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Abstract The authors revisit the eigenvalue problem of the Dirichlet Laplacian on bound-

ed domains in complete Riemannian manifolds. By building on classical results like Li-

Yau’s and Yang’s inequalities, they derive upper and lower bounds for eigenvalues. For the

projective spaces and their minimal submanifolds, they also give explicit estimates on the

lower bound for the eigenvalue of the Dirichlet Laplacian.
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1 Introduction

Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M with

boundary (possibly empty). The eigenvalue problem of the Dirichlet Laplacian on Ω is given

by

{
∆u = −λu in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆ denotes the Laplacian on M . It is well-known that the spectrum of this problem

consists of real, discrete eigenvalues

0 < λ1 < λ2 ≤ λ3 ≤ · · · ր ∞,

where each eigenvalue λi has finite multiplicity and is repeated according to its multiplicity.

The eigenvalue problem of the Dirichlet Laplacian arises from various problems of mathe-

matical physics. It may refer to modes of an idealized drum, a mode of an idealized optical fiber

in the paraxial approximation, as well as to small waves at the surface of an idealized pool.
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It is well-known that for the eigenvalue problem of the Dirichlet Laplacian, we have Weyl’s

asymptotic formula (see [32])

λk ∼
4π2

(ωn|Ω|)
2
n

k
2
n , k → ∞, (1.2)

where ωn and |Ω| denote the volume of the unit ball in Rn and Ω, respectively.

The paper is organized as follows. In Section 2, we review eigenvalues of the Dirichlet

Laplacian on a bounded domain in Rn. In Section 3, we revisit universal inequalities for

eigenvalues of the Dirichlet Laplacian on a bounded domain in Riemannian manifolds and

present the main theorems. In Section 4, we recall Karamata’s Tauberian theorem and the first

standard embedding of the projective spaces into Euclidean space, and provide the proofs for

Theorem 3.7 and Corollary 3.2.

2 Eigenvalues of Laplacian on a Bounded Domain in Rn

When Ω is a bounded domain in Rn, the study of universal inequalities for the eigenvalues

of (1.1) was initiated by Payne, Pólya and Weinberger in their seminal works [28–29]. They

established the following inequality

λk+1 − λk ≤
4

nk

k∑

i=1

λi. (2.1)

In 1980, Hile and Protter [21] improved on the inequality of Payne, Pólya and Weinberger by

proving

k∑

i=1

λi

λk+1 − λi

≥
nk

4
. (2.2)

It is very important to find a sharp universal inequality for eigenvalues in some sense. For this

proposal, Yang [33] (see [14]) made a landmark work. He proved a significant inequality

k∑

i=1

(λk+1 − λi)
2 ≤

4

n

k∑

i=1

(λk+1 − λi)λi. (2.3)

We should note the coefficient 4
n
is best possible according to Weyl’s asymptotic formula (1.2),

which thus cannot be improved. From (2.3), one can deduce

λk+1 ≤
1

k

(
1 +

4

n

) k∑

i=1

λi. (2.4)

These inequalities (2.3)–(2.4) are referred to as Yang’s first and second inequalities, respectively

(see [3–5]). Using Chebyshev’s inequality, it is straightforward to show the following logical

relationships

(2.3) ⇒ (2.4) ⇒ (2.2) ⇒ (2.1).
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The following is the famous Pólya conjecture.

Pólya Conjecture For the eigenvalue problem of the Dirichlet Laplacian, eigenvalues

satisfy

λk ≥
4π2

(ωn|Ω|)
2
n

k
2
n for k = 1, 2, · · · .

Pólya [30] resolved the case that the bounded domains are tiled. Furthermore, when Ω is a

ball, the Pólya conjecture has been resolved by Filonov, Levitin, Polterovich and Sher [18], very

recently. In 1983, Li and Yau [27] made significant progress toward resolving the conjecture

by making use of Fourier transformation. In the meaning of summation, their result is best

possible, that is, they proved

1

k

k∑

j=1

λj ≥
n

n+ 2

4π2

(ωn|Ω|)
2
n

k
2
n for k = 1, 2, · · · , (2.5)

which implies

λk ≥
n

n+ 2

4π2

(ωn|Ω|)
2
n

k
2
n for k = 1, 2, · · · . (2.6)

According to the results of Li and Yau [27] and the Pólya conjecture, we know that the lower

bounds for eigenvalue λk are given. As one sees, the lower bounds depend on the domain Ω.

On the other hand, study on upper bounds for eigenvalues of Laplacian is very difficult.

In [14], the second author and Yang were successful to study upper bounds for eigenvalues of

Laplacian. They obtained an upper bound of eigenvalue λk+1 by the first eigenvalue λ1 and

this inequality is universal, which does not depend on the domain.

Theorem 2.1 For the eigenvalue problem of the Dirichlet Laplacian (1.1), eigenvalues

satisfy

λk+1 ≤ C0(n, k)k
2
nλ1,

where

C0(n, k) =






j2n
2 ,1

j2n
2 −1,1

for k = 1,

1 +
a(min{n, k − 1})

n
for k ≥ 2,

a(1) ≤ 2.64 and a(m) ≤ 2.2 − 4 log
(
1 + m−3

50

)
for m ≥ 2 are constants depending only on m.

Here, jp,k denotes the k-th positive zero of the standard Bessel function Jp(x) of the first kind

of order p.

Remark 2.1 From Weyl’s asymptotic formula (1.2), it is clear that the upper bound ob-

tained by the second author and Yang [14] is optimal in terms of the order of k.

Remark 2.2 In [4], Professor Ashbaugh wrote that Cheng and Yang made great strides in

the field, in what amounted to a tour de force in 2007.
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In order to prove their Theorem 2.1, Cheng and Yang proved a recursion formula.

Theorem 2.2 (The recursion formula of Cheng and Yang [14]) Let µ1 ≤ µ2 ≤ · · · ≤ µk+1

be any positive real numbers satisfying

k∑

i=1

(µk+1 − µi)
2 ≤

4

t

k∑

i=1

µi(µk+1 − µi).

Define

Gk =
1

k

k∑

i=1

µi, Tk =
1

k

k∑

i=1

µ2
i ,

Fk =
(
1 +

2

t

)
G2

k − Tk.

Then, we have, for any ℓ, k,

Fk+ℓ

(k + ℓ)
4
t

≤
Fk

k
4
t

, (2.7)

where t is any positive real number.

Proof of Theorem 2.1 According to the Yang’s first inequality (2.3), we know that

eigenvalues λk satisfy the condition in Theorem 2.1 with t = n. By making use of the recursion

formula of Cheng-Yang inequality (2.7), we have

Fk ≤ C(n, k − 1)
( k

k − 1

) 4
n

Fk−1 ≤ k
4
nF1 =

2

n
k

4
nλ2

1. (2.8)

By making use of the Yang’s first inequality again, we obtain
[
λk+1 −

(
1 +

2

n

)
Gk

]2
≤

(
1 +

4

n

)
Fk −

2

n

(
1 +

2

n

)
G2

k.

Hence, we have

2

n

1 +
4

n

λ2
k+1 +

1 +
2

n

1 +
4

n

(
λk+1 −

(
1 +

4

n

)
Gk

)2

≤
(
1 +

4

n

)
Fk.

Thus, we derive

λ2
k+1 ≤

n

2

(
1 +

4

n

)2

Fk ≤
(
1 +

4

n

)2

k
4
nλ2

1. (2.9)

For z ≥ 0, the Riesz mean of order ρ (ρ > 0) is defined as

Rρ(z) =
∑

k

(z − λk)
ρ
+, (2.10)

where (z − λ)+ := max{0, z − λ} is the ramp function. As ρ → 0+, the Riesz mean converges

to the counting function

N(z) =
∑

λk≤z

1 = sup
λk≤z

k. (2.11)
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In terms of the counting function (2.11), the Li-Yau inequality (2.5) states that

N(z) ≤
(n+ 2

n

)n

2

Lcl
0,n|Ω|z

n

2 , (2.12)

where Lcl
ρ,n is called the classical constant defined by

Lcl
ρ,n =

Γ(1 + ρ)

(4π)
n

2 Γ
(
1 + ρ+

n

2

) . (2.13)

For ρ ≥ 1, Berezin [8] proved that the Riesz means for the Dirichlet Laplacian satisfy

Rρ(z) ≤ Lcl
ρ,n |Ω| zρ+

n

2 . (2.14)

In [25] (see [24]), Laptev and Weidl referred to (2.14) as the Berezin-Li-Yau inequality. In

fact, they (see [25]) demonstrated the equivalence between the Li-Yau inequality (2.5) and the

Berezin inequality (2.14) via the Legendre transform.

Another well-known function associated with the spectrum is the trace of the heat kernel

(equivalently, the partition function), denoted by Z(t). We recall the asymptotic formula of

Kac [22] for Z(t),

Z(t) :=

∞∑

k=1

e−λkt ∼
|Ω|

(4πt)
n

2
, (2.15)

which is equivalent to (1.2) in terms of the Laplace transform. In [22], Kac also established the

inequality

Z(t) =
∞∑

k=1

e−λkt ≤
|Ω|

(4πt)
n

2

. (2.16)

This result was refined in [20], where it was shown that t
n

2 Z(t) is a nonincreasing function for

t → 0+. In [19], Harrell and Hermi showed that (2.14) is equivalent to (2.16) for ρ ≥ 2 via the

Laplace transform.

3 Eigenvalues of Laplacian on a Bounded Domain in Riemannian

Manifolds

Since the Weyl’s asymptotic formula (see [32]) for bounded domains in complete Riemannian

manifolds holds, it is natural and important to derive universal inequalities for eigenvalues of the

eigenvalue problem of the Dirichlet Laplacian on a bounded domain in a complete Riemannian

manifold.

For the eigenvalue problem of the Dirichlet Laplacian on a compact homogeneous Rieman-

nian manifold or on a compact minimal submanifold in a sphere, many mathematicians have

studied universal inequalities for eigenvalues (see, for example, [12–13, 16, 20, 34] and others).

Cheng and Yang [12–13] derived optimal universal inequalities for eigenvalues of the eigenvalue

problem of the Dirichlet Laplacian on a domain in a sphere or in a complex projective space.

Namely, they proved the following theorem.
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Theorem 3.1 For the eigenvalue problem of the Dirichlet Laplacian (1.1) on a domain in

the unit sphere, eigenvalues λk satisfy

k∑

i=1

(λk+1 − λi)
2 ≤

4

n

k∑

i=1

(λk+1 − λi)
(
λi +

n2

4

)
. (3.1)

Remark 3.1 When Ω → Sn(1), the above inequalities for all k become equalities. Hence,

results of Cheng and Yang are optimal.

Furthermore, since a sphere can be seen as a hypersurface in Euclidean space, Chen and

Cheng [11] studied the more general case, which are n-dimensional complete submanifolds in

Euclidean space. They proved the following theorem.

Theorem 3.2 Let Ω be a bounded domain in an n-dimensional complete Riemannian man-

ifold Mn isometrically immersed in the Euclidean space RN . For the eigenvalue problem of the

Dirichlet Laplacian (1.1), eigenvalues λk satisfy

k∑

i=1

(λk+1 − λi)
2 ≤

4

n

k∑

i=1

(λk+1 − λi)
(
λi +

n2

4
H2

0

)
, (3.2)

where H is the mean curvature vector field of Mn with H2
0 = ‖H‖2L∞(Ω) = sup

Ω
|H |2.

In order to prove our results, the following theorem of Cheng and Yang [13] will play an

important role.

Theorem 3.3 Let λi be the i-th eigenvalue of the eigenvalue problem of the Dirichlet Lapla-

cian on an n-dimensional compact Riemannian manifold Ω = Ω∪∂Ω with boundary ∂Ω and ui be

the orthonormal eigenfunction corresponding to λi. Then, for any function f ∈ C3(Ω)∩C2(∂Ω)

and any integer k, we have

k∑

i=1

(λk+1 − λi)
2‖ui∇f‖2 ≤

k∑

i=1

(λk+1 − λi) ‖2∇f · ∇ui + ui∆f‖2 ,

where ‖f‖2 =
∫
M

f2 and ∇f · ∇ui = g(∇f,∇ui).

Let Ω ⊂ Mn be a bounded domain and p ∈ Ω be an arbitrary point of Ω with a coordinate

system (x1, · · · , xn) in a neighborhood U of p in Mn. Since Mn is an n-dimensional complete

Riemannian manifold isometrically immersed in RN , we can assume that y with components

yα defined by

yα = yα(x1, · · · , xn), 1 ≤ α ≤ N

is the position vector of p in RN . We have

gij = g
( ∂

∂xi
,

∂

∂xj

)
=

〈 N∑

α=1

∂yα

∂xi

∂

∂yα
,

N∑

β=1

∂yβ

∂xj

∂

∂yβ

〉
=

N∑

α=1

∂yα

∂xi

∂yα

∂xj
,

where g denotes by the induced metric of Mn from RN , 〈, 〉 is the standard inner product in

RN .
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Lemma 3.1 (see [11, Lemma 2.1]) Let M be an n-dimensional complete Riemannian man-

ifold with metric g isometrically immersed in a Euclidean space RN . For any point p in M ,

assuming that y with components yα defined by yα = yα(x1, x2, · · · , xn) is the position vector

of p in RN , we have

N∑

α=1

g(∇yα,∇yα) = n,

N∑

α=1

(∆yα)2 = n2|H |2,

N∑

α=1

∆yα∇yα = 0,

N∑

α=1

g(∇yα,∇u)2 = |∇u|2

for any function u ∈ C∞(M), where H is the mean curvature vector of M .

Proof of Theorem 3.2 Let ui be the eigenfunction corresponding to the eigenvalue λi

such that {ui}i∈N becomes an orthonormal basis of L2(Ω). Put fα = yα, 1 ≤ α ≤ N . Since Mn

is complete and Ω is a bounded domain, we know that Ω is a compact Riemannian manifold

with boundary. From Theorem 3.3 of Cheng and Yang, we infer

Σ(λk+1 − λi)
2‖ui∇fα‖2 ≤ Σ(λk+1 − λi)‖2∇fα · ∇ui + ui∆fα‖2.

Taking summation on α and using Lemma 3.1, we finish the proof.

Remark 3.2 Our results are optimal since for the unit sphere, H2
0 = 1, our inequality

becomes one of Cheng and Yang.

Remark 3.3 Inequality (3.2) had also been proved by El Soufi, Harrell and Ilias [17],

independently.

For a bounded domain in an n-dimensional complete Riemannian manifold isometrically

minimally immersed in Euclidean space, we have the following result.

Corollary 3.1 (see [11]) Let Ω be a bounded domain in an n-dimensional complete Rie-

mannian manifold Mn isometrically minimally immersed in RN . Then, for the eigenvalue

problem (1.1), we have

k∑

i=1

(λk+1 − λi)
2 ≤

4

n

k∑

i=1

(λk+1 − λi)λi. (3.3)

Remark 3.4 We would like to note that Yang’s first inequality does not only hold for

domains in Euclidean spaces, but also hold for domains in complete minimal submanifolds in

Euclidean spaces.

We should remark that Theorem 3.2 of Chen and Cheng includes all complete Riemannian

manifolds according to Nash’s theorem. In fact, Cheng and Yang [15] obtained the following

theorem, by making use of a simple observation and Theorem 3.2.
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Theorem 3.4 Let Ω be a bounded domain in an n-dimensional complete Riemannian man-

ifold Mn. For the eigenvalue problem of the Dirichlet Laplacian (1.1), there exists a constant

H2
0 , which depends only on M and Ω such that

k∑

i=1

(λk+1 − λi)
2 ≤

4

n

k∑

i=1

(λk+1 − λi)
(
λi +

n2

4
H2

0

)
. (3.4)

Proof According to Nash’s theorem, we know that Mn can be immersed into Euclidean

space RN by ϕ : Mn → RN . From Theorem 3.2 of Chen and Cheng and putting H2
0 =

inf
ϕ

‖H‖2L∞(Ω) = inf
ϕ

sup
Ω

|H |2, the proof is completed.

For the hyperbolic space Hn(−1), Cheng and Yang did not rely on Nash’s theorem; in-

stead, they constructed an appropriate trial function in [15] to derive a universal inequality for

eigenvalues of the eigenvalue problem (1.1).

Theorem 3.5 For the eigenvalue problem of the Dirichlet Laplacian (1.1) on a domain in

the hyperbolic space Hn(−1), eigenvalues λk satisfy

k∑

i=1

(λk+1 − λi)
2 ≤ 4

k∑

i=1

(λk+1 − λi)
(
λi −

(n− 1)2

4

)
. (3.5)

According to the recursion formula in Theorem 2.1 of Cheng and Yang, we know the following

theorem.

Theorem 3.6 Let Ω be a bounded domain in an n-dimensional complete Riemannian man-

ifold Mn. There exists a constant H2
0 , which depends only on M and Ω, such that eigenvalues

λk’s of the eigenvalue problem (1.1) satisfy

1

k

k∑

i=1

λi +
n2

4
H2

0 ≥
n√

(n+ 2)(n+ 4)
Cn

k
2
n

|Ω|
2
n

for k = 1, 2, · · · , (3.6)

where

Cn =
4π2

ω
2
n

n

.

Furthermore, Cheng and Yang [15] proposed the following conjecture.

Conjecture 3.1 (see [15]) Let Ω be a bounded domain in an n-dimensional complete

Riemannian manifold Mn. Then, there exists a constant c(M,Ω), which depends only on M

and Ω, such that eigenvalues λk satisfy

1

k

k∑

i=1

λi + c(M,Ω) ≥
n

n+ 2
Cn

k
2
n

|Ω|
2
n

for k = 1, 2, · · · , (3.7)

λk + c(M,Ω) ≥ Cn

k
2
n

|Ω|
2
n

for k = 1, 2, · · · . (3.8)
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Theorem 3.7 Let Ω be a bounded domain in an n-dimensional complete Riemannian man-

ifold Mn. Then, there exists a constant H0, which depends only on M and Ω, such that

eigenvalues λi satisfy

ZH(t) ≤
|Ω|

(4πt)
n

2
, (3.9)

where

ZH(t) =

∞∑

i=1

exp
(
−
(
λi +

n2

4
H2

0

)
t
)
.

Since the projective spaces admit the first standard embedding into Euclidean space (see

Section 4), by Cheng-Yang recursion formula (3.6) we have the following corollary.

Corollary 3.2 Let M be an n-dimensional submanifolds in the projective space FPm with

the mean curvature vector fields H and let Ω be a bounded domain in Mn. Then eigenvalues

λk’s of the eigenvalue problem (1.1) satisfy

1

k

k∑

i=1

λi +
n2

4

(
H2

0 +
2(n+ d(F))

n

)
≥

n√
(n+ 2)(n+ 4)

Cn

k
2
n

|Ω|
2
n

for k = 1, 2, · · · , (3.10)

where d(F) is defined by (4.5) in Section 4 and H2
0 = ‖H‖2L∞(Ω) = sup

Ω
|H |2. In particular,

if M is an n-dimensional minimal submanifolds in the projective space FPm, then eigenvalues

satisfy

1

k

k∑

i=1

λi +
n(n+ d(F))

2
≥

n√
(n+ 2)(n+ 4)

Cn

k
2
n

|Ω|
2
n

for k = 1, 2, · · · . (3.11)

Remark 3.5 For compact submanifolds with boundaries immersed in Euclidean spaces,

spheres, and projective spaces, we consider the closed eigenvalue problem. The estimates for

eigenvalue inequalities presented in the aforementioned theorems remain valid. The methods

of proof and computations require no modification, except that eigenvalues now begin with

λ1 = 0. In particular, for the minimal submanifold Mn without boundary immersed into M ,

where M is the unit sphere SN (1) or one of projective spaces FPm, the closed eigenvalues of

Mn obey

1

k

k∑

i=1

λi +
c(n)

4
≥

n√
(n+ 2)(n+ 4)

Cn

k
2
n

|M |
2
n

for k = 1, 2, · · · ,

where c(n) depends only on dimension n defined by

c(n) =

{
n2 for M is SN (1),
2n(n+ d(F)) for M is FPm.

Since the projective spaces FPm may be minimally embedded into the sphere S(m+1)d(F)−1

·
(√

m
2(m+1)

)
(see [9, 31]), the closed eigenvalues of FPm satisfy

1

k

k∑

i=1

λi +
m(m+ 1)d2(F)

2
≥

md(F)√
(md(F) + 2)(md(F) + 4)

Cmd(F)
k

2
md(F)

|M |
2

md(F)

for k = 1, 2, · · · .
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4 Proof of Theorem 3.7 and Corollary 3.2

In order to prove Theorem 3.7 and Corollary 3.2, we require the following Tauberian theorem

and the first standard embedding of projective spaces into Euclidean spaces.

4.1 Karamata’s Tauberian theorem

Theorem 4.1 (see [26]) Let M be an n-dimensional smooth compact Riemannian manifold.

If ∂M 6= ∅, assume that either the Dirichlet or the Neumann boundary conditions are imposed

on the boundary. Then the eigenvalue counting function for M has the asymptotics

N (λ) = Lcl
0,nVol(M)λ

n

2 +O(λ
n−1

2 ), (4.1)

where Lcl
0,n, which is defined by

Lcl
0,n :=

ωn

(2π)n
, (4.2)

is called the classical constant and ωn is the volume of the n-ball,

ωn =
π

n

2

Γ
(
1 +

n

2

) .

A fundamental property for ρ, δ > 0, often referred to as the Riesz iteration or alternatively

as the Aizenman-Lieb procedure (see [1]), states that

Rρ+δ(λ) =
Γ(ρ+ δ + 1)

Γ(ρ+ 1) Γ(δ)

∫ ∞

0

(λ− t)δ−1
+ Rρ(t)dt. (4.3)

It is noteworthy that applying the Riesz iteration (4.3) to (4.1) directly yields the following

result

Rρ(z) ∼ Lcl
ρ,n |Ω| zρ+

n

2 as z → ∞, (4.4)

where the classical constant is given by (2.13). This formula allows us to estimate the counting

function N(λ) = #{n : λn < λ} with the help of the kernel Z(t). For this we will make use of

the following Tauberian theorem due to Karamata [23] (see also [2, Theorem 1.1]).

Theorem 4.2 Let (λn)n∈N be a sequence of positive real numbers such that the series
∑
n∈N

e−λnt converges for every t > 0. Then for r > 0 and a ∈ R the following are equiva-

lent :

(1) lim
t→0

tr
∑
n∈N

e−λnt = a,

(2) lim
λ→∞

λ−rN(λ) = a
Γ(r+1) .

Here N denotes the counting function N(λ) = #{λn ≤ λ}, and Γ(r) =
∫∞

0
xr−1e−xdx is the

usual Gamma function.
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4.2 Submanifolds in projective spaces

Let F denote the field R of real numbers, the field C of complex numbers, or the field Q

of quaternions. Let FPm denote the m-dimensional projective space over F. The projective

space FPm is endowed with a standard Riemannian metric whose sectional curvature is either

constant and equal to 1 (for F = R) or pinched between 1 and 4 (for F = C or Q). It is

well-known that projective spaces admit a first standard embedding into Euclidean spaces (see

[9, 17, 31]). Let ρ : FPm → Hm+1(F) denote the first standard embedding of projective spaces

into Euclidean spaces, where

Hm+1(F) = {A ∈ Mm+1(F) | A = At},

and Mm+1(F) denotes the space of (m + 1) × (m + 1) matrices over F. For convenience, we

introduce the integer

d(F) = dimR F =






1, if F = R,

2, if F = C,

4, if F = Q.

(4.5)

Proposition 4.1 (see [10, Proposition 2.4]) Let f : Mn → FPm be an isometric immer-

sion, and let H and H ′ denote the mean curvature vector fields of the immersions f and ρ ◦ f ,

respectively. Then

|H ′|2 = |H |2 +
4(n+ 2)

3n
+

2

3n2

∑

i6=j

K̃(ei, ej),

where {ei}ni=1 is a local orthonormal basis of TM , and K̃ is the sectional curvature of FPm,

which can be expressed as

K̃(ei, ej) =





1, if F = R,

1 + 3(ei · Jej)
2, where J is the complex structure of CPm, if F = C,

1 + 3

3∑

r=1

(ei · Jrej)
2, where Jr is the quaternionic structure of QPm, if F = Q.

In particular, it follows that

|H ′|2 =





|H |2 +
2(n+ 1)

n
for RPm,

|H |2 +
2(n+ 1)

n
+

2

n2

n∑

i,j=1

(ei · Jej)
2 ≤ |H |2 +

2(n+ 2)

n
for CPm,

|H |2 +
2(n+ 1)

n
+

2

n2

n∑

i,j=1

3∑

r=1

(ei · Jrej)
2 ≤ |H |2 +

2(n+ 4)

n
for QPm.

That is

|H ′|2 ≤ |H |2 +
2(n+ d(F))

n
,

where equality holds if and only if M is a complex submanifold of CPm (for the case of CPm),

or n ≡ 0 (mod 4) and M is a quaternionic submanifold of QPm (for the case of QPm).
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4.3 Harrell-Stubbe type estimates

To prove Theorem 3.7, we require the following Harrell-Stubbe type estimates.

Theorem 4.3 Let Ω be a bounded domain in an n-dimensional complete Riemannian man-

ifold Mn. For the eigenvalue problem of the Dirichlet Laplacian (1.1), there exists a constant

H2
0 , which depends only on M and Ω, such that

R2(z) ≤
4

n

∑

k∈N

(z − µi)+µi, (4.6)

where µi is defined by

µi = λi +
n2

4
H2

0 . (4.7)

Furthermore, for ρ ≥ 2 and z ≥ µ1,

Rρ(z) ≤
ρ

ρ+
n

2

zRρ−1(z). (4.8)

Remark 4.1 If the Berezin-Li-Yau (4.8) holds for ρ ≥ 1, then the inequalities (3.7) in

Conjecture 3.1 are also satisfied.

For the reader’s convenience, we provide the proof of Theorem 4.3.

Proof of Theorem 4.3 The inequality (4.6) can be established using a similar argument

to that employed in the proof of Proposition 1 in [13] and Theorem 1.1 in [11]. Assume that ui

is an orthonormal eigenfunction corresponding to the i-th eigenvalue λi, i.e., ui satisfies






∆ui = −λiui in M,

ui|∂M = 0,

∫

Ω

uiujdµ = δij .

(4.9)

Define ϕi, a
α
ij and bαij , for i, j = 1, · · · , k, by





aαij =

∫

M

yαuiujdµ,

ϕα
i = yαui −

k∑

j=1

aαijuj,

bαij =

∫

Ω

uj

(
∇ui · ∇yα +

1

2
ui∆yα

)
dµ.

(4.10)

Then we can deduce from (4.9)–(4.10),

aαij = aαji, 2bαij = −2bαji = (λi − λj)a
α
ij ,∫

Ω

ϕα
i ujdµ = 0 for j = 1, 2, · · · , k.
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For λk ≤ z < λk+1, from Rayleigh-Ritz inequality, we have

z < λk+1 ≤

∫

Ω

|∇ϕα
i |

2dµ
∫

Ω

(ϕα
i )

2dµ

.

Taking the similar argument as in [13] (see also [6–7, 14]), we can infer

k∑

i=1

(z − λi)
2‖ui∇yα‖2 ≤

k∑

i=1

(z − λi)‖2∇yα · ∇ui + ui∆yα‖2. (4.11)

From Lemma 3.1, a direct calculation yields

N∑

α=1

‖ui∇yα‖2 = n,

N∑

α=1

‖2∇yα · ∇ui + ui∆yα‖2 = 4λi + n2

∫

Ω

|H |2u2
idµ ≤ 4

(
λi +

n2

4
H2

0

)
. (4.12)

Substituting (4.12) into (4.11) yields, for λk ≤ z < λk+1,

k∑

i=1

(z − λi)
2 ≤

4

n

k∑

i=1

(z − λi)
(
λi +

n2

4
H2

0

)
, (4.13)

which implies (4.6).

From (4.6), we infer

R2(z) ≤
4

n

∑

k∈N

(z − µi)+µi

=
4

n

∑

k∈N

(z − µi)+(z − (z − µi)+)

=
4

n
zR1(z)−

4

n
R2(z),

which implies

(
1 +

n

4

)
R2(z) ≤ zR1(z). (4.14)

The inequality (4.8) can be deduced from (4.14) by using Riesz iteration, which completes

the proof of Theorem 4.3.

4.4 Proof of Theorem 3.7 and Corollary 3.2

Proof of Theorem 3.7 From the inequality (4.8) in Theorem 4.3, the function

z 7→
Rρ(z)

zρ+
d

2

(4.15)
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is a nondecreasing function of z, for ρ ≥ 2. According to the the asymptotic formula (4.4) and

Theorem 4.2, we get the Berezin-Li-Yau inequality

Rρ(z) ≤ Lcl
ρ,d|Ω|z

ρ+d

2 , (4.16)

where Lcl
ρ,n is defined in (2.13). The Laplace transform yields

L((z − µk)
ρ
+) =

Γ(ρ+ 1)e−µkt

tρ+1
. (4.17)

Combining the inequality (4.16) with (4.17) yields

Γ(ρ+ 1)

tρ+1
ZH(t) ≤ Lcl

ρ,d|Ω|
Γ
(
ρ+ 1 +

d

2

)

t
ρ+1+

d

2

,

where ZH(t) is defined by

ZH(t) =

∞∑

i=1

exp(−µit).

From the definition of Lcl
ρ,n in (2.13), we obtain the desired result

ZH(t) ≤
|Ω|

(4πt)
n

2
. (4.18)

This completes the proof of Theorem 3.7.

Proof of Corollary 3.2 From Proposition 4.1, the projective spaces FPm, which admit the

first standard embedding into the Euclidean space H(m+1,F), allow an isometrically immersed

submanifold Mn in FPm to be regarded as a submanifold in Euclidean space H(m+1,F). The

mean curvature vector field H ′ of Mn in Euclidean space satisfies

|H ′|2 ≤ |H |2 +
2(n+ d(F))

n
,

where H denotes the mean curvature vector field of Mn in FPm. Consequently, Corollary 3.2

follows the analogical argument of the proof of Theorem 3.2.
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