
Chin. Ann. Math. Ser. B

47(1), 2026, 185–212
DOI: 10.1007/s11401-026-0013-z

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2026

Deformations of Hermitian Yang-Mills Metrics on the

Iwasawa and Nakamura Threefolds∗

Jixiang FU1 Jieming YANG2

Abstract The authors show the stability of Hermitian Yang-Mills metrics under defor-

mations of complex structures of either the Iwasawa or the Nakamura threefolds.

Keywords Deformations, Balanced metrics, Hermitian Yang-Mills metrics

2020 MR Subject Classification 53C55, 53B35, 32Q26

1 Introduction

Let X0 be a compact complex manifold with dimCX0 = n and cBC
1 (X0) = 0, where

cBC
1 (X) ∈ H1,1

BC(X,R) =
{φ ∈ A1,1

R
(X) | dφ = 0}

{
√
−1∂∂u | u ∈ A0

R
(X)}

.

Such X0 is named as (non-Kähler) Calabi-Yau (see [25]). In particular, if the canonical bundle

KX0
is holomorphically trivial, then X0 is Calabi-Yau.

Let ω0 be a Hermitian metric on X0. If ∂∂ω
n−1
0 = 0, ω0 is called Gauduchon. If dωn−1

0 = 0,

ω0 is called balanced. If dω0 = 0, ω0 is called Kähler.

Let ∇0 be the Chern connection of an arbitrary Hermitian metric ω0 and Rω0
∈ A1,1(End

(T 1,0X0)) be the curvature of ∇0. If the mean curvature form
√
−1Λω0

Rω0
satisfies the Her-

mitian Yang-Mills equation (see Lemma 3.2)

√
−1Λω0

Rω0
= 0,

then ω0 is said to be Hermitian Yang-Mills with respect to itself (see [27]).

Obviously, the above equation coincides with the Calabi-Yau equation if ω0 is Kähler (see

[30]). Thus Hermitian Yang-Mills metrics are candidates for canonical metrics on non-Kähler

manifolds. For other analogous of Calabi-Yau metrics, we refer to [2–3, 8–10, 13, 17, 21–22,

25–26] and the references therein.

The first problem is the existence of Hermitian Yang-Mills metrics on non-Kähler Calabi-

Yau manifolds. A typical example is the Iwasawa or the Nakamura threefold. There is a natural

metric ω0 on X0 which is balanced with flat Chern connection ∇0. Thus X0 is a non-Kähler
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Calabi-Yau threefold and ω0 is Hermitian Yang-Mills. Besides, there is no general conclusion

on the existence.

A well-known example of non-Kähler Calabi-Yau threefolds is the complex structures on

#k≥2S
3 × S3 given by the conifold transitions. Since the existence of balanced metrics on

#k≥2S
3 × S3 was proved in [8], an essential question is whether there exists on such manifolds

a balanced metric ω which is also Hermitian Yang-Mills with respect to itself (see [7]).

Assumed the existence of Hermitian Yang-Mills metrics on non-Kähler Calabi-Yau mani-

folds, one of the further questions is the stability of Hermitian Yang-Mills metrics under de-

formations of complex structures. It would be fundamental for generalizations of Calabi-Yau

moduli spaces.

Deformations of complex structures of Kähler (Calabi-Yau) manifolds were studied exten-

sively (see e.g., [23–24]). However, deformations of non-Kähler manifolds are far from well-

understood, see [1, 4, 8, 11, 18–20, 29] and references therein for some results.

In particular, in contrast to the Kähler case (see e.g., [15, Chapter 4]), the property of

being balanced is not stable under deformations (see [1]). Certain topological conditions were

imposed to guarantee the stability of balanced metrics (see e.g., [4, 11, 19, 29]).

Denote ∆ǫ={t ∈ Cm : |t| < ǫ} for some m ∈ Z+ and ǫ≪ 1. Let {Xt}t∈∆ǫ
be the Kuranishi

family of X0. As far as we are concerned, one of the key ingredients in [19] (or [20]) is the

definition of a natural Hermitian metric ωt on Xt (see (2.2)). Such a metric ωt is our starting

point for deformations of Hermitian Yang-Mills metrics.

Here we only consider some special compact complex threefolds and leave the general case

to further study.

Let X0 be either the Iwasawa or the Nakamura manifold (see [16]). As stated above, there

exists a Hermitian Yang-Mills metric ω0 on X0. The Kuranishi family {Xt}t∈∆ǫ
of X0 was

explicitly constructed (see [16, Section 3]). For the natural metric ωt on Xt (given by (2.2)), we

calculate its curvatures Rωt
and Kωt

, which enable us to obtain a Hermitian Yang-Mills metric

ω̃t after perturbing ωt by a contraction mapping argument (see e.g., [5–6]). However, we do

not know whether the metric ω̃t is balanced or not.

Our main result is as follows.

Theorem 1.1 Let X0 be either the Iwasawa or the Nakamura manifold and {Xt}t∈∆ǫ
be

the Kuranishi family of X0. For ǫ ≪ 1, each Xt admits a Hermitian Yang-Mills metric with

respect to itself.

In Section 2, we present basic facts on deformation theory and study the geometry of (Xt, ωt).

In Section 3, we prove Theorem 1.1.

2 Preliminaries

Let X0 be a compact complex manifold and {Xt}t∈∆ǫ
be the Kuranishi family of X0. We

refer to [15, Chapter 4] for the deformation theory of Kodaira-Spencer.

We first recall the extension map defined in [20] (see also [19]). The crucial thing of Kodaira-



Deformations of Hermitian Yang-Mills Metrics on the Iwasawa and Nakamura Threefolds 187

Spencer’s theory is that the complex structure on Xt is described by a vector (0, 1)-form ϕ(t) ∈
A0,1(T 1,0X0) satisfying the integrability condition. More precisely, there is a complex manifold

X and a holomorphic map ̟ : X → ∆ǫ satisfying the following conditions:

(1) ̟−1(t) = Xt is a compact complex manifold for each t ∈ ∆ǫ.

(2) The rank of the Jacobian of ̟ is m at each point of X .

Then the complex structure on Xt is obtained by deforming the complex structure on X0 via

ϕ(t) such that ϕ(0) = 0 and

∂ϕ(t) =
1

2
[ϕ(t), ϕ(t)].

Let d = ∂t + ∂t be the decomposition of d with respect to the complex structure on Xt.

Let (z1, · · · , zn) be local holomorphic coordinates of X0. Let (ζ
1(z, t), · · · , ζn(z, t)) be local

holomorphic coordinates of Xt. For t = 0, both

(z1, · · · , zn) and (ζ1(z, 0), · · · , ζn(z, 0))

are holomorphic coordinates on X0. While for t ∈ ∆ǫ \ {0} and k ∈ {1, · · · , n}, ζk(z, t) is only
smooth on t. Denote

At =
(∂ζ
∂z

)−1

=




A1
t,1 · · · A1

t,n

...
...

An
t,1 · · · An

t,n


 . (2.1)

The vector (0, 1)-form ϕ is given by (see e.g., [15, 20])

ϕ =
( ∂

∂z1
, · · · , ∂

∂zn

)
At

(∂ζ
∂z

)



dz1

...
dzn


 = ϕi

j
dzj ⊗ ∂

∂zi
,

where

ϕi
j
= Ai

t,k

∂ζk(z, t)

∂zj
.

We may also use ϕ to denote the above n× n matrix.

The extended contraction operator is

iϕ : Ap,q(X0) → Ap−1,q+1(X0).

Define two operators (see e.g., [20])

eiϕ =
∑

k≥0

1

k!
ikϕ and eiϕ =

∑

k≥0

1

k!
ikϕ,

where ikϕ = iϕ ◦ · · · ◦ iϕ. Then for ǫ≪ 1,

{eiϕ(dzi) = dzi + ϕi
j
dzj}ni=1 and {eiϕ(dzj) = dzj + ϕj

i
dzi}nj=1

are local smooth frames of A1,0(Xt) and A0,1(Xt), respectively.

By [20, Lemma 2.5], the local smooth frame {eiϕ(dzi)}ni=1 and the local holomorphic frame

{dζi}ni=1 are related by

eiϕ(dzi) = Ai
t,kdζ

k.



188 J. X. Fu and J. M. Yang

Moreover, for

σ = σi1···ipj1···jq (z)dz
i1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq ∈ Ap,q(X0),

the extension map (see [20, Definition 2.8])

eiϕ|iϕ : Ap,q(X0) → Ap,q(Xt)

is given by

eiϕ|iϕ(σ) = σi1···ipj1···jq (z)e
iϕ(dzi1 ∧ · · · ∧ dzip) ∧ eiϕ(dzj1 ∧ · · · ∧ dzjq ).

It is proved in [20, Lemma 9] that eiϕ|iϕ is a linear isomorphism for ǫ≪ 1.

Let

ω0 =
√
−1g0,ijdz

i ∧ dzj

be a Hermitian metric on X0. Then for ǫ≪ 1,

ωt = eiϕ|iϕ(ω0) =
√
−1g0,ije

iϕ(dzi) ∧ eiϕ(dzj)

=
√
−1gt,ijdζ

i ∧ dζ
j

(2.2)

is a Hermitian metric on Xt, where gt,ij = g0,klAk
t,iA

l

t,j . The metric ωt is our starting point for

the proof of Theorem 1.1.

Let X0 be either the Iwasawa or the Nakamura manifold and {Xt}t∈∆ǫ
be the Kuranishi

family of X0 (see [16]).

There is a natural metric ω0 on X0 which is balanced with flat Chern connection ∇0. For

ǫ ≪ 1, the natural metric ωt on Xt is given by (2.2), and the Chern connection of ωt is ∇t.

Then the curvature and mean curvature of ∇t are Rωt
and Kωt

(see e.g., [12, Section 1.7]),

respectively.

Our main result in this subsection is as follows.

Proposition 2.1 Under the above setting, the norms of the curvature and the mean cur-

vature of the Chern connection ∇t satisfy

|Rωt
|ωt

= |Kωt
|ωt

= o(|t|2)

for ǫ≪ 1.

In the rest of this part, we prove Proposition 2.1 for the Iwasawa manifold. While the proof

for the Nakamura manifold is given in the appendix.

Denote

G =








1 z2 z3

0 1 z1

0 0 1


 ; zk ∈ C



 ≃ C

3

and

Γ =








1 w2 w3

0 1 w1

0 0 1


 ;wk ∈ Z⊕

√
−1Z



 .
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The Iwasawa manifold X0 = G/Γ is the quotient by the action of Γ on G:




1 z2 z3

0 1 z1

0 0 1







1 w2 w3

0 1 w1

0 0 1


 =




1 z2 + w2 z3 + z2w1 + w3

0 1 z1 + w1

0 0 1


 .

Denote

t = (t11, t12, t21, t22, t31, t32) ∈ ∆ǫ = {t ∈ C
6 : |t| < ǫ}.

Let {Xt}t∈∆ǫ
be the Kuranishi family of X0 for ǫ≪ 1 (see [16, p. 95]).

Let {z1, z2, z3} be holomorphic coordinates on X0. The integrable vector (0, 1)-form ϕ ∈
A0,1(T 1,0X0) is (see [16, p. 95])

ϕ =
( ∂

∂z1
,
∂

∂z2
,
∂

∂z3

)


t11 t12 0
t21 t22 0
η1 η2 +Dz1 −D







dz1

dz2

dz3


 , (2.3)

where

η1 = t31 + t21z
1, η2 = t32 + t22z

1, D = t11t22 − t12t21.

The holomorphic coordinates {ζ1, ζ2, ζ3} on Xt are given by (see [16, p. 95]):

ζ1 = z1 +

2∑

l=1

t1lz
l, ζ2 = z2 +

2∑

l=1

t2lz
l, ζ3 = z3 +

2∑

l=1

ηlz
l +A−Dz3, (2.4)

where

2A = t11t21(z
1)2 + 2t11t22z

1z2 + t12t22(z
2)2.

Then we obtain from (2.1) that




A1
t,1 · · · A1

t,3
...

...
A3

t,1 · · · A3
t,3


 =




1 0 0
0 1 0

−(ζ2 − z2) 0 1


 . (2.5)

Since

{φ10 = dz1, φ20 = dz2, φ30 = dz3 − z1dz2}

is a global basis of the space of holomorphic 1-forms on X0, the three (1, 0)-forms

φ1t = eiϕ(φ10) = dζ1, φ2t = eiϕ(φ20) = dζ2

and

φ3t = eiϕ(φ30) = dζ3 − z1dζ2 − (ζ2 − z2)dζ1

form a basis of the space of smooth (1, 0)-forms on Xt. Since

φ1t ∧ φ2t ∧ φ3t = dζ1 ∧ dζ2 ∧ dζ3,

the canonical bundle KXt
of Xt is holomorphically trivial.
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It is well-known that the natural metric

ω0 =
√
−1

3∑

l=1

φl0 ∧ φ
l

0 =
√
−1(dz1 ∧ dz1 + (1 + |z1|2)dz2 ∧ dz2 + dz3 ∧ dz3

− z1dz2 ∧ dz3 − z1dz3 ∧ dz2)

onX0 is balanced with flat Chern connection∇0. ThusX0 is a non-Kähler Calabi-Yau threefold

and ω0 is Hermitian Yang-Mills.

Moreover, for ǫ≪ 1, there is a natural Hermitian metric on Xt (given by (2.2)):

ωt = eiϕ|iϕ(ω0) =
√
−1gt,ijdζ

i ∧ dζ
j
,

where



gt,11 · · · gt,13
...

...
gt,31 · · · gt,33


 =




1 + |ζ2 − z2|2 z1(ζ2 − z2) −(ζ2 − z2)

z1(ζ2 − z2) 1 + |z1|2 −z1

−(ζ2 − z2) −z1 1


 . (2.6)

It is direct to check

ωt =
√
−1

3∑

l=1

φlt ∧ φ
l

t.

As mentioned above, the property of being balanced is not stable under deformations of the

Iwasawa manifold (see [1]). As for the natural metric ωt, we have the following observation.

Proposition 2.2 Let X0 be the Iwasawa manifold and {Xt}t∈∆ǫ
be the Kuranishi family of

X0. The natural metric ωt on Xt is Gauduchon and Chern-Ricci flat. Moreover, it is balanced

if and only if

t21|t12|2 − t12|t21|2 = t11t22(t12 − t21) + t12 − t21.

Proof We obtain from (2.6) that detωt = 1. Then the Chern-Ricci curvature of ωt is

ρωt
=

√
−1 ∂t∂t log detωt = 0.

Direct calculation yields

ω2
t = 2

√
−1

2
((1 + |z1|2 + |ζ2 − z2|2)dζ1 ∧ dζ

1 ∧ dζ2 ∧ dζ
2

− z1dζ1 ∧ dζ
1 ∧ dζ2 ∧ dζ

3 − (ζ2 − z2)dζ1 ∧ dζ2 ∧ dζ
2 ∧ dζ

3

+ z1dζ1 ∧ dζ
1 ∧ dζ

2 ∧ dζ3 + (ζ2 − z2)dζ
1 ∧ dζ2 ∧ dζ

2 ∧ dζ3

+ dζ1 ∧ dζ
1 ∧ dζ3 ∧ dζ

3
+ dζ2 ∧ dζ

2 ∧ dζ3 ∧ dζ
3
). (2.7)

To calculate ∂tω̂
2
t , we use (2.3) to show

(I − ϕϕ) =




α −β 0

−γ δ 0

Dt31 − η1t11 − η2t21 D(t31 +Dz1)− η1t12 − η2t22 1− |D|2


 ,
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where

α = 1− |t11|2 − t21t12, δ = 1− |t22|2 − t12t21

and

β = t12t11 + t22t12, γ = t11t21 + t21t22.

Then we get

(I − ϕϕ)−1 =




βγ

α2σ
+

1

α

β

ασ
0

γ

ασ

1

σ
0

∗ ∗ 1

1− |D|2



, (2.8)

where

σ = δ − βγ

α
and elements denoted by ∗ are irrelevant for us.

By [20, Lemma 2.4], we obtain from (2.5) and (2.8) that

(∂z
∂ζ

)
= (I − ϕϕ)−1At =




βγ

α2σ
+

1

α

β

ασ
0

γ

ασ

1

σ
0

∗ ∗ 1

1− |D|2



,

which implies

(
τ11 τ12
τ21 τ22

)
:=




∂z1

ζ1
∂z1

ζ2

∂z2

ζ1
∂z2

ζ2




=




1 +
|t11|2
α

+
λ1µ1

σ

t11t12
α

+
λ2µ1

σ

t21t11
α

+
λ1µ2

σ
1 +

t21t12
α

+
λ2µ2

σ


 . (2.9)

Here

λ1 = t21 +
γ

α
t11, λ2 = t22 +

γ

α
t12

and

µ1 = t12 +
β

α
t11, µ2 = t22 +

β

α
t21.

Similarly, we obtain from (2.3), (2.5) and (2.8) that

−
(∂z
∂ζ

)
= ϕ(I − ϕϕ)−1At =




(
1 +

βγ

ασ

) t11
α

+
t12γ

ασ

t11β

ασ
+
t12
σ

0

(
1 +

βγ

ασ

) t21
α

+
t22γ

ασ

t21β

ασ
+
t22
σ

0

∗ ∗ D

|D|2 − 1




,
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which implies



τ31 τ32

τ41 τ42


 :=




∂z1

ζ
1

∂z1

ζ
2

∂z2

ζ
1

∂z2

ζ
2




= −




t11
α

+
γµ1

ασ

µ1

σ

t21
α

+
γµ2

ασ

µ2

σ


 . (2.10)

By (2.7) and (2.9)–(2.10), we get

∂tω
2
t = 2

√
−1

2
(τ32 − τ41)dζ

1 ∧ dζ
1 ∧ dζ2 ∧ dζ

2 ∧ dζ
3
,

which implies

∂t∂tω
2
t = 0,

i.e., ωt is Gauduchon. While ωt is balanced if and only if τ32 = τ41, which is exactly the desired

identity.

Proof of Proposition 2.1 Let X0 be the Iwasawa manifold and {Xt}t∈∆ǫ
be the Kuranishi

family of X0.

By (2.6), we get



g11t · · · g31t

...
...

g13t · · · g33t


 =




1 0 ζ2 − z2

0 1 z1

(ζ2 − z2) z1 1 + |z1|2 + |ζ2 − z2|2


 (2.11)

and

∂tgtg
−1
t =




−(ζ2 − z2)∂tz
2 (ζ2 − z2)∂tz

1 θ31

−z1∂tz2 z1∂tz
1 θ32

∂tz
2 −∂tz1 (ζ2 − z2)∂tz

2 − z1∂tz
1


 ,

where

θ31 = −(ζ2 − z2)2∂tz
2 + z1(ζ2 − z2)∂tz

1 − ∂t(ζ
2 − z2)

and

θ32 = (z1)2∂tz
1 − z1(ζ2 − z2)∂tz

2 − ∂tz
1.

By definition of the Chern curvature (see e.g., [12, 14]), we obtain from (2.10) that

RT
ωt

= ∂t(∂tgtg
−1
t )

=




∂tz
2 ∧ ∂tz2 −∂tz2 ∧ ∂tz1 Ω3

1

−∂tz1 ∧ ∂tz2 ∂tz
1 ∧ ∂tz1 Ω3

2

0 0 −∂tz1 ∧ ∂tz1 − ∂tz
2 ∧ ∂tz2


 ,

where

Ω3
1 = (ζ2 − z2)(2∂tz

2 ∧ ∂tz2 + ∂tz
1 ∧ ∂tz1)− z1∂tz

2 ∧ ∂tz1

and

Ω3
2 = z1(2∂tz

1 ∧ ∂tz1 + ∂tz
2 ∧ ∂tz2)− (ζ2 − z2)∂tz

1 ∧ ∂tz2.
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Since Rωt
is skew-symmetric with respect to ωt: R

∗
ωt

= −Rωt
, we get (see e.g., [14])

|Rωt
|2ωt

ω3
t

3!
= tr(Rωt

∧ ∗tR∗
ωt
)

= −2(∂tz
2 ∧ ∂tz2 ∧ ∗t(∂tz2 ∧ ∂tz2) + ∂tz

1 ∧ ∂tz1 ∧ ∗t(∂tz1 ∧ ∂tz1))
− (∂tz

1 ∧ ∂tz1 ∧ ∗t(∂tz2 ∧ ∂tz2) + ∂tz
2 ∧ ∂tz2 ∧ ∗t(∂tz1 ∧ ∂tz1)

+ ∂tz
1 ∧ ∂tz2 ∧ ∗t(∂tz2 ∧ ∂tz1) + ∂tz

2 ∧ ∂tz1 ∧ ∗t(∂tz1 ∧ ∂tz2)),

where ∗t is the Hodge star operator with respect to ωt.

By (2.9)–(2.10), we have

∂tz
1 ∧ ∂tz1 = |τ31|2dζ

1 ∧ dζ1 + |τ32|2dζ
2 ∧ dζ2

+ τ31τ32dζ
1 ∧ dζ2 + τ32τ31dζ

2 ∧ dζ1,

∂tz
1 ∧ ∂tz2 = τ31τ41dζ

1 ∧ dζ1 + τ32τ42dζ
2 ∧ dζ2 (2.12)

+ τ31τ42dζ
1 ∧ dζ2 + τ32τ41dζ

2 ∧ dζ1,

∂tz
2 ∧ ∂tz2 = |τ41|2dζ

1 ∧ dζ1 + |τ42|2dζ
2 ∧ dζ2

+ τ41τ42dζ
1 ∧ dζ2 + τ42τ41dζ

2 ∧ dζ1,

which together with (2.11) imply

∂tz
1 ∧ ∂tz1 ∧ ∗t(∂tz1 ∧ ∂tz1) = −(|τ31|2 + |τ32|2)2

ω3
t

3!
,

∂tz
2 ∧ ∂tz2 ∧ ∗t(∂tz2 ∧ ∂tz2) = −(|τ41|2 + |τ42|2)2

ω3
t

3!
,

∂tz
1 ∧ ∂tz1 ∧ ∗t(∂tz2 ∧ ∂tz2) = ∂tz

2 ∧ ∂tz2 ∧ ∗t(∂tz1 ∧ ∂tz1)

= −|τ31τ41 + τ42τ32|2
ω3
t

3!

and

∂tz
1 ∧ ∂tz2 ∧ ∗t(∂tz2 ∧ ∂tz1) = ∂tz

2 ∧ ∂tz1 ∧ ∗t(∂tz1 ∧ ∂tz2)

= −(|τ31|2 + |τ32|2)(|τ41|2 + |τ42|2)
ω3
t

3!
.

Combining the above yields

|Rωt
|2ωt

= 2(|τ31τ41 + τ42τ32|2 + (|τ31|2 + |τ32|2)(|τ41|2 + |τ42|2)
+ (|τ31|2 + |τ32|2)2 + (|τ41|2 + |τ42|2)2).

By (2.11)–(2.12), the mean curvature Kωt
=

√
−1Λωt

Rωt
is

KT
ωt

=




−|τ41|2 − |τ42|2 τ41τ31 + τ42τ32 K3
1

τ31τ41 + τ32τ42 −|τ31|2 − |τ32|2 K3
2

0 0 |τ31|2 + |τ32|2 + |τ41|2 + |τ42|2


 ,

where

K3
1 = −(ζ2 − z2)(|τ31|2 + |τ32|2 + 2|τ41|2 + 2|τ42|2) + z1(τ31τ41 + τ32τ42)
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and

K3
2 = −z1(2|τ31|2 + 2|τ32|2 + |τ41|2 + |τ42|2) + (ζ2 − z2)(τ31τ41 + τ32τ42).

Since Kωt
is skew-symmetric with respect to ωt: K

∗
ωt

= Kωt
, we get (see e.g., [14])

|Kωt
|2ωt

= tr(Kωt
◦K∗

ωt
) = |Rωt

|2ωt
.

The conclusion for the Iwasawa manifold is valid.

3 Proof of Theorem 1.1

Let X0 be either the Iwasawa or the Nakamura manifold and {Xt}t∈∆ǫ
be the Kuranishi

family of X0. In this section, we will perturb the natural metric ωt (given by (2.2)) on Xt via

a contraction mapping to show the existence of a Hermitian Yang-Mills metric ω̃t on Xt. We

refer to [5–6] and references therein for gluing constructions of Hermitian Yang-Mills metrics.

We refer to [2, 13] and references therein for constructions of Hermitian Yang-Mills metrics by

the implicit function theorem.

Fix t ∈ ∆ǫ for sufficiently small ǫ (to be determined) and a diffeomorphism Ψt : Xt → X0

such that Ψ0 = id. Let ω0 be the natural balanced metric on X0. For ǫ≪ 1, the (1, 1)-part

ω̂t = (Ψ∗
tω0)

1,1

of the 2-form Ψ∗
tω0 on Xt is a Hermitian metric (see e.g., [8, 11]). We introduce the extra

metric ω̂t for the uniqueness in the contraction mapping argument (see (3.17)).

Let ωt be the natural Hermitian metric (given by (2.2)) on Xt. Let Dt be the Chern

connection of ωt and ∇t be its covariant derivatives. Hereafter we will use ωt, ω̂t, gt and ĝt

interchangeably to denote the two metrics.

By calculations in Proposition 2.1, we have the following Lemma.

Lemma 3.1 For ǫ≪ 1 and l = 0, 1, 2, · · · , there exist uniform constants Cl > 0 such that

|ĝ−1
t − g−1

t |ĝt ≤ C0|t|, |∇̂l
ĝt
(ĝt − gt)|ĝt ≤ Cl|t|,

where ∇̂ĝt is the covariant derivative of ĝt.

Denote

Wt = {η ∈ Γ(End(T 1,0Xt)) : η
∗ = η},

where the adjoint ∗ is with respect to gt.

Recall the definition of Hölder spaces (see e.g., [5–6, 14]). For η ∈ Γ(End(T 1,0Xt)), we

define

‖η‖Ck(gt,ĝt) =

k∑

l=0

sup |∇l
tη|ĝt .

For Φ ∈ Ap,q(Xt), we define

[Φ]C0,α(gt) = sup
x 6=y

( |Φ(x) − Φ(y)|ĝt
d(x, y)α

)
,
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where the sup is taken over points x and y with distance less than the injectivity radius and

Φ(x)− Φ(y) is ∇̂ĝt -parallel transport along the minimal ĝt geodesic connecting x and y. Then

we define

‖η‖Ck,α(Xt) = ‖η‖Ck(gt,ĝt) + [∇k
t η]C0,α(ĝt).

We need one more auxiliary result.

Lemma 3.2 Let X0 be a compact (non-Kähler) Calabi-Yau manifold. If ω is a Hermitian

metric with Kω = ϕI for some ϕ ∈ A0
R
(X0) of constant sign, then ϕ = 0 and ω is Chern-Ricci

flat.

Proof Since cBC
1 (X0) = 0, there exists u ∈ A0

R
(X0) such that the Chern-Ricci curvature

of ω is

ρω =
√
−1∂∂u,

which implies the scalar curvature is

sω = Λωρω =
√
−1Λω∂∂u.

On the other hand, since sω = trKω = nϕ is of constant sign, u is a constant by the

maximum principle (see e.g., [14, Lemma 7.2.7]).

Then we have ϕ = 0 and ρω = 0.

Let GC = Γ(GL(T 1,0Xt,C)) be the complex gauge group of T 1,0Xt. Denote

Ht = GC ∩Wt.

For f ∈ Wt with

S = f + I ∈ Ht,

we define

Df = D′
f +D′′

f = S ◦D′
t ◦ S̃ + S̃ ◦D′′

t ◦ S (3.1)

and

D̃t = D̃′
t + D̃′′

t = S ◦Df ◦ S̃, (3.2)

where we have denoted S̃ = S−1 for convenience later.

For u, v ∈ Γ(T 1,0Xt), we define g̃t = (S̃2)Tgt by

g̃t(u, v) = gt(S̃(u), S̃(v)) = gt(S̃
2(u), v), (3.3)

where the last identity follows from that S̃ is symmetric with respect to gt. Then S and S̃ are

also symmetric with respect to g̃t.

Lemma 3.3 The connection Df is the Chern connection of (gt, D
′′
f ). The connection D̃t is

the Chern connection of (g̃t, D
′′
t ).
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Proof Since

D′′
f ◦D′′

f = S̃ ◦D′′
t ◦D′′

t ◦ S = 0,

to show the first statement, we only need to check

gt(D
′
f (u), v) + gt(u,D

′′
f (v)) = ∂tgt(u, v).

By definition (3.1), we get

gt(D
′
f (u), v) + gt(u,D

′′
f (v)) = gt(D

′
t(S̃(u)), S(v)) + gt(S̃(u), D

′′
t (S(v)))

= ∂tgt(S̃(u), S(v)) = ∂tgt(u, v).

Since

D̃′′
f = S̃ ◦D′′

f ◦ S = D′′
t ,

to show the second statement, we only need to check

g̃t(D̃
′
t(u), v) + g̃t(u, D̃

′′
t (v)) = ∂tg̃t(u, v).

By definitions (3.2)–(3.3), we get

g̃t(D̃
′
t(u), v) + g̃t(u, D̃

′′
t (v)) = gt(D

′
t(S̃

2(u)), v) + gt(S̃
2(u), D′′

t (v))

= ∂tgt(S̃
2(u), v) = ∂tg̃t(u, v),

which completes the proof.

Indeed, one can deform either a metric or a connection for the convenience of their respective

problems, e.g., [2, 5–6, 13].

Denote the curvatures of Dt, D̃t and Df by Rωt
, Rω̃t

and FDf
, respectively. Then we obtain

from (3.1)–(3.2) that

Rω̃t
= S ◦ FDf

◦ S̃,

which implies that

√
−1Λω̃t

Rω̃t
= 0 (3.4)

if and only if

√
−1Λω̃t

FDf
= 0. (3.5)

Here we have used Lemma 3.2.

We will solve the equation (3.5) in this part. To begin with, we calculate the linearization

of the mean curvature
√
−1Λω̃t

FDf
at f = 0.

Let
{

∂
∂ζl

}3

l=1
be a local holomorphic frame of D′′

t . Then we can write

ωt =
√
−1gt,ijdζ

i ∧ dζ
j

and

f = fp
i

∂

∂ζp
⊗ dζi and S = Sp

i

∂

∂ζp
⊗ dζi
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for Sp
i = fp

i + δpi .

Denote the Chern connection of (gt, D
′′
t ) and its curvature by

Γp
t,ik = gpjt

∂gt,ij
∂ζk

and Rp

t,ikl
= −

∂Γp
t,ik

∂ζ
l
.

Then we can express Rωt
and FDf

by

Rωt
= Rp

t,ikl
dζk ∧ dζ

l ⊗ ∂

∂ζp
⊗ dζi

and

FDf
= F p

t,ikl
dζk ∧ dζ

l ⊗ ∂

∂ζp
⊗ dζi.

Thus the mean curvature is

√
−1Λω̃t

FDf
= g̃klt F

p

t,ikl

∂

∂ζp
⊗ dζi.

Let τ ∈ R and {S(τ) : S(0) = I} ⊆ Ht. Denote

ψ = ∂τS(τ)|τ=0 = ψp
i

∂

∂ζp
⊗ dζi ∈Wt.

Proposition 3.1 The linearization of the mean curvature
√
−1Λω̃t

FDf
is

∂τ (g̃
kl
t F

p

t,ikl
)|τ=0 = gklt (∇t,k∇t,l +∇t,l∇t,k)ψ

p
i + 2gml

t ψk
mR

p

t,ikl
. (3.6)

Proof By definition (3.3), we get

ω̃t =
√
−1g̃t,ijdζ

i ∧ dζ
j
,

where

g̃t,ij = gt,klS̃
k
i S̃

l

j = gt,kjS̃
k
mS̃

m
i , g̃ijt = gmj

t Sk
mS

i
k,

since

S̃ = S̃p
i

∂

∂ζp
⊗ dζi

is symmetric with respect to gt. Then we get

∂τ g̃
kl
t |τ=0 = 2gilt ψ

k
i . (3.7)

While we obtain from definition (3.1) that

D′
fD

′′
f

( ∂

∂ζi

)
= D′

f

(
S̃p
m∇t,lS

m
i dζ

l ⊗ ∂

∂ζp

)

= (Sp
λ∇t,k(S̃

λ
r S̃

r
m∇t,lS

m
i ) + S̃p

r∇t,lS
r
mΓm

t,ik)dζ
k ∧ dζ

l ⊗ ∂

∂ζp

and

D′′
fD

′
f

( ∂

∂ζi

)
= D′′

f

(
(Γp

ik + Sp
m∇t,kS̃

m
i )dζk ⊗ ∂

∂ζp

)
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= (Rp

t,ikl
− S̃p

λ∇t,l(S
λ
r S

r
m∇t,kS̃

m
i )

− S̃p
r∇t,lS

r
mΓm

t,ik)dζ
k ∧ dζ

l ⊗ ∂

∂ζp
.

Since

FDf
= D′

fD
′′
f +D′′

fD
′
f ,

we have

F p

t,ikl
= Rp

t,ikl
+ Sp

r∇t,k(S̃
r
mS̃

m
λ ∇t,lS

λ
i ) + S̃p

r∇t,l(S
r
m∇t,kS

m
λ S̃

λ
i ), (3.8)

which together with S(0) = I implies

∂τF
p

t,ikl
|τ=0 = (∇t,k∇t,l +∇t,l∇t,k)ψ

p
i .

Then (3.6) follows from

∂τ (g̃
kl
t F

p

t,ikl
)|τ=0 = ∂τ g̃

kl
t |τ=0R

p

t,ikl
+ gklt ∂τF

p

t,ikl
|τ=0

and (3.7).

Fix an arbitrary point q ∈ Xt. For

η = ηpi
∂

∂ζp
⊗ dζi ∈ Wt,

we define

Ltη = gklt (∇t,k∇t,l +∇t,l∇t,k)η − trq(η)I.

For any S ∈ Ht, we define a connection (see (3.1))

Ď = S ◦D′
t ◦ S̃ + S̃ ◦D′′

t ◦ S (3.9)

and a Hermitian metric (see (3.3))

ǧ = (S̃2)T gt.

Then Ď is the Chern connection of (gt, Ď
′′) (see Lemma 3.3).

Let ∇̌ be the covariant derivative of Ď. For η ∈Wt, we define

Lt,S, η = ǧkl(∇̌k∇̌l + ∇̌l∇̌k)η − trq(η)I.

Then Lt,I = Lt. Moreover, Lt,S, η ∈Wt due to Lemma 3.3.

Lemma 3.4 Suppose that S ∈ Ht with ‖S − I‖C2,α ≤ c for some c≪ 1. Then

‖Lt,S − Lt‖ ≤ C‖S − I‖C2,α

for some uniform constant C > 0.
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Proof For η ∈ C2,α(Wt), by definition (3.9), direct calculation (see e.g., [6, p. 539]) yields:

(Lt,S − Lt)η
p
i = (ǧkl − gkl)(∇t,k∇t,l +∇t,l∇t,k)η

p
i

+ ǧklSp
a(∇t,kS̃

a
m∇t,lη

m
i +∇t,k(S̃

a
mS̃

m
r ∇t,lS

r
λη

λ
i ))

+ ǧklS̃p
a(∇t,lS

a
m∇t,kη

m
i +∇t,l(S

a
mS

m
r ∇t,kS̃

r
λη

λ
i )). (3.10)

Since

ǧkl − gklt = gml
t (Sr

mS
k
r − δkm) = gml

t ((Sr
m − δrm)(Sk

r − δkr ) + 2(Sk
m − δkm)), (3.11)

there exists a uniform constant C > 0 such that

‖(ǧkl − gklt )(∇t,k∇t,l +∇t,l∇t,k)η
p
i ‖C0,α ≤ C‖S − I‖C2,α‖η‖C2,α .

For c≪ 1, there exists a uniform constant C′ > 0 such that

‖S̃ − I‖C2,α ≤ C′‖S − I‖C2,α .

Then we have

‖ǧklSp
a∇kS̃

a
m∇lη

m
i ‖C0,α

≤ ‖(ǧkl − gklt )∇t,kS̃
p
m∇t,lη

m
i ‖C0,α + ‖gklt ∇t,kS̃

p
m∇t,lη

m
i ‖C0,α

+ ‖(ǧkl − gklt )(Sp
a − δpa)∇t,kS̃

a
m∇t,lη

m
i ‖C0,α

+ ‖gklt (Sp
r − δpr )∇t,kS̃

r
m∇t,lη

m
i ‖C0,α

≤ C‖S − I‖C2,α‖η‖C2,α .

We can estimate other terms on the right hand side of (3.10) similarly. Then we obtain

‖(Lt,S − Lt)η‖C0,α ≤ C‖S − I‖C2,α‖η‖C2,α ,

which implies the conclusion.

Proposition 3.2 There exists a uniform constant C > 0 and some α ∈ (0, 1) such that

Lt : C
2,α(Wt) → C0,α(Wt)

is invertible, and the inverse Pt = L−1
t satisfies ‖Pt‖ ≤ C.

Proof For η ∈ C2,α(Wt), we obtain from Lemma 3.1 and the Schauder estimate that

‖η‖C2,α ≤ C(‖η‖C0 + ‖Ltη‖C0,α),

where C > 0 is uniform in t and α ∈ (0, 1). We will show that the term ‖η‖C0 is superfluous.

Otherwise there exist sequences {tl} and {ηl} ⊂ C2,α(Wtl) such that for tl → 0,

‖ηl‖C2,α(Wtl
) = 1 and ‖Ltlηl‖C0,α(Wtl

) ≤
1

l
.
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By the definition of ωt and Lemma 3.1, there exists η0 ∈ C2,α(W0) such that

‖η0‖C2,α(W0) = 1 (3.12)

and

0 = L0η0 = gkl0 (∇0,k∇0,l +∇0,l∇0,k)η0 − trq(η0)I, (3.13)

where g0 is the natural balanced metric on X0 and ∇0 is the covariant derivative of the Chern

connection of g0.

Since ωt is Gauduchon (see Propositions 2.2, 4.1–4.2), there exists a uniform constant C > 0

such that

3|trq(ηl)|
∫

Xtl

ω3
tl

3!
≤

∣∣∣
∫

Xtl

(Ltlηl, I)gtl
ω3
tl

3!

∣∣∣ ≤
√
3

l

∫

Xtl

ω3
tl

3!
≤ C

l
,

which implies trq(η0) = 0.

Since ω0 is a balanced metric on X0 with flat Chern connection ∇0, the holomorphic tangent

bundle T 1,0X0 is stable with respect to ω0 (see e.g., [27]). By [14, Lemma 1.2.5], we have

ker(gkl0 (∇0,k∇0,l +∇0,l∇0,k)) = CI. (3.14)

Then we obtain from (3.13) that

η0 ∈ H0(X0,End(T
1,0X0)) = CI.

Thus we get η0 = 0 due to trq(η0) = 0, which contradicts (3.12).

Hence, we have

‖η‖C2,α ≤ C‖Ltη‖C0,α , (3.15)

which implies Lt is injective.

Since φ1t , φ
2
t and φ

3
t are global (1, 0)-forms on Xt (see Section 2.2), T 1,0Xt is trivial smoothly

(but maybe not holomorphically). We obtain from the elliptic semicontinuity (see e.g., [28,

Theorem 4.13]), Lemma 3.1 and (3.14) that

ker(gklt (∇t,k∇t,l +∇t,l∇t,k)) = CI. (3.16)

Denote

W ◦
t =Wt ∩

{
η ∈ Γ(End(T 1,0Xt)),

∫

Xt

tr(η)ω3
t = 0

}
.

Then we obtain from (3.16) and the standard theory of elliptic operator that

Lt(·) + trq(·)I = gklt (∇t,k∇t,l +∇t,l∇t,k) : C
2,α(W ◦

t ) → C0,α(W ◦
t )

is isomorphic. For any σ ∈ C0,α(Wt), we have

σ −

∫

Xt

tr(σ)ω3
t

3

∫

Xt

ω3
t

I ∈ C0,α(W ◦
t ).
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Then there exists a unique η ∈ C2,α(W ◦
t ) such that

L̂tη + trq(η)I = σ −

∫

Xt

tr(σ)ω3
t

3

∫

Xt

ω3
t

I.

Taking

λ = −

∫

Xt

tr(σ)ω3
t

9

∫

Xt

ω3
t

− 1

3
trq(η)

yields

Lt(η + λI) = σ.

Since η + λI ∈ C2,α(Wt), Lt is surjective.

Then Lt is isomorphic with a uniform bound of Pt = L−1
t given by (3.15).

For f ∈Wt with f + I ∈ Ht, we define

Qt(f) =
√
−1Λω̃t

FDf
−
√
−1Λωt

Rωt
− gklt (∇t,k∇t,l +∇t,l∇t,k)f.

We consider the equation

Ltf = ctI −
√
−1Λωt

Rωt
−Qt(f), (3.17)

where

ct =

∫

Xt

ρω̂t
∧ ω̂2

t

∫

Xt

ω̂3
t

.

If (3.17) admits a solution f , then f is the unique solution to (3.5) after forcing ct+trq(f) =

0. However, if we replace ω̂t by ωt, then
∫

Xt

ρωt
∧ ω2

t

∫

Xt

ω3
t

= 0,

since ωt is Gauduchon (see Propositions 2.2 and 4.1–4.2) and Xt is Calabi-Yau. Thus the above

trick for the uniqueness fails. It is why we have to introduce the metric ω̂t.

Once the equation (3.5) admits a unique solution, the Hermitian metric ω̃t (given by (3.3))

satisfies (3.4), i.e., ω̃t is a Hermitian Yang-Mills metric with respect to itself.

To solve the equation (3.17), with Proposition 3.2 in hand, we define

Nt : C
2,α(Wt) → C2,α(Wt)

by

Nt(f) = Pt(ctI −
√
−1Λωt

Rωt
−Qt(f)).

We want to show that Nt restricted to some subset Ut is a contraction mapping.
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Lemma 3.5 There exists a uniform constant C > 0 such that

‖Nt(0)‖C2,α ≤ C|t|.

Proof Since Qt(0) = 0, we have

Nt(0) = Pt(ctI −
√
−1Λωt

Rωt
).

According to Proposition 3.2, we have to estimate ‖ctI −
√
−1Λωt

Rωt
‖C0,α .

Since ω0 is a balanced metric on X0 with flat Chern connection ∇0,

c0 =

∫

X0

ρω0
∧ ω2

0

∫

X0

ω3
0

= 0.

For ω̂t = (Ψ∗
tω0)

1,1, there exists a uniform constant C > 0 such that |ct| ≤ C|t|.
By Proposition 2.1 and Lemma 3.1, there exists a uniform constant C > 0 such that

‖
√
−1Λωt

Rωt
‖C0,α ≤ C|t|2.

Then we have

‖Nt(0)‖C2,α ≤ C(‖ctI‖C0,α + ‖
√
−1Λωt

Rωt
‖C0,α) ≤ C|t|,

which implies the conclusion for sufficiently small ǫ.

Lemma 3.6 If f1, f2 ∈Wt satisfy

‖f1‖C2,α ≤ c, ‖f2‖C2,α ≤ c

for some c≪ 1, then

‖Nt(f1)−Nt(f2)‖C2,α ≤ 1

2
‖f1 − f2‖C2,α .

Proof Since

Nt(f1)−Nt(f2) = Pt(Qt(f2)−Qt(f1)),

by Proposition 3.2, we have to estimate ‖Qt(f2)−Qt(f1)‖C0,α .

Denote

S1 = f1 + I ∈ Ht, S2 = f2 + I ∈ Ht

and S̃1 = S−1
1 and S̃2 = S−1

2 .

By the definition of Qt and the mean value theorem, there exists a λ ∈ [0, 1] such that

S := λS1 + (1 − λ)S2 ∈ Ht

satisfies

Qt(f2)−Qt(f1) =
√
−1Λ(S̃2

2
)Tgt

FDf2
−
√
−1Λ(S̃2

1
)Tgt

FDf1

− gklt (∇t,k∇t,l +∇t,l∇t,k)(f2 − f1)
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= (Lt,S − Lt)(f2 − f1) + 2ǧml(f2 − f1)
k
mF̌

p

ikl
,

where

ǧ = (S̃2)Tgt

and F̌ p

ikl
is the curvature of Ď (see (3.9)). Here we have used (3.6) for the second equality.

Moreover, we have

‖S − I‖C2,α ≤ λ‖f1‖C2,α + (1− λ)‖f2‖C2,α ≤ c.

By Lemma 3.4, there exists a uniform constant C > 0 such that

‖(Lt,S − Lt)(f2 − f1)‖C0,α ≤ C‖S − I‖C2,α‖f2 − f1‖C2,α

≤ cC‖f2 − f1‖C2,α .

While we obtain from (3.8) that

ǧml(f2 − f1)
k
mF̌

p

ikl
= (ǧml − gml

t + gml
t )(f2 − f1)

k
m(Rp

t,ikl

+ Sp
r∇t,k(S̃

r
mS̃

m
λ ∇t,lS

λ
i ) + S̃p

r∇t,l(S
r
m∇t,kS

m
λ S̃

λ
i )).

Similar to the estimations for (3.10), combining Proposition 2.1, Lemma 3.1 and (3.11) yields

‖ǧml(f2 − f1)
k
mF̌

p

ikl
‖C0,α ≤ C(‖S − I‖C2,α + |t|2)‖f2 − f1‖C2,α

≤ C(c+ |t|2)‖f2 − f1‖C2,α .

Then we get

‖Nt(f1)−Nt(f2)‖C2,α ≤ C(c+ |t|2)‖f2 − f1‖C2,α ≤ 1

2
‖f1 − f2‖C2,α

for c and ǫ sufficiently small.

Choose ǫ > 0 sufficiently small such that all the above propositions and lemmas hold. Choose

δ ∈ (0, 1) sufficiently small such that |t|δ is smaller than c (given by Lemma 3.6).

Denote

Ut = {f ∈ C2,α(Wt) : ‖f‖C2,α ≤ |t|δ}.

We may assume S = f + I ∈ Ht for all f ∈ Ut.

Proposition 3.3 The Nt restricted to Ut is a contraction mapping.

Proof For f ∈ Ut, by Lemmas 3.5–3.6, we have

‖Nt(f)‖C2,α ≤ ‖Nt(f)−Nt(0)‖C2,α + ‖Nt(0)‖C2,α ≤ 1

2
|t|δ + C|t|.

Since δ ∈ (0, 1), we get Nt ∈ Ut.

By the Banach fixed point theorem, there exists f ∈ Ut such that Nt(f) = f . Moreover, f

is smooth by the standard theory of elliptic equations. Then the Hermitian metric ω̃t (given

by (3.3)) is a solution to (3.4).

For the solution to (3.17), we have the following observation.
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Since ω0 is a balanced metric on X0 with flat Chern connection ∇0, we obtain from (3.5)–

(3.6) that for m ∈ {1, 2, 3} and n ∈ {1, 2},

0 = ∂tmn
(g̃klt F

p

t,ikl
)|t=0 = gkl0 (∇0,k∇0,l +∇0,l∇0,k)ψ

p
i ,

where ψp
i = ∂tmn

fp
i |t=0 ∈ W0. Then we obtain from (3.14) that

ψ = λmnI

for some λmn ∈ R.

On the other hand, the Chern-Ricci curvature of ω̃t is ρω̃t
= 0 due to Lemma 3.2. While

the Chern-Ricci curvature of ωt is ρωt
= 0 by Proposition 2.1. We obtain from definition (3.3)

that

0 = ρωt
− ρω̃t

=
√
−1 ∂t∂t log

det ωt

det ω̃t

=
√
−1 ∂t∂t log det(f + I)2.

Then the function

µt :=
1

3
log det(f + I)

depends only on t by the maximum principle (see e.g., [14, Lemma 7.2.7]). Thus we obtain

∂tmn
µt|t=0 =

1

3
∂tmn

log det(f + I)|t=0 = λmn,

which implies

f =
∑

m,n

(∂tmn
µt|t=0tmn)I + o(|t|2).

Here we have used f |t=0 = 0 since ω0 is already Hermitian Yang-Mills.

4 Appendix

Let X0 be the Nakamura manifold and {Xt}t∈∆ǫ
be the Kuranishi family of X0. We refer

to [16] for details on the construction of X0 and Xt. In this section, we will prove Proposition

2.1 for the current case.

Let {z1, z2, z3} be holomorphic coordinates onX0. A global basis of the space of holomorphic

(1, 0)-forms on X0 is

{φ10 = dz1, φ20 = ez
1

dz2, φ30 = e−z1

dz3}.

It is direct to check the metric

ω0 =
√
−1

3∑

l=1

φl0 ∧ φl0 =
√
−1(dz1 ∧ dz1 + ez

1+z1

dz2 ∧ dz2 + e−(z1+z1)dz3 ∧ dz3)

on X0 is balanced with flat Chern connection ∇0.

As in [16, Theorem 1], we will distinguish two cases according to h0,1(X0), and prove

Proposition 2.1 for each case.
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4.1 Type III-(3a)

The integrable vector (0, 1)-form ϕ ∈ A0,1(T 1,0X0) is (see [16, p. 99])

ϕ =
( ∂

∂z1
,
∂

∂z2
,
∂

∂z3

)



t1 0 0

t2e
−z1

0 0

t3e
z1

0 0







dz1

dz2

dz3


 . (4.1)

For the two subcases in [16, p. 99], here we only consider the case 1: t1 6= 0. While the following

calculations for the case 2: t1 = 0 are similar.

The holomorphic coordinates {ζ1, ζ2, ζ3} on Xt are given by (see [16, p. 99])

ζ1 = z1 + t1z
1, ζ1 = z2 − µe−z1

, ζ3 = z3 + λez
1

,

where

λ = (et1z
1 − 1)

t3
t1

and µ = (e−t1z
1 − 1)

t2
t1
.

Then we obtain from (2.1) that




A1
t,1 · · · A1

t,3
...

...
A3

t,1 · · · A3
t,3


 =




1 0 0

−µe−z1

1 0

−λez1

0 1


 . (4.2)

The three (1, 0)-forms

φ1t = eiϕ(φ10) = dζ1, φ2t = eiϕ(φ20) = ez
1

dζ2 − µdζ1,

φ3t = eiϕ(φ30) = e−z1

dζ3 − λdζ1

form a basis of the space of smooth (1, 0)-forms on Xt. Since

φ1t ∧ φ2t ∧ φ3t = dζ1 ∧ dζ2 ∧ dζ3,

the canonical bundle KXt
of Xt is holomorphically trivial.

For ǫ≪ 1, there is a natural Hermitian metric on Xt:

ωt = eiϕ|iϕ(ω0) =
√
−1gt,ijdζ

i ∧ dζ
j
,

where


gt,11 · · · gt,13
...

...
gt,31 · · · gt,33


 =




1 + |λ|2 + |µ|2 −µez1 −λe−z1

−µez1

ez
1+z1

0

−λe−z1

0 e−(z1+z1)


 . (4.3)

It is direct to check

ωt =
√
−1

3∑

l=1

φlt ∧ φ
l

t.

Proposition 4.1 Let X0 be the Nakamura manifold for this case and {Xt}t∈∆ǫ
be the

Kuranishi family of X0. The natural metric ωt on Xt is Gauduchon and Chern-Ricci flat.

Moreover, it is balanced if and only if t2 = t3 = 0.
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Proof We obtain from (4.3) that det ωt = 1, which implies that ωt is Chern-Ricci flat.

While we obtain from (4.1) that

(I − ϕϕ)−1 =




1

1− |t1|2
0 0

∗ 1 0
∗ 0 1


 , (4.4)

where elements denoted by ∗ are irrelevant for us.

By [20, Lemma 2.4], we obtain from (4.2) and (4.4) that

(∂z
∂ζ

)
= (I − ϕϕ)−1At =




1

1− |t1|2
0 0

∗ 1 0
∗ 0 1


 .

Similarly, we obtain from (4.1)–(4.2) and (4.4) that

−
(∂z
∂ζ

)
= ϕ(I − ϕϕ)−1At =




t1
1− |t1|2

0 0

∗ 0 0
∗ 0 0


 .

Then we get

∂z1

∂ζ1
=

1

1− |t1|2
and

∂z1

∂ζ
1 = − t1

1− |t1|2
. (4.5)

By (4.5), we calculate

∂tω
2
t = 2

√
−1

2
(−∂t(µe−z1

) ∧ dζ1 ∧ dζ
2 ∧ dζ3 ∧ dζ

3

− ∂t(λe
z1

) ∧ dζ1 ∧ dζ2 ∧ dζ
2 ∧ dζ

3
)

=
2
√
−1

2

1− |t1|2
(−t2e−z1

dζ1 ∧ dζ
1 ∧ dζ

2 ∧ dζ3 ∧ dζ
3

+ t3e
z1

dζ1 ∧ dζ
1 ∧ dζ2 ∧ dζ

2 ∧ dζ
3
),

which implies

∂t∂tω
2
t = 0,

i.e., ωt is Gauduchon. While ωt is balanced if and only if t2 = t3 = 0.

Proof of Proposition 2.1 Let X0 be the Nakamura manifold for this case and {Xt}t∈∆ǫ

be the Kuranishi family of X0.

By (4.3) and (4.5), we get



g11t · · · g31t
...

...

g13t · · · g33t


 =




1 µe−z1

λez
1

µe−z1 (1 + |µ|2)e−(z1+z1) λµez
1−z1

λez
1

µλez
1−z1

(1 + |λ|2)ez1+z1


 (4.6)



Deformations of Hermitian Yang-Mills Metrics on the Iwasawa and Nakamura Threefolds 207

and

∂tgtg
−1
t =




−µt2 + λt3

(
− qµ+

t2t1
η

)
e−z1

(pλ+ ηt3t1)e
z1

t2e
z1

µt2 − t1 + 1 λt2e
2z1

−t3e−z1 −µt3e−2z1 −λt3 + t1 − 1




dζ1

1− |t1|2
,

where

η = et1z
1

, p = λt3 − µt2 − t1, q = µt2 − λt3 − t1.

Since RT
ωt

= ∂t(∂tgtg
−1
t ), we obtain from (4.5) that

RT
ωt

=




ν (t2q + νµ)e−z1

(t3p+ νλ)ez
1

−t1t2ez
1 −|t2|2

η
t3t2(2− η)e2z

1

−t1t3e−z1

t2t3

(
2− 1

η

)
e−2z1 −|t3|2η




dζ
1 ∧ dζ1

(1 − |t1|2)2
,

where

ν =
|t2|2
η

+ |t3|2η.

By (4.6), the mean curvature Kωt
=

√
−1Λωt

Rωt
is

KT
ωt

=




ν (t2q + νµ)e−z1

(t3p+ νλ)ez
1

−t1t2ez
1 −|t2|2

η
t3t2(2 − η)e2z

1

−t1t3e−z1

t2t3

(
2− 1

η

)
e−2z1 −|t3|2η




−1

(1− |t1|2)2
.

Since K∗
ωt

= Kωt
, direct calculation yields

|Kωt
|2ωt

= tr(Kωt
◦K∗

ωt
) =

2(|t2|2 + |t3|2)(|t1|2 + |t2|2 + |t3|2)
(1 − |t1|2)4

.

Since Rωt
is skew-symmetric with respect to ωt: R

∗
ωt

= −Rωt
, we get

|Rωt
|2ωt

= − tr(Rωt
∧ ∗tRωt

)
ω3

t

3!

= |Kωt
|2ωt
.

The conclusion for this case is valid.

4.2 Type III-(3b)

The integrable vector (0, 1)-form ϕ ∈ A0,1(T 1,0X0) is (see [16, p. 97])

ϕ =
( ∂

∂z1
,
∂

∂z2
,
∂

∂z3

)



t11 t12e
z1

t13e
−z1

t21e
−z1

t22 t23e
−2z1

t31e
z1

t32e
2z1

t33


 .




dz1

dz2

dz3


 . (4.7)



208 J. X. Fu and J. M. Yang

For the four subcases in [16, p. 98], here we only consider the case 1:

t11 6= 0 and t12 = t13 = t23 = t32 = 0.

The calculations for cases 2 to 4 are similar and are omitted.

The holomorphic coordinates {ζ1, ζ2, ζ3} on Xt are given by (see [16, p. 98])

ζ1 = z1 + t11z
1, ζ1 = z2 + t22z

2 + λe−z1

, ζ3 = z3 + t33z
3 − µez

1

,

where

λ = (1− e−t11z
1

)
t21
t11

and µ = (1 − et11z
1

)
t31
t11

.

Then we obtain from (2.1) that




A1
t,1 · · · A1

t,3
...

...
A3

t,1 · · · A3
t,3


 =




1 0 0

λe−z1

1 0

µez
1

0 1


 . (4.8)

The three (1, 0)-forms

φ1t = eiϕ(φ10) = dζ1, φ2t = eiϕ(φ20) = ez
1

dζ2 + λdζ1,

φ3t = eiϕ(φ30) = e−z1

dζ3 + µdζ1

form a basis of the space of smooth (1, 0)-forms on Xt. Since

φ1t ∧ φ2t ∧ φ3t = dζ1 ∧ dζ2 ∧ dζ3,

the canonical bundle KXt
of Xt is holomorphically trivial.

For ǫ≪ 1, there is a natural Hermitian metric on Xt:

ωt = eiϕ|iϕ(ω0) =
√
−1gt,ijdζ

i ∧ dζ
j
,

where



gt,11 · · · gt,13
...

...
gt,31 · · · gt,33


 =




1 + |λ|2 + |µ|2 λez
1

µe−z1

λez
1

ez
1+z1

0

µe−z1

0 e−(z1+z1)


 . (4.9)

It is direct to check

ωt =
√
−1

3∑

l=1

φlt ∧ φ
l

t.

Proposition 4.2 Let X0 be the Nakamura manifold for this case and {Xt}t∈∆ǫ
be the

Kuranishi family of X0. The natural metric ωt on Xt is Gauduchon and Chern-Ricci flat.

Moreover, it is balanced if and only if t21 = t31 = 0.
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Proof We obtain from (4.9) that det ωt = 1, which implies that ωt is Chern-Ricci flat.

While we obtain from (4.1) that

(I − ϕϕ)−1 =




1

1− |t11|2
0 0

∗ 1

1− |t22|2
0

∗ 0
1

1− |t33|2




. (4.10)

By [20, Lemma 2.4], we obtain from (4.8) and (4.10) that

(∂z
∂ζ

)
= (I − ϕϕ)−1At =




1

1− |t11|2
0 0

∗ 1

1− |t22|2
0

∗ 0
1

1− |t33|2




.

Similarly, we obtain from (4.7)–(4.8) and (4.10) that

−
(∂z
∂ζ

)
= ϕ(I − ϕϕ)−1At =




t11
1− |t11|2

0 0

∗ t22
1− |t22|2

0

∗ 0
t33

1− |t33|2




.

Then we get

∂z1

∂ζ1
=

1

1− |t11|2
and

∂z1

∂ζ
1 = − t11

1− |t11|2
. (4.11)

By (4.11), we calculate

∂tω
2
t = 2

√
−1

2
(∂t(µe

z1

) ∧ dζ1 ∧ dζ2 ∧ dζ
2 ∧ dζ

3

+ ∂t(λe
−z1

) ∧ dζ1 ∧ dζ
2 ∧ dζ3 ∧ dζ

3
)

=
2
√
−1

2

1− |t11|2
(t31e

z1

dζ1 ∧ dζ
1 ∧ dζ2 ∧ dζ

2 ∧ dζ
3

− t21e
−z1

dζ1 ∧ dζ
1 ∧ dζ

2 ∧ dζ3 ∧ dζ
3
),

which implies

∂t∂tω
2
t = 0,

i.e., ωt is Gauduchon. While ωt is balanced if and only if t21 = t31 = 0.

Proof of Proposition 2.1 Let X0 be the Nakamura manifold for this case and {Xt}t∈∆ǫ

be the Kuranishi family of X0.
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By (4.9) and (4.11), we get



g11t · · · g31t
...

...

g13t · · · g33t


 =




1 −λe−z1 −µez1

−λe−z1

(1 + |λ|2)e−(z1+z1) µλez
1−z1

−µez1

λµez
1−z1

(1 + |µ|2)ez1+z1


 (4.12)

and

∂tgtg
−1
t =




−η (λη − αt11)e
−z1

(µη + βt11)e
z1

t21e
z1

1− t11 − λt21 −µt21e2z
1

−t31e−z1

λt31e
−2z1 −(1− t11 − µt31)




dζ1

1− |t11|2
,

where

η = −λt21 + µt31, α = t21 + (1− t11)λ, β = t31 + (1− t11)µ.

Since RT
ωt

= ∂t(∂tgtg
−1
t ), we obtain from (4.11) that

RT
ω̂t

=




ν (t21η − λν − t21t11)e
−z1 −(t31η + µν + t31t11)e

z1

−t11t21ez
1 −|t21|2e−t11z

1

(t31 + t11µ)t21e
2z1

−t11t31e−z1

(t21 + t11λ)t31e
−2z1 −|t31|2et11z

1




dζ
1 ∧ dζ1

(1− |t11|2)2
,

where

ν = |t21|2e−t11z
1

+ |t31|2et11z
1

.

By (4.12), the mean curvature Kωt
=

√
−1Λωt

Rωt
is

KT
ωt

=




ν (t21η − λν − t21t11)e
−z1 −(t31η + µν + t31t11)e

z1

−t11t21ez
1 −|t21|2e−t11z

1

(t31 + t11µ)t21e
2z1

−t11t31e−z1

(t21 + t11λ)t31e
−2z1 −|t31|2et11z

1




−1

(1− |t11|2)2
.

Since K∗
ωt

= Kωt
, direct calculation yields

|Kωt
|2ωt

= tr(Kωt
◦K∗

ωt
) =

2(|t21|2 + |t31|2)(|t11|2 + |t21|2 + |t31|2)
(1− |t11|2)4

.

Since Rωt
is skew-symmetric with respect to ωt: R

∗
ωt

= −Rωt
, we get

|Rωt
|2ωt

= − tr(Rωt
∧ ∗tRωt

)
ω3

t

3!

= |Kωt
|2ωt
.

The conclusion for this case is valid.
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