing and defocusing types. This leads us to display geometric characters of the
discrete Manakov equation of mixed type.

Discrete Manakov equations have already been investigated in the literature and have impor-
tant applications in physical phenomena (see, for example, [3, 17] and the references therein).
However, most of such studies concentrate mainly on discretizations of focusing and defocus-
ing types. The geometric studies of integrable discrete Manakov equations of the focusing or
defocusing type can be described as special cases from those of the integrable coupled discrete
matrix nonlinear Schrodinger equation by the first author in [12]. Little geometric information
is known for the integrable discrete Manakov equation of mixed type. One notes that there is
naturally a discrete version of the Manakov equation of mixed type:

.dr,
1? + (g1 + o1 — 2ry) + (rn+1r;‘lrn + anjﬁn—l) =0, (1.3)

where 7, = (¢1,,,02,)) and r}, = (_g;l") denotes the pseudo-complex transposed conjugate of
rn, which is a parallel version of the following discrete matrix nonlinear Schrédinger equation:

.dg, * *
1? + (qny1 + Gno1 — 2qn) + (gn+190qn + annqn—l) =0, (1.4)

where ¢, is a (k x m) complex matrix. (1.4) reduces to the integrable AL equation when
k = m = 1. However, in spite of the fact that the continuous limit of (1.4) (resp. (1.3)) is
the classical matrix nonlinear Schréodinger equation (resp. (1.2)), to the best knowledge of the
authors, the integrability of (1.4) with k& > 2 or m > 2 (resp. (1.3)) is not known in literature up
to now. Therefore, at this time, (1.3) cannot be regarded and treated as an integrable discrete
equation of the Manakov equation (1.2) of mixed type.

The aim of this paper is to show that the following coupled discrete 2-component nonlinear
Schrodinger system:
id0n + (@nt1 + -1 = 2qn) + (@a417Gn + @aTndn-1) =0,

dt (1.5)

dry,
_1E + (rn-i-l + o1 — 27'71) + (TTH-IQnTn + annrn—l) = 07

where 7, is a complex row 2-vector and ¢, is a complex column 2-vector, together with a class
of solutions which we call M-solutions, is an integrable discretization of the Manakov equation
(1.2) of mixed type. In fact, we know that (1.5) is an integrable discretization of the coupled

2-component nonlinear Schrédinger system:

iqt + Qza + 2qrq = 07
(1.6)

—iry + 1y + 2rqr = 0,
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since the continuous limit of (1.5) is (1.6). When r = (%7,%z) and ¢ = —r', the coupled 2-
component nonlinear Schrodinger system (1.6) reduces exactly to the Manakov equation (1.2)
of mixed type. As we will see below, the continuous limit of an M-solution to (1.5) is a solution
to (1.6) with ¢ = —rf. Hence, according to the quantum correspondence principle, we have
that (1.5) with the class of M-solutions is actually an integrable discretization of the Manakov
equation (1.2) and we call it (i.e., (1.5) together with M-solutions) the integrable discrete
Manakov equation of mixed type. Furthermore, we shall show that the integrable discrete
equation of 1-d Schrédinger flow to U(2,1)/U(1,1) x U(1) is a geometric realization of the
integrable discrete Manakov equation of mixed type. This exploration leads us to give a unified
geometric interpretation for the integrable discrete Manakov equations of focusing, defocusing
and mixed types.

The paper is organized as follows. Section 2 gives a detailed discussion of the integrability
of (1.5) and calculates its continuous limit. We also give a brief description of 1-d Schrédinger
flow to the pseudo-projective space U(2,1)/U(1,1) x U(1) and a detailed verification of the
integrability of its integrable discrete equation. In Section 3, we show that (1.5) with the class
of M-solutions is gauge equivalent to the integrable discrete equation of 1-d Schrodinger flow to
U(2,1)/U(1,1) x U(1). A unified geometric interpretation for the discrete integrable Manakov

equations of focusing, defocusing and mixed types is described in this section.

2 Integrable Discretization

First, we come to verify the integrability of (1.5) and calculate its continuous limit. The

Lax pair of (1.5) is explicitly constructed as follows:

doy,
¢n+1 = L’ﬂ(b’lh % = Mn¢na (21)

where {¢,} is a column 3-vector-valued potential sequence and

Z rnz_l
L, = e Lt ) (2.2)

u—i (P E T —Tn o+ o127 (2.3)
=1 s .
" _qn+Qn—lz2 (_1+Z_2+Z_Z_1)IQ +ann—1

in which z is a spectral parameter, r,, and ¢,, are respectively complex row and column 2-vectors
and I stands for the k x k unit matrix (k > 2). It is a direct verification that the integrability

condition:

dL,

of (2.1) is equivalent to the validity of (1.5). Furthermore, by taking the continuous limit of
(2.1), i.e., when Az — 0,

2~ 14+ Mz, 1y ~TAZ, @y ~qAz,  nAz = x(fixed), tAz* ~t,
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and ¢, ~ ¢ with the expansion ¢,+1 ~ Az(¢p + Az, + ATﬁ(bm +--+), we obtain
6r = Lo, & = M, (2.5)
where
L= -2 o5+ U, M =—4 05— 2\U +2(U*+U,)os, (2.6)

inwhich U = ( °,§).03 = 3(§ %, ) and X is a spectral parameter. It is also a direct verification
that the integrability condition of the Lax pair (2.5) is equivalent to the validity of (1.6).

Next, we come to demonstrate the integrable discrete equation of 1-d Schrédinger flow to
the pseudo-projective 2-space U(2,1)/U(1,1) x U(1). Recall that U(2,1) is the set of complex
linear transformations that preserve the metric ds? = |dz1|? + |dz2|? — |dz3]? invariant on C3,
which is a Lie group. The Lie algebra u(2,1) of U(2,1) admits a decomposition: u(2,1) = kdm
with

ia 0 O
k = Kernel(ad,,) =<¢| 0 b o | €u(2,1)a,b,ceR,aeC
0 o ic
and
0 ¢ ¢
m={ % 0 0 6u(2,1)‘¢,gp€@ ,

in which o3 is indicated previously. Therefore, U(2,1)/U(1,1) x U(1) can be presented as an

adjoint orbit in the symmetric Lie algebra w(2,1) as follows:
U(2,1)/U1,1) x U(1) ={E"'o3E |VE € U(2,1)} < u(2,1).

We would mention that there is another decomposition of u(2, 1) (in other words, its isomorphic
algebra u(1,2)) that produces the adjoint orbit space U(2,1)/U(2) x U(1) in u(2,1) (refer to
[14-15] for details). For such U(2,1) with u(2,1) = k & m fixed above, a map from R! x R! to
U(2,1)/U(1,1) x U(1) may be denoted by S = E~lo3F with E = E(t,z) € U(2,1) and E, =
PE with P € m. We have that the equation of 1-d Schrédinger flow to U(2,1)/U(1,1) x U(1)
is expressed explicitly by (also refer to [15])

Sy = —1[S, Spal. (2.7)
This is an integrable equation, since its Lax pair is
Yo =Ly, ¢y = My, (2.8)
in which
L=—2iAS, M =—4)%S +2i)\[S, S,]

and ) is a spectral parameter. In order to verify this conclusion, one needs to use the constriction

condition: §? = —17;.
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We claim that the following differential-difference equation:

ds,

o 2(I3 — 4S,418n) " — 2(I3 — 45,8, 1)1, (2.9)
where S, is U(2,1)/U(1,1) x U(1)-valued, in other words, S,, = E,, lo3E, with E, € U(2,1)
and the Lie algebra u(2,1) of U(2,1) has the decomposition indicated above, is an integrable
discretization of (2.7). In fact, the integrability of (2.9) comes from that it has a Lax pair:

_ T dwn _ar
1/)n+1 - Lndjnv T - nwna (210)

where {1} is a column 3-vector-valued potential sequence and

_ —1
L, = z +2Z Iy —i(z — 2718,

2 —2
4(1 — %) (I3 — 4SnSn_1)_1Sn + 1(2’ — Z_l)I3
—i(2® = 27%) (I3 — 48,9, -1) 7,

£
|

in which z is a spectral parameter. We should point out that the verification of this conclusion
is not so easy. One needs to use the following matrix identities carefully in the calculation

(notice again that S2 = —1 I3 for any n):

1
(13 — 4SnSn_1)_ISnSn—1 = _1(13 - (I3 - 4SnSn—l)_1)7
(IB - 4SnSn—l)_1Sn - (IB - (IB - 4SnSn—l)_1)Sn—l = Sn—l(IB - 4SnSn—1)_la
Sn(IS - 4SnSn—l)_1 - (I3 - (I3 - 4SnSn—l)_1)Sn7
)

Sp(I3 — 48,8, 1) 'S, = —=(I3 — (Is — 48,8,_1)"1).

1
4
Taking the continuous limit of (2.10) (when Az — 0, z ~ 1 + Az, nAz = x(fixed), tAz? ~ ¢,
Sy ~ S and v, ~ 1), we clearly obtain that the limit equation is just (2.8) with S being
U(2,1)/U(1,1) x U(1)-valued. This shows that the differential-difference equation (2.9) is ac-
tually an integrable discretization of (2.7).

Quite interestingly, we would like to point out that (2.9) with S,, = E,'03F, and E, €
GL(3,C) is also integrable, and it contains three different types of integrable discrete equa-
tions, say, (2.9) with S,, being respectively U(3)/U(2) x U(1)-, U(2,1)/U(2) x U(1)- and
U(2,1)/U(1,1) x U(1)-valued. The continuous limit of (2.9) with S,, = E,'o3FE, and E,, €
GL(3,C) is just (2.7) with S = E~'o3F and E € GL(3,C). The latter also contains three inte-
grable equations, say, (2.7) with S being respectively U(3)/U(2) x U(1)-, U(2,1)/U(2) x U(1)-
and U(2,1)/U(1,1) x U(1)-valued, which are respectively the equations of 1-d Schrodinger flows
to the projective 2-spaces U(3)/U(2) x U(1), U(2,1)/U(2) x U(1) and U(2,1)/U(1,1) x U(1).
These equations are also gauge equivalent to the integrable Manakov equations of focusing,

defocusing and mixed types respectively.
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3 Gauge Equivalence

In this section we come to prove that the integrable discrete equation (2.9) is gauge equivalent
to the integrable discrete Manakov equation of mixed type, i.e., (1.5) together with M-solutions.

First, we come to establish the following lemma.
Lemma 3.1 Solutions to (2.9) are gauge equivalent to solutions to (1.5).

Proof Let {S,(t)} be a solution to (2.9), and a corresponding solution to the Lax pair
(2.10) is denoted by {v,(t, z)}. We may now choose a sequence of 3 x 3-matrices {G,,(t)} such
that o3 = G,,S,G,;* and

GG, = (_; ;Z) (3.1)
for some complex row 2-vector sequence {r,} and column 2-vector sequence {g,}. In fact,
because the given solution {S,} is expressed by S, = E lo3FE, (¥n) for some given sequence
{E,} with E, € U(2,1), we see that general solutions to o3 = G,,S,,G,,! are of the form

Gn = diag(ana Bn)Ena (32)

where {a,} is a complex-valued sequence and {B,} is a complex 2 x 2-matrix valued sequence.
Now we first fix ap and By (the choice of them is referred to Remark 3.1 below), and then come
to prove that a,, and B,, (Vn # 0) can be chosen progressively such that (3.1) holds for some
rn and ¢,. Substituting (3.2) into (3.1), we have

—1
Apt1 0 1 Tn Gnp 0 _
* X = B B
O Bn-l—l —(Qn I2 O Bn

Notice that for E € U(2,1), E~' = J3E*J3, where E* stands for the complex transposed
1 2

conjugate of F and Js = diag(1, Jo) with Jo = diag(1,—1). If we denote E,, by E,, = (E;‘ i’: ),
then we obtain the following from the above matrix equation: o

any1 = an(BEY BV + Ep L E2) 7 (3.3)

Byi1 = BnJo(E  E¥ + En )L E, ) (3.4)

Tn = an(Bp By + B2 JoE2)™ (E;+1E3* + B2 LBy Bt (3.5)

Gn = BpJo(E2 (B2 + Ep o BN ) (B2 BN + En B2 )ay " (3.6)

where the invertibility of E} ,, E}* + E2 | JoE?* and E3 | E3* + E}. | JLbEL is due to the fact
that I — 45,415, = n+1(En+1En V' —403E,1E;'03)E, is invertible in (2.9) and the fact
that By Byl — 403 B, 1 Ep oy = 2diag(EL | EY + 2| J,E2* (B3, | E3 + B, L EX).J,).

Therefore, we may choose a,, and B, for n # 0 progressively by relations (3.3) and (3.4)
respectively and choose r,, and ¢, by (3.5) and (3.6) respectively. This proves the existence of
{G,}. By using {G,}, we make the following gauge transformation:

-1
S=GunLait=( ° ™
" " —qnz 2y )
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MO — di" G+ G M, G
dGnG—l " 1—2242—-271 Tno1(272—1)
= 1 9
e " —qn-1(1—2%)  (=1+z2+z—-2"YHh

where L, = L,(t,z) and M, = Mn(t, z) are the coefficients in the Lax pair (2.10). Since Ly,

and Mn satisfy the integrability condition, we thus have

dLg
el LEMS — MG, LS = 0.

If we set d(i" Gl = i( s ?,: ), in which a,, B, pn and v, do not depend on z (since {G,, } does

so) and will be determined later, then the vanishing (i.e., the coefficients of z and z=!) of the

diagonal part of the above identity leads to (Vn)

Bn =—r,+ Tn—1, Hn = —(dn + gn—1,

Qn +TnGn—1 = Qnt1 + Tnt1Gn, Vn — qnTn—1 = Vn41 — qn+1Tn-

—TnQn— —Tp + T T(t 0
dGn o1 dn=t N (W (3.7)
de —Qn + qn+1 nTn—1 0 ﬂ-(t)

for some function 7(¢) and 2 x 2-matrix valued function 7(¢), which do not depend on n but may

Hence,

be on t, ag and By. Notice that the above restrictions on {G,, } allow an arbitrary transformation

Gn—>én:<p(t) 0 )Gn
0 Q)

for a nonzero function p(t) and a non-singular 2 x 2-matrix Q(¢). In fact, under this transfor-

o 17
GG = _
—gn Iy

for 7, = p(t)r, Q71 (t) and ¢, = Q(t)gnp~'(t), and the relation S, = é;lagén is still preserved.
A straightforward calculation shows that

dén é_l . _?nan—l _:Fn + 7777,—1 T ptp_l + lT(t) 0
n =1 . ~ — . _ .
de —qn + Gn+1 gnTn—1 0 QtQ_l + 1Q7T(t)Q !

of the form

mation, we have

It is obvious that we may find a nonzero p = p(t) such that p;p~* +i7(t) = 0 and a non-singular
Q = Q(t) such that Q;Q ' +iQ7(t)Q~* = 0. Hence, {G,,} can be modified so that for the new
{G,}, the second term on the right of (3.7) vanishes. This implies that LS and M constructed
above by the gauge transformation are respectively the coefficients L,, and M, in the Lax pair
(2.1) with {(r,,gn)} given above. So the obtained {(r,,¢,)} is a solution to (1.5).

Now we give the following definition based on Lemma 3.1.
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Definition 3.1 A solution to (1.5) constructed in Lemma 3.1 is called an M -solution, which

means that it relates to the mized type.

All the M-solutions consist of a class of solutions to (1.5). One notes that an M-solution
{(rn,qn)} to (1.5) is of the property that there exists U(2,1)-sequence {E, } such that G,, (Vn)
given by (3.2) fulfills

1 Tn
Gny1 = ( I )Gn,

—Qn
(3.8)

B —Gn + Gn+1 qnTn—1

One notes that (3.8) is a matrix-version of the Lax pair (2.1) at z = 1.

Remark 3.1 Tt is easy to see that, from (3.5)—(3.6), the continuous limits of a,, and B,, are
U(1)- and U(1,1)-valued, respectively, is equivalent to that the continuous limits of ag and By
are U(1)- and U(1, 1)-valued, respectively. Therefore, in order to guarantee that the continuous
limit (7, q) of an M-solution {(r,,¢,)} is a solution to (1.6) satisfying ¢ = —rf, and hence 7 is a
solution to the Manakov equation (1.2) of mixed type, we require that the choices of ag and By
fulfill these restrictions. The choices of ag and By are always assumed to fulfill the restrictions

in this paper.

Next, we shall prove that the above process is reversible, that is to say, an M-solution to

(1.5) is gauge equivalent to a solution to (2.9).
Lemma 3.2 An M -solution to (1.5) is gauge equivalent to a solution to (2.9).

Proof Let {(r,(t),qn(t))} be an M-solution to (1.5), and a corresponding solution to the
Lax pair (2.1) be denoted by {¢,(t, 2)}. Since {(rn,qn)} is M-solution, from the definition, we
see there is a sequence {G,(t)} given by (3.2) fulfills (3.8).

We now consider the following gauge transformation:

Pn(t, 2) = Gn(t)Yn(t, 2) (3.9)

and come to prove that {v,(¢,2)} determined by (3.9) is a solution to the Lax pair (2.10)
of (2.9) for some U(2,1)/U(1,1) x U(1)-valued sequence {S,}. In order to do this, we put
Vnt1 = Enwn and % = ann for some En and ]T/fn which will be determined later. Applying
the first equation of Lax pair (2.1), from (3.9) we have

Ly =Gyl LGy (3.10)
Substituting Gy41 = (_y 7 )Gn into (3.10), we obtain
~ z+271 z—271 1 z+271 z—z71
L, = 5 I3 + 5 Gn o3G,, = 5 I3 + 5 Sh,
where S, = G, l03G, with S2 = —i[g}. In what follows, we have to show that S, is

U(2,1)/U(1,1) x U(1)-valued, that is to say, S, = E,, '02E,, E, € U(2,1) (again, here the Lie
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algebra u(2,1) = k @ m is indicated in §2). In fact, from the definition of M-solutions, we see
that, Vn,

G, = Gy (t) = diag(a,(t), B, (t))En(t)
for some a,(t), B,(t) and E, = E,(t) € U(2,1) with u(2,1) = k ® m. Thus, we have that
S, =G, to3G, = E; 0B, isU(2,1)/U(1,1) x U(1)-valued. Now, from the second equation of
Lax pair (2.1) and by applying the identity: G, * G, = 2(I3 — 45,,S,_1)~", we have

M, = G;'M,G,, — G;ldd% =G (My(t,2) — My(t,1))Gr
2 —2
- 4(1 - %)(13 — 48,80 1) S iz — 25 —i(22 — 27 2)(I5 — 4S,S0_1) L.

Hence, we see that L, and M,, defined above are exactly the same coefficients as in (2.10) with
Sy being U(2,1)/U(1,1) x U(1)-valued. This proves that {S,,} constructed from the M-solution
{(n,qn)} to (1.5) is a solution to (2.9) with S,, being U(2,1)/U(1,1) x U(1)-valued. The proof

of Lemma 3.2 is completed.

Combining Lemma 3.1 with Lemma 3.2, we arrive finally at the following main result of the
paper.

Theorem 3.1 The integrable discrete equation (2.9) is gauge equivalent to the integrable

discrete Manakov equation of mized type.

Theorem 3.1 indicates that the integrable discrete equation (2.9) with S,, being U(2,1)/
U(1,1) x U(1)-valued is a geometric realization of the integrable discrete Manakov equation
of mixed type. This exhibition leads us to give a unified geometric interpretation for the
integrable discrete Manakov equations of focusing, defocusing and mixed types as follows. If we
call solutions to (1.5) that are constructed similarly in Lemma 3.1 from solutions {S,} to (2.9)
with S, being U(2,1)/U(2) x U(1)-valued, as D-solutions (defocusing type), and meanwhile,
call solutions to (1.5) that are constructed similarly in Lemma 3.1 from solutions {S,} to (2.9)
with S,, being U(3)/U(2) x U(1)-valued, as F-solutions (focusing type), then we see that (1.5)
together with D-solutions is an integrable discretization of the Manakov equation of defocusing
type, and meanwhile, (1.5) together with F-solutions is an integrable discretization of the
Manakov equation of focusing type. The unified geometric interpretations are described as
follows. (2.9) with S,, being U(3)/U(2) x U(1)-valued, (2.9) with S,, being U(2,1)/U(2) x U(1)-
valued and (2.9) with S, being U(2,1)/U(1,1) x U(1)-valued are geometric realizations of the
integrable discrete Manakov equation of focusing, defocusing and mixed types, respectively.
Furthermore, the continuous limits of these geometric models are just respectively the Manakov
equations of focusing, defocusing and mixed types.

It is obvious that Theorem 3.1 is not only a geometric interpretation for the integrable
discrete Manakov equation of mixed type, but also a very useful property which may be applied
in constructing solutions or in the numerical study of related problems. The applications of

Theorem 3.1 deserve future investigations.
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