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Estimates for Eigenvalues of the Dirichlet Laplacian
on Riemannian Manifolds*
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Abstract The authors revisit the eigenvalue problem of the Dirichlet Laplacian on bound-
ed domains in complete Riemannian manifolds. By building on classical results like Li-
Yau’s and Yang’s inequalities, they derive upper and lower bounds for eigenvalues. For the
projective spaces and their minimal submanifolds, they also give explicit estimates on the
lower bound for the eigenvalue of the Dirichlet Laplacian.
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1 Introduction

Let © be a bounded domain in an n-dimensional complete Riemannian manifold M with
boundary (possibly empty). The eigenvalue problem of the Dirichlet Laplacian on € is given
by

Au=—Au in Q,

1.1
u=>0 on 0, (1.1)

where A denotes the Laplacian on M. It is well-known that the spectrum of this problem

consists of real, discrete eigenvalues
0< A <A< A3<--- oo,

where each eigenvalue \; has finite multiplicity and is repeated according to its multiplicity.
The eigenvalue problem of the Dirichlet Laplacian arises from various problems of mathe-
matical physics. It may refer to modes of an idealized drum, a mode of an idealized optical fiber

in the paraxial approximation, as well as to small waves at the surface of an idealized pool.
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It is well-known that for the eigenvalue problem of the Dirichlet Laplacian, we have Weyl’s

asymptotic formula (see [32])

4 2
Me ~ — kv, k= o0, (1.2)
(wn Q)™

where w,, and || denote the volume of the unit ball in R™ and €2, respectively.

The paper is organized as follows. In Section 2, we review eigenvalues of the Dirichlet
Laplacian on a bounded domain in R™. In Section 3, we revisit universal inequalities for
eigenvalues of the Dirichlet Laplacian on a bounded domain in Riemannian manifolds and
present the main theorems. In Section 4, we recall Karamata’s Tauberian theorem and the first
standard embedding of the projective spaces into Euclidean space, and provide the proofs for
Theorem 3.7 and Corollary 3.2.

2 Eigenvalues of Laplacian on a Bounded Domain in R"

When € is a bounded domain in R™, the study of universal inequalities for the eigenvalues
of (1.1) was initiated by Payne, Pélya and Weinberger in their seminal works [28-29]. They
established the following inequality

k
4
)\ < iy .
A1 — Ak < o ;:1 i (2.1)

In 1980, Hile and Protter [21] improved on the inequality of Payne, Pélya and Weinberger by

proving

k
- >, 2.2
;)\Hl—/\i 4 (22)

It is very important to find a sharp universal inequality for eigenvalues in some sense. For this

proposal, Yang [33] (see [14]) made a landmark work. He proved a significant inequality

k k

D ki = A7 < =D (Nerr — AN (2.3)

i=1 i=1

S|

We should note the coefficient % is best possible according to Weyl’s asymptotic formula (1.2),

which thus cannot be improved. From (2.3), one can deduce

1 4\ &
Ner1 < E(l + ﬁ) ;)\ (2.4)

These inequalities (2.3)—(2.4) are referred to as Yang’s first and second inequalities, respectively
(see [3-5]). Using Chebyshev’s inequality, it is straightforward to show the following logical

relationships

(2.3) = (2.4) = (2.2) = (2.1).
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The following is the famous Polya conjecture.

Poélya Conjecture For the eigenvalue problem of the Dirichlet Laplacian, eigenvalues

satisfy
Ak > Likz fork=1,2,---.
(wn|2f) =

Pélya [30] resolved the case that the bounded domains are tiled. Furthermore, when € is a
ball, the Pélya conjecture has been resolved by Filonov, Levitin, Polterovich and Sher [18], very
recently. In 1983, Li and Yau [27] made significant progress toward resolving the conjecture
by making use of Fourier transformation. In the meaning of summation, their result is best

possible, that is, they proved

1 k n 472
—NTN > kv fork=1,2,--, (2.5)
k; n+ 2 (w,|Q)
which implies
4 2
A > — T k% fork=1,2,---. (2.6)

2 (@,

According to the results of Li and Yau [27] and the Pdlya conjecture, we know that the lower
bounds for eigenvalue Ay are given. As one sees, the lower bounds depend on the domain 2.
On the other hand, study on upper bounds for eigenvalues of Laplacian is very difficult.
In [14], the second author and Yang were successful to study upper bounds for eigenvalues of
Laplacian. They obtained an upper bound of eigenvalue A;y1 by the first eigenvalue A\; and

this inequality is universal, which does not depend on the domain.

Theorem 2.1 For the eigenvalue problem of the Dirichlet Laplacian (1.1), eigenvalues
satisfy
Net1 < Co(n, k)km Ay,

where

)
Jn
2! for k=1,

5)
Coln, by = { Th-1
- a(min{n, k — 1})
n

for k> 2,

a(l) < 2.64 and a(m) < 2.2 —4log (1 + m5—63) for m > 2 are constants depending only on m.
Here, j, 1 denotes the k-th positive zero of the standard Bessel function Jy(z) of the first kind
of order p.

Remark 2.1 From Weyl’s asymptotic formula (1.2), it is clear that the upper bound ob-
tained by the second author and Yang [14] is optimal in terms of the order of k.

Remark 2.2 In [4], Professor Ashbaugh wrote that Cheng and Yang made great strides in

the field, in what amounted to a tour de force in 2007.
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In order to prove their Theorem 2.1, Cheng and Yang proved a recursion formula.

Theorem 2.2 (The recursion formula of Cheng and Yang [14]) Let p1 < po < -+ < pgy1
be any positive real numbers satisfying

k

k
4
Z(Nk—H —p)? < n Z,Ui(,uk+l — ;).

=1 =1

Define

Then, we have, for any ¢, k,

2.7)

where t is any positive real number.

Proof of Theorem 2.1 According to the Yang’s first inequality (2.3), we know that
eigenvalues \j satisfy the condition in Theorem 2.1 with ¢ = n. By making use of the recursion
formula of Cheng-Yang inequality (2.7), we have
_k_
k—1
By making use of the Yang’s first inequality again, we obtain

e (1 2)aif* < (- 20+ D

n

% 4 2 4
Fp < Cln,k — 1)( ) Bt S KHF = —kiA% (2.8)

Hence, we have

2 2

n o2 . ta 4\ 2 4
— AR —Z(/\’Hl - (1+ —)Gk) < (1+ —)Fk.
142 142 n n

n
Thus, we derive
n 4 2 4 2 4
A2, < 5(1+ ﬁ) Fe< (1+ ﬁ) kv A2, (2.9)

For z > 0, the Riesz mean of order p (p > 0) is defined as
Ry(2) = Z(Z =) (2.10)
k

where (z — )+ := max{0,z — A} is the ramp function. As p — 0", the Riesz mean converges

to the counting function

N(z) = Z 1= sup k. (2.11)

Ap<z A<z
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In terms of the counting function (2.11), the Li-Yau inequality (2.5) states that

2 E n
nt )2£g{n|§2|zf, (2.12)

N(z) < (

where E;{n is called the classical constant defined by

(1
o B s ) N (2.13)
(mir(1+p+5)
For p > 1, Berezin [8] proved that the Riesz means for the Dirichlet Laplacian satisfy
Ry(z) < LY, |Q] 2°15. (2.14)

In [25] (see [24]), Laptev and Weidl referred to (2.14) as the Berezin-Li-Yau inequality. In
fact, they (see [25]) demonstrated the equivalence between the Li-Yau inequality (2.5) and the
Berezin inequality (2.14) via the Legendre transform.

Another well-known function associated with the spectrum is the trace of the heat kernel
(equivalently, the partition function), denoted by Z(¢). We recall the asymptotic formula of
Kac [22] for Z(t),

oo

Q|
Z(t) = Ll - 2.15
0=~ s (215)
which is equivalent to (1.2) in terms of the Laplace transform. In [22], Kac also established the
inequality
2 =S et < 12 2.16
0= < G (216)

This result was refined in [20], where it was shown that ¢* Z(t) is a nonincreasing function for
t — 0T. In [19], Harrell and Hermi showed that (2.14) is equivalent to (2.16) for p > 2 via the

Laplace transform.

3 Eigenvalues of Laplacian on a Bounded Domain in Riemannian
Manifolds

Since the Weyl’s asymptotic formula (see [32]) for bounded domains in complete Riemannian
manifolds holds, it is natural and important to derive universal inequalities for eigenvalues of the
eigenvalue problem of the Dirichlet Laplacian on a bounded domain in a complete Riemannian
manifold.

For the eigenvalue problem of the Dirichlet Laplacian on a compact homogeneous Rieman-
nian manifold or on a compact minimal submanifold in a sphere, many mathematicians have
studied universal inequalities for eigenvalues (see, for example, [12-13, 16, 20, 34] and others).
Cheng and Yang [12-13] derived optimal universal inequalities for eigenvalues of the eigenvalue
problem of the Dirichlet Laplacian on a domain in a sphere or in a complex projective space.

Namely, they proved the following theorem.
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Theorem 3.1 For the eigenvalue problem of the Dirichlet Laplacian (1.1) on a domain in
the unit sphere, eigenvalues A\ satisfy
r 4 n?
S st =A< = > Mt — /\i)(/\i n Z)' (3.1)

: n -
=1 =1

Remark 3.1 When Q — S™(1), the above inequalities for all £ become equalities. Hence,

results of Cheng and Yang are optimal.

Furthermore, since a sphere can be seen as a hypersurface in Euclidean space, Chen and
Cheng [11] studied the more general case, which are n-dimensional complete submanifolds in

FEuclidean space. They proved the following theorem.

Theorem 3.2 Let Q) be a bounded domain in an n-dimensional complete Riemannian man-
ifold M™ isometrically immersed in the Euclidean space RY. For the eigenvalue problem of the
Dirichlet Laplacian (1.1), eigenvalues Ay, satisfy

k k

3 st = N)? < %Z(AM - )\i)()\i n %QH(?) (3.2)

=1 i=1

where H is the mean curvature vector field of M™ with H3 = ||H||Lm(Q) =sup |H|?.
Q

In order to prove our results, the following theorem of Cheng and Yang [13] will play an

important role.

Theorem 3.3 Let \; be the i-th eigenvalue of the eigenvalue problem of the Dirichlet Lapla-
cian on an n-dimensional compact Riemannian manifold Q = QUO with boundary O and u; be
the orthonormal eigenfunction corresponding to \;. Then, for any function f € C3(Q)NC?(9NQ)
and any integer k, we have

k k
D k1 = N Jus VP < Zml D2V f - Vu; + wAf|?,

i=1
where || f||* = [, f? and V [ - Vu; = g(Vf,Vuy).

Let Q C M™ be a bounded domain and p € Q be an arbitrary point of  with a coordinate
system (z!,---,2") in a neighborhood U of p in M™. Since M™ is an n-dimensional complete
Riemannian manifold isometrically immersed in RY, we can assume that y with components
y® defined by

Yy =y*(z',---,2"), 1<a<N

is the position vector of p in RY. We have
o 0 Yooy 0 Loyt o N 9y dy
5 =957 51) =\ 2 3 2 5w ) ~ 2 ot

where g denotes by the induced metric of M™ from RY, (,) is the standard inner product in
RY.
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Lemma 3.1 (see [11, Lemma 2.1]) Let M be an n-dimensional complete Riemannian man-
ifold with metric g isometrically immersed in a Fuclidean space RN . For any point p in M,

2 ..

assuming that y with components y® defined by y® = y*(a',22,--- ,2™) is the position vector

of p in RN, we have

(Ay*)* =n?|H[?,

M=
WE

g(Vy*,Vy®) = n,
=1

Q
Il
—
o

M=

N
Ay*Vy* =0, X:g(VyO‘,Vu)2 = |Vul?
a=1

Q
Il
-

for any function uw € C*° (M), where H is the mean curvature vector of M.

Proof of Theorem 3.2 Let u; be the eigenfunction corresponding to the eigenvalue \;
such that {u;};en becomes an orthonormal basis of L?(Q). Put f = y*,1 < a < N. Since M"
is complete and € is a bounded domain, we know that Q is a compact Riemannian manifold

with boundary. From Theorem 3.3 of Cheng and Yang, we infer
SNt — A VP < SAeg1 — A2V Y- Vg + w A F2 2.

Taking summation on a and using Lemma 3.1, we finish the proof.

Remark 3.2 Our results are optimal since for the unit sphere, HZ = 1, our inequality

becomes one of Cheng and Yang.

Remark 3.3 Inequality (3.2) had also been proved by El Soufi, Harrell and Ilias [17],
independently.

For a bounded domain in an n-dimensional complete Riemannian manifold isometrically

minimally immersed in Euclidean space, we have the following result.

Corollary 3.1 (see [11]) Let Q be a bounded domain in an n-dimensional complete Rie-
mannian manifold M™ isometrically minimally immersed in RY. Then, for the eigenvalue

problem (1.1), we have

k k
4
Z;(A,m — A< - Z;(Ak“ —A) (3.3)
Remark 3.4 We would like to note that Yang’s first inequality does not only hold for
domains in Euclidean spaces, but also hold for domains in complete minimal submanifolds in

Euclidean spaces.

We should remark that Theorem 3.2 of Chen and Cheng includes all complete Riemannian
manifolds according to Nash’s theorem. In fact, Cheng and Yang [15] obtained the following

theorem, by making use of a simple observation and Theorem 3.2.
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Theorem 3.4 Let Q) be a bounded domain in an n-dimensional complete Riemannian man-
ifold M™. For the eigenvalue problem of the Dirichlet Laplacian (1.1), there exists a constant
HZ, which depends only on M and Q such that

k k

3 st = A)? < %Z(AM - )\i)()\i n %QH(?) (3.4)

i=1 i=1
Proof According to Nash’s theorem, we know that M"™ can be immersed into Euclidean
space RY by ¢ : M™ — RY. From Theorem 3.2 of Chen and Cheng and putting HZ =
inf || H||2 o = infsup |H|?, the proof is completed.
® SO s

For the hyperbolic space H"(—1), Cheng and Yang did not rely on Nash’s theorem; in-
stead, they constructed an appropriate trial function in [15] to derive a universal inequality for

eigenvalues of the eigenvalue problem (1.1).

Theorem 3.5 For the eigenvalue problem of the Dirichlet Laplacian (1.1) on a domain in

the hyperbolic space H™(—1), eigenvalues \i satisfy

k k (TL . 1)2
S Mest = A <43 (s — /\i)(/\i - T)' (3.5)
L =1

According to the recursion formula in Theorem 2.1 of Cheng and Yang, we know the following

theorem.

Theorem 3.6 Let Q) be a bounded domain in an n-dimensional complete Riemannian man-
ifold M™. There exists a constant H3, which depends only on M and ), such that eigenvalues
Ai’s of the eigenvalue problem (1.1) satisfy

1 b n2 n k%
zE T e m ey e R (36)
where
c, =
Wn

Furthermore, Cheng and Yang [15] proposed the following conjecture.

Conjecture 3.1 (see [15]) Let Q be a bounded domain in an n-dimensional complete
Riemannian manifold M™. Then, there exists a constant ¢(M, ), which depends only on M

and €, such that eigenvalues A\ satisfy

n
n -+

Chn

k
1
EZ)\H—c(M,Q) for k=1,2,---, (3.7)
=1

2
2
lelkz

A +¢(M,Q) > C, for k=1,2,---. (3.8)
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Theorem 3.7 Let Q) be a bounded domain in an n-dimensional complete Riemannian man-
ifold M™. Then, there exists a constant Hy, which depends only on M and €2, such that

eigenvalues \; satisfy

(3.9)
where
o0 7’1,2
= Zexp ( - ()\1- + ZHg)t)
i=1
Since the projective spaces admit the first standard embedding into Euclidean space (see
Section 4), by Cheng-Yang recursion formula (3.6) we have the following corollary.

Corollary 3.2 Let M be an n-dimensional submanifolds in the projective space FP™ with
the mean curvature vector fields H and let  be a bounded domain in M™. Then eigenvalues

Ai’s of the eigenvalue problem (1.1) satisfy

k 2
1 n? 2(n + d(F)) n kw
il N+ —(H? + > C, 5 or k=1,2,---, (3.10
k; 4( 0 n ) (n+2)(n+4)  |Qn 4 (3.10)

where d(F) is defined by (4.5) in Section 4 and HE = ||H||2Lm(9) = sup|H|?>. In particular,
Q
if M is an n-dimensional minimal submanifolds in the projective space FP™, then eigenvalues

satisfy

& n+d( ) n |2 -
; > IO C, E for k=1,2,---. (3.11)

?rl»—‘

Remark 3.5 For compact submanifolds with boundaries immersed in Euclidean spaces,
spheres, and projective spaces, we consider the closed eigenvalue problem. The estimates for
eigenvalue inequalities presented in the aforementioned theorems remain valid. The methods
of proof and computations require no modification, except that eigenvalues now begin with
A1 = 0. In particular, for the minimal submanifold M™ without boundary immersed into M,
where M is the unit sphere SV (1) or one of projective spaces FP™, the closed eigenvalues of
M™ obey

2

r c(n) n k=
Z)‘i+ > Ch —  for k=1,2,---,
- (n+2)(n+4) | M| =

where ¢(n) depends only on dimension n defined by

o(n) = n? for M is SMN(1),
2n(n +d(F)) for M is FP™.

Since the projective spaces FP™ may be minimally embedded into the sphere S(m+1)d(F)—1
(4 /%) (see [9, 31]), the closed eigenvalues of FP™ satisfy

1 2 ]F 7nd2(]3‘)
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4 Proof of Theorem 3.7 and Corollary 3.2

In order to prove Theorem 3.7 and Corollary 3.2, we require the following Tauberian theorem

and the first standard embedding of projective spaces into Euclidean spaces.
4.1 Karamata’s Tauberian theorem

Theorem 4.1 (see [26]) Let M be an n-dimensional smooth compact Riemannian manifold.
If OM # (0, assume that either the Dirichlet or the Neumann boundary conditions are imposed

on the boundary. Then the eigenvalue counting function for M has the asymptotics

N = Lg Vol(M)AE + O(A*T), (4.1)
where Eg{n, which is defined by
cl . Wn
£O,n T (271')”7 (42)

A fundamental property for p,d > 0, often referred to as the Riesz iteration or alternatively

as the Aizenman-Lieb procedure (see [1]), states that

Plp+o+1) /OO(A ~ IR, (t)dt. (4.3)
) Jo

Fors = )

It is noteworthy that applying the Riesz iteration (4.3) to (4.1) directly yields the following

result
R,(z) ~ E;{n Q] 2772 as z — oo, (4.4)

where the classical constant is given by (2.13). This formula allows us to estimate the counting
function N(A) = #{n : A\, < A} with the help of the kernel Z(t). For this we will make use of

the following Tauberian theorem due to Karamata [23] (see also [2, Theorem 1.1]).

Theorem 4.2 Let (A,)nen be a sequence of positive real numbers such that the series

S et converges for every t > 0. Then for v > 0 and a € R the following are equiva-
neN
lent:

(1) limt" 3 e ?nt =gq,
t—=0 N
(2) )\11_}11;0 )\_TN(A) = ﬁ

Here N denotes the counting function N(X) = #{\, < A}, and T'(r) = [;°

0 " le=%dx is the

usual Gamma function.
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4.2 Submanifolds in projective spaces

Let F denote the field R of real numbers, the field C of complex numbers, or the field Q
of quaternions. Let FP™ denote the m-dimensional projective space over F. The projective
space FP™ is endowed with a standard Riemannian metric whose sectional curvature is either
constant and equal to 1 (for F = R) or pinched between 1 and 4 (for F = C or Q). It is
well-known that projective spaces admit a first standard embedding into Euclidean spaces (see
[9, 17, 31]). Let p: FP™ — H,,+1(F) denote the first standard embedding of projective spaces

into Euclidean spaces, where
Hp1(F) = {A € My (F) | A= A},

and M,,+1(F) denotes the space of (m + 1) x (m + 1) matrices over F. For convenience, we

introduce the integer

1, ifF=R,
d(F) = dimgF={2, ifF=C, (4.5)
4, ifF=Q.

Proposition 4.1 (see [10, Proposition 2.4])  Let f : M™ — FP™ be an isometric immer-
sion, and let H and H' denote the mean curvature vector fields of the immersions f and po f,

respectively. Then
4(n+2)
3In + n2 Z K e“ € )
i#j

[H'|* = [H? +

where {e;}_, is a local orthonormal basis of TM, and K is the sectional curvature of FP™,
which can be expressed as

1, if F =R,

1+ 3(e; - Jej)?, where J is the complex structure of CP™, if F = C,

K(ei, ej) =
1+ 32 -y ej ,  where J, is the quaternionic structure of QP™, if F = Q.

In particular, it follows that

2 1
IHI"’wLLML ) for RP™,
n
, 241 2 ¢ 2 2, 2(n+2) m
\H'|2 = |H|+T+ﬁz(i.Jej)S|H|+T for CP™,
ig=1
n 3
2(n+1) 2 2(n+4) -
i 2 2 5 S e st 2D g g

That is ) AT
|H/|2§ |H|2+ (TL—I— ( ))’
n
where equality holds if and only if M is a complex submanifold of CP™ (for the case of CP™),
orn =0 (mod 4) and M is a quaternionic submanifold of QP™ (for the case of QP™).
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4.3 Harrell-Stubbe type estimates
To prove Theorem 3.7, we require the following Harrell-Stubbe type estimates.

Theorem 4.3 Let Q) be a bounded domain in an n-dimensional complete Riemannian man-
ifold M™. For the eigenvalue problem of the Dirichlet Laplacian (1.1), there exists a constant
HZ, which depends only on M and 2, such that

4
Ry(z) < - Z(z = i)+ M (4.6)
keN
where p; is defined by
n2
i =N\ + ZH@. (4.7)

Furthermore, for p > 2 and z > 1,

Ry(2) < —L 2R, 1(2). (4.8)

Remark 4.1 If the Berezin-Li-Yau (4.8) holds for p > 1, then the inequalities (3.7) in

Conjecture 3.1 are also satisfied.
For the reader’s convenience, we provide the proof of Theorem 4.3.

Proof of Theorem 4.3 The inequality (4.6) can be established using a similar argument
to that employed in the proof of Proposition 1 in [13] and Theorem 1.1 in [11]. Assume that u;

is an orthonormal eigenfunction corresponding to the i-th eigenvalue \;, i.e., u; satisfies

Aui = —)\iui in ]\47
/ uugdp = 955
Q
Define ¢;, aj; and bg}, for i,j =1,--- ,k, by
agy = / ySusugdp,
M
k
j=1
(e} 1 «
b%— = /Quj (Vul -Vy® + §u1Ay )du.

Then we can deduce from (4.9)—(4.10),

ag; = ag;,  2b5; = —=2b%; = (A — \j)a

ij jis

/gpf‘ujdu:O for j=1,2,--- k.
Q

«
17
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For \; <z < Ag41, from Rayleigh-Ritz inequality, we have

[Vt [Pdp
Q

/Q(so?)2du |

Taking the similar argument as in [13] (see also [6-7, 14]), we can infer

2 < Apg1 <

k k
D (2= A2 Vyel? < (2 = A)[12Vy® - Vg + wiAy© 2. (4.11)
1=1

=1

From Lemma 3.1, a direct calculation yields

N
> ws vy =n,
a=1

N 2
3129y - Vi + wiAy®|? = 4\ + nQ/Q |H|?u2dp < 4(&- + %Hg). (4.12)

a=1

Substituting (4.12) into (4.11) yields, for A\ < z < Ag41,

i(z - /\i)(/\i + %QHS), (4.13)

i=1 =1

5
w
I
>
o
A
S

which implies (4.6).
From (4.6), we infer

kEN
— % Z(z — i)z = (z = pi)+)
keN
4 4

which implies
n
(1 + Z)Rg(z) < 2Ri(2). (4.14)

The inequality (4.8) can be deduced from (4.14) by using Riesz iteration, which completes
the proof of Theorem 4.3.

4.4 Proof of Theorem 3.7 and Corollary 3.2

Proof of Theorem 3.7 From the inequality (4.8) in Theorem 4.3, the function

(4.15)
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is a nondecreasing function of z, for p > 2. According to the the asymptotic formula (4.4) and

Theorem 4.2, we get the Berezin-Li-Yau inequality
Ry(2) < LY 402", (4.16)
where EZ{n is defined in (2.13). The Laplace transform yields

£ mg) = NEE DT (1.17)

Combining the inequality (4.16) with (4.17) yields

r p+1+d

N+ 1) o Fr1+3)

o Zu(t) < L9 -2,
tp+1+§

where Zp(t) is defined by
Zu(t) = exp(—put).
i=1

in (2.13), we obtain the desired result

n

From the definition of EZ{

9]
(4rt)s "

Zu(t) < (4.18)

This completes the proof of Theorem 3.7.

Proof of Corollary 3.2 From Proposition 4.1, the projective spaces FP™, which admit the
first standard embedding into the Euclidean space H(m+1,F), allow an isometrically immersed
submanifold M™ in FP™ to be regarded as a submanifold in Euclidean space H(m+ 1,F). The

mean curvature vector field H' of M™ in Euclidean space satisfies

|H/|2 S |H|2 4 2(n+d(F))
n

3

where H denotes the mean curvature vector field of M™ in FP™. Consequently, Corollary 3.2

follows the analogical argument of the proof of Theorem 3.2.
Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

(1] Aizenman, M. and Lieb, E. H., On semi-classical bounds for eigenvalues of Schrédinger operators, Phys.
Lett., 66 A, 1978, 427-429.

[2] Arendt, W., Nittka, R., Peter, W. and Steiner, F., Weyl’s Law: Spectral properties of the Laplacian in
mathematics and physics, Mathematical Analysis of Evolution, Information, and Complexity, Arendt W.
and Schleich W. P. (eds.), Wiley, New York, 2009, 1-71.

(3] Ashbaugh, M. S., The universal eigenvalue bounds of Payne-Pélya-Weinberger, Hile-Protter, and Yang H.
C., Proc. Indian Acad. Sci. Math. Sci., 112(1), 2002, 3-30.



Estimates for Eigenvalues of the Dirichlet Laplacian on Riemannian Manifolds 183

[4]

[5]

[6]

7]

[23]
[24]
[25]
[26]
[27]
28]
[29]

(30]
31]

Ashbaugh, M. S., Universal inequalities for the eigenvalues of the Dirichlet Laplacian, Shape Optimization
and Spectral Theory, De Gruyter Open, Warsaw, 2017, 282-324.

Ashbaugh, M. S. and Benguria, R. D., Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral
Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos.
Pure Math., Vol. 76, Amer. Math. Soc., Providence, RI, 2007, 105-139.

Ashbaugh, M. S. and Hermi, L., A unified approach to universal inequalities for eigenvalues of elliptic
operators, Pacific J. Math., 217, 2004, 201-220.

Ashbaugh, M. S. and Hermi, L., On Harrell-Stubbe type inequalities for the discrete spectrum of a self-
adjoint operator, 2007, arXiv: 0712.4396.

Berezin, F., Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR, 37,1972, 1134-1167.

Chen, B. Y., Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publishing Co.,
Singapore, 1984.

Chen, D. G., Extrinsic estimates for eigenvalues of the Dirac operator, Math. Z., 262, 2009, 349-361.

Chen, D. G. and Cheng, Q.-M., Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc.
Japan, 60, 2008, 325-339.

Cheng, Q.-M. and Yang, H. C., Estimates on eigenvalues of Laplacian, Math. Ann., 331, 2005, 445—460.

Cheng, Q.-M. and Yang, H. C., Inequalities for eigenvalues of Laplacian on domains and compact hyper-
surfaces in complex projective spaces, J. Math. Soc. Japan, 58, 2006, 545-561.

Cheng, Q.-M. and Yang, H. C., Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337, 2007,
159-175.

Cheng, Q.-M. and Yang, H. C., Estimates for eigenvalues on Riemannian manifolds, J. Differential Equa-
tions, 247, 2009, 2270-2281.

Cheng, S. Y., Eigenfunctions and eigenvalues of Laplacian, Proc. Symp. Pure Math., 27, 1975, 185-193.

El Soufi, A., Harrell, II, E. M. and Ilias, S., Universal inequalities for the eigenvalues of Laplace and
Schrodinger operators on submanifolds, Trans. Amer. Math. Soc., 361, 2009, 2337-2350.

Filonov, N., Levitin, M., Polterovich, I. and Sher, D., Pélya’s conjecture for Euclidean balls, Invent. Math.,
234, 2023, 129-169.

Harrell, II, E. M. and Hermi, L., On Riesz means of eigenvalues, Comm. Partial Differential Equations,
36(9), 2011, 1521-1543.

Harrell, II, E. M. and Stubbe, J., On trace identities and universal eigenvalue estimates for some partial
differential operators, Trans. Amer. Math. Soc., 349(5), 1997, 1797-1809.

Hile, G. N. and Protter, M. H., Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J., 29,
1980, 523-538.

Kac, M., On some connections between probability theory and differential and integral equations, Pro-
ceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of
California Press, Berkeley, Los Angeles, 1951, 189-215.

Karamata, J., Neuer Beweis und Verallgemeinerung der Tauberschen Satze, welche die Laplace’sche und
Stieltjes Transformation betreffen, J. Reine Angew. Math., 164, 1931, 27-39.

Laptev, A. and Weidl, T., Sharp Lieb-Thirring inequalities in high dimensions, Acta Math., 184(1), 2000,
87-111.

Laptev, A. and Weidl, T., Recent results on Lieb-Thirring inequalities, Journées “Equations aux Dérivées
Partielles”, Univ. Nantes, Nantes, 2000, 14 pp.

Levitin, M., Mangoubi, D. and Polterovich, I., Topics in Spectral Geometry, Graduate Studies in Mathe-
matics, American Mathematical Society, Providence, RI, 237, 2023, 325 pp.

Li, P. and Yau, S. T., On the Schrodinger equation and the eigenvalue problem, Comm. Math. Phys., 88,
1983, 309-318.

Payne, L. E., Pélya, G. and Weinberger, H. F., Sur le quotient de deux fréquences propres consécutives,
Comptes Rendus Acad. Sci. Paris, 241, 1955, 917-919.

Payne, L. E., Pdélya, G. and Weinberger, H. F., On the ratio of consecutive eigenvalues, J. Math. Phys.,
35, 1956, 289-298.

Pélya, G., On the eigenvalues of vibrating membranes, Proc. London Math. Soc., 11, 1961, 419-433.

Tai, S. S., Minimum imbeddings of compact symmetric spaces of rank one, J. Differential Geometry, 2,
1968, 55-66.



184 D. G. Chen and Q. -M. Cheng

[32] Weyl, H., Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen,
Math. Ann., 71, 1911, 441-479.

[33] Yang, H. C., Estimates of the difference between consecutive eigenvalues, Inte. Cent. Theo. Phys., 3, 1995,
47-63.

[34] Yang, P. C. and Yau, S.-T., Eigenvalues of the Laplacian of compact Riemann surfaces and minimal
submanifolds, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 7, 1980, 55—63.



