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1 Introduction

Let Xy be a compact complex manifold with dim¢ Xg = n and clBC(XO) = 0, where

BC 11 _{pe AR (X)|dg =0}
e (X) € Hyc(X,R) = {\/—_13§u |ue AQ(X)}

Such X is named as (non-K&hler) Calabi-Yau (see [25]). In particular, if the canonical bundle

K x, is holomorphically trivial, then X is Calabi-Yau.

Let wg be a Hermitian metric on Xg. If 85wg_1 =0, wy is called Gauduchon. If dwg_l =0,
wp is called balanced. If dwg = 0, wq is called Kéhler.

Let Vg be the Chern connection of an arbitrary Hermitian metric wy and R, € A% (End
(T'°Xy)) be the curvature of Vj. If the mean curvature form /—1A,, Ry, satisfies the Her-

mitian Yang-Mills equation (see Lemma 3.2)
V—=1Ay, Ry, =0,

then wy is said to be Hermitian Yang-Mills with respect to itself (see [27]).

Obviously, the above equation coincides with the Calabi-Yau equation if wy is Kéhler (see
[30]). Thus Hermitian Yang-Mills metrics are candidates for canonical metrics on non-Kéahler
manifolds. For other analogous of Calabi-Yau metrics, we refer to [2-3, 8-10, 13, 17, 21-22,
25-26] and the references therein.

The first problem is the existence of Hermitian Yang-Mills metrics on non-Kéahler Calabi-
Yau manifolds. A typical example is the Iwasawa or the Nakamura threefold. There is a natural

metric wg on Xy which is balanced with flat Chern connection V. Thus Xj is a non-Kéahler
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Calabi-Yau threefold and wg is Hermitian Yang-Mills. Besides, there is no general conclusion
on the existence.

A well-known example of non-Ké&hler Calabi-Yau threefolds is the complex structures on
#kZQSB x 83 given by the conifold transitions. Since the existence of balanced metrics on
#1,>25 x S was proved in [8], an essential question is whether there exists on such manifolds
a balanced metric w which is also Hermitian Yang-Mills with respect to itself (see [7]).

Assumed the existence of Hermitian Yang-Mills metrics on non-Kéhler Calabi-Yau mani-
folds, one of the further questions is the stability of Hermitian Yang-Mills metrics under de-
formations of complex structures. It would be fundamental for generalizations of Calabi-Yau
moduli spaces.

Deformations of complex structures of Kéhler (Calabi-Yau) manifolds were studied exten-
sively (see e.g., [23-24]). However, deformations of non-K&hler manifolds are far from well-
understood, see [1, 4, 8, 11, 18-20, 29] and references therein for some results.

In particular, in contrast to the Kéhler case (see e.g., [15, Chapter 4]), the property of
being balanced is not stable under deformations (see [1]). Certain topological conditions were
imposed to guarantee the stability of balanced metrics (see e.g., [4, 11, 19, 29]).

Denote A, ={t € C™ : |t| < €} for some m € Z* and € < 1. Let {X;}1ea. be the Kuranishi
family of Xy. As far as we are concerned, one of the key ingredients in [19] (or [20]) is the
definition of a natural Hermitian metric w; on X; (see (2.2)). Such a metric w; is our starting
point for deformations of Hermitian Yang-Mills metrics.

Here we only consider some special compact complex threefolds and leave the general case
to further study.

Let X be either the Iwasawa or the Nakamura manifold (see [16]). As stated above, there
exists a Hermitian Yang-Mills metric wy on Xy. The Kuranishi family {X;}ica, of X was
explicitly constructed (see [16, Section 3]). For the natural metric w; on X; (given by (2.2)), we
calculate its curvatures R,, and K., , which enable us to obtain a Hermitian Yang-Mills metric
@ after perturbing w; by a contraction mapping argument (see e.g., [5—6]). However, we do
not know whether the metric w; is balanced or not.

Our main result is as follows.

Theorem 1.1 Let X be either the Iwasawa or the Nakamura manifold and {X;}ien, be
the Kuranishi family of Xo. For e < 1, each Xy admits a Hermitian Yang-Mills metric with

respect to itself.

In Section 2, we present basic facts on deformation theory and study the geometry of (X, wy).

In Section 3, we prove Theorem 1.1.

2 Preliminaries

Let Xy be a compact complex manifold and {X;};ca, be the Kuranishi family of Xo. We
refer to [15, Chapter 4] for the deformation theory of Kodaira-Spencer.
We first recall the extension map defined in [20] (see also [19]). The crucial thing of Kodaira-
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Spencer’s theory is that the complex structure on X, is described by a vector (0, 1)-form o(t) €
AVH(T1OX,) satisfying the integrability condition. More precisely, there is a complex manifold
X and a holomorphic map w : X — A, satisfying the following conditions:

(1) @ 1(t) = X; is a compact complex manifold for each t € A..

(2) The rank of the Jacobian of w is m at each point of X.
Then the complex structure on X; is obtained by deforming the complex structure on X via
©(t) such that ¢(0) = 0 and

Let d = 0; + 0; be the decomposition of d with respect to the complex structure on X;.
Let (z,---,2") be local holomorphic coordinates of Xo. Let (¢!(z,t),---,("(z,t)) be local
holomorphic coordinates of X;. For ¢t = 0, both

(21,---,2”) and (Ql(z,O),---,C”(z,O))

are holomorphic coordinates on Xg. While for ¢t € A, \ {0} and k € {1,--- ,n}, ¢¥(2,t) is only
smooth on ¢. Denote

1 DY 1
%)_1 _ At,l At,n

A= (82

(2.1)

n DY
t,1 t,n

The vector (0, 1)-form ¢ is given by (see e.g., [15, 20])

0 0 aC a=! 0
_ (2 ... 2 96 | = pigs e
o= (g g Al3) | R Wl
dz"
where
i oai aék(z,t)

We may also use ¢ to denote the above n X n matrix.

The extended contraction operator is
iyt APY(Xg) — APTHITL(X).
Define two operators (see e.g., [20])
ele = Z %z’; and % = Z %z’%,
k>0 k>0
where i’; =1i,0---01i,. Then for e < 1,
{e'o(d2') = dz' + ptaz/}, and  {e'#(dz’) = A7/ + Fdz"}],

are local smooth frames of AM%(X;) and A%1(X;), respectively.
By [20, Lemma 2.5], the local smooth frame {e’(dz?)}?_; and the local holomorphic frame
{d¢?} | are related by
o (d2') = A ,dC*.
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Moreover, for
0= 04,75 (2)dz Ao Adz AdZ A AdF € APY(X),
the extension map (see [20, Definition 2.8])
el API(X) — AP9(X,)
is given by
e#liw(g) = Oy eigy -, (z)e"e (dz" A--- Adz') AeP(dZ7 Ao A dET).

It is proved in [20, Lemma 9] that %! is a linear isomorphism for € < 1.
Let
wo = \/—lgoﬁdzi A dZ?

be a Hermitian metric on Xy. Then for ¢ < 1,
wi = "l (wp) = v _190,1‘36% (d2") A e (dz7)
= V—1g, 5d¢' AdC (2.2)

is a Hermitian metric on X;, where Gri5 = gO),dAf’i“Tli)j. The metric wy is our starting point for
the proof of Theorem 1.1.

Let X be either the Iwasawa or the Nakamura manifold and {X;}+ca, be the Kuranishi
family of X (see [16]).

There is a natural metric wy on Xg which is balanced with flat Chern connection V. For
€ < 1, the natural metric w; on X; is given by (2.2), and the Chern connection of w; is V4.
Then the curvature and mean curvature of V, are R,, and K,, (see e.g., [12, Section 1.7]),
respectively.

Our main result in this subsection is as follows.

Proposition 2.1 Under the above setting, the norms of the curvature and the mean cur-

vature of the Chern connection Vi satisfy
|th|wt = |Kwt|wt = O(|t|2)
for e < 1.

In the rest of this part, we prove Proposition 2.1 for the Iwasawa manifold. While the proof
for the Nakamura manifold is given in the appendix.

Denote
1 22 28
G= 0 1 2']:zFecCy~cC3
0 0 1
and
1 w? w?

r=<lo 1 | wezaov=12
0
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The Iwasawa manifold Xy = G/I" is the quotient by the action of I' on G:

1 22 28 1 w? w? 1 224+w? 224 22wl +wd
0 1 2! 0 1 w' |=1o0 1 2t +w!
0O 0 1 0 0 1 0 0 1

Denote
t = (t11,t12, to1, taz, t31,t32) € Ac = {t € CO: |t < €}

Let {X¢}tea, be the Kuranishi family of Xy for e < 1 (see [16, p. 95]).

189

Let {z!,22 23} be holomorphic coordinates on X,. The integrable vector (0,1)-form ¢ €

AP (T10X) is (see [16, p. 95])

t11 t12 0 dz!

v = (— " —) to1 2o 0 dz? |,
m m+ Dzt —D dz3

where

m o=t +ta1z', M2 =lsa+taz', D =tiites — tistar.
The holomorphic coordinates {¢!,(?,¢3} on X; are given by (see [16, p. 95]):
2 2 2
=24 wF, =2 4)) i, C=24) nF+A- D,

where
2A = t11to1 (31)2 + 2t11t22§1§2 =+ t12t22(§2)2.
Then we obtain from (2.1) that
Atl,l T Ag,3 1 0 0
g : = 0 1 0
Afy o Al —(¢P=2 01

Since
{¢p = dz', ¢ = dz®, ¢f = d2® — 2'dz?}

is a global basis of the space of holomorphic 1-forms on Xy, the three (1,0)-forms
¢y = e (¢g) =d¢t, ¢ = e’ (¢5) = d¢®

and
¢p = ' (dg) = d¢® — 2'd¢® — (2 = %)

form a basis of the space of smooth (1,0)-forms on X;. Since

ot Aoy Agy =d¢t AdCP AdCP,

the canonical bundle Kx, of X; is holomorphically trivial.

(2.3)

(2.4)

(2.5)
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It is well-known that the natural metric
5 !
wo = V=1 ¢ Ay =V—1(dz" Adz" + (1 +[2"*)dz* A dZ® + d2® A dZ°
=1

— 2ld2? A dz? -2 ded A dF?)

on X is balanced with flat Chern connection V. Thus X is a non-Kéhler Calabi-Yau threefold
and wp is Hermitian Yang-Mills.

Moreover, for € < 1, there is a natural Hermitian metric on X; (given by (2.2)):

Wy = eiw‘iﬁ(wo) = \/_1gt7i3d<i A dZJ,

where
2212 L2 L2y (2,2
G e gg (LI @) @)
: : = | 24(¢%-22) 1+ 212 -zt . (2.6)
9131 7 Y133 —(¢? — 2?2) 7z 1

It is direct to check

3
wi=vV=1> ¢\ NG,
=1

As mentioned above, the property of being balanced is not stable under deformations of the
Iwasawa manifold (see [1]). As for the natural metric w;, we have the following observation.

Proposition 2.2 Let X be the Iwasawa manifold and {X:}ten, be the Kuranishi family of

Xo. The natural metric wy on Xy is Gauduchon and Chern-Ricci flat. Moreover, it s balanced
if and only if

tor|tiz]® — taaltar]® = tirtoa (12 — f21) + 12 — to1.
Proof We obtain from (2.6) that det w; = 1. Then the Chern-Ricci curvature of w; is
P, = V—1 0:0; log det w, = 0.
Direct calculation yields
Wl =2 (14 |22 +]¢% = 22)dC AdC AdC AT
2 AT AAC AE — (€2 — 22t AR AAE AT
+ 2 AT AT AAC + (C2 = 22)dC AdCE A AT AdCE
L dCI AT AAG AAE + A AT ACE AdD). (2.7)
To calculate 0;@?, we use (2.3) to show

@ -3 0

(I —¢p) = -7 Y 0 ;
Dtsy — it — mator  D(T31 + Dz') —mitis — motas 1 — |DJ?
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where
a=1—ti|> —tartia, 6=1—|tae|® — t1afos
and
B = tigti1 + taotia, v = ti1ta1 + tailan.
Then we get
1
BLlE
a’c a ao
— 1
(I-pp)~ " = . — 0 :
(6702 ag
1
k * S ——
1—|DJ?
where
_s_ B
o
and elements denoted by * are irrelevant for us.
By [20, Lemma 2.4], we obtain from (2.5) and (2.8) that
py 1 B 0
P R
a’2c o ao
0z — vy 1
— | = I —© -1 = - - O
(8C) ( Pe) A oo o '
. 1
1—|D|?
which implies
0z1 9zt
T11 T12 o Cl CQ
Tl Te2 ) 022 922
e
tul> A tiit A
1+|11| n 1441 uhiz 2441
- « o « o
to1t A toit A
2111+ 142 1+ 2112+ 2 2
« o « o
Here
Ay = to1 + lflh Aoy = tog + lflz
« «
and

B B
w1 =112+ —t11, po =tos + —to1.
a «

Similarly, we obtain from (2.3), (2.5) and (2.8) that
B t t1oy  t110 t

14—
oo

(0% ao ao g

—(8—5) = oI —pp) A = (1+ﬁ—7)t2—1+t2—27 fnb |t

(0% ao ao g

191

(2.9)



192 J. X. Pu and J. M. Yang

which implies

- t
T31  T32 Zl ZQ %"‘% %
T4l  T42 8_212 3_2'22 t2—1 -+ w ﬂ
<— <— (6% oo g

By (2.7) and (2.9)—(2.10), we get
Fw? = 2/ 1 (132 — 741)dCE AT AdC2 AT AdT,
which implies
Btgtwf = 0,

i.e., wy is Gauduchon. While wy is balanced if and only if 730 = 741, which is exactly the desired
identity.

Proof of Proposition 2.1 Let X be the Iwasawa manifold and {X;}:ea. be the Kuranishi
family of Xj.

By (2.6), we get

T 3T
t

g 9i 1 0 222
B _ 5oy =l 112 2 _ 212
and
—(? =202 (- 22)0F oF
Ohgegr ' = —z19,7* 2ozt 03 ;
0z —0;z" (¢? = 2909,7* — 2'oz!
where
0} = —(¢* = 2?07 + 21 (* = 2797 - (P - 27)
and

03 = (21)20,2" — 21(¢* — 2%)0,7% — 02"
By definition of the Chern curvature (see e.g., [12, 14]), we obtain from (2.10) that

RY = 0:(0rg197 ")

0122 N 022 —022 A OE! 03
= | =02 NOZ2 Ozt A O Z! 03 ,
0 0 —0¢2t N O E — 0422 N O, Z2
where
Q3 = (% = 22)(2022 N OZ% + Dyt N OZEY) — 210,22 A O, F!
and

Qg = 21(25t21 A 81521 + thQ A 81522) — (CQ — 2’2)51521 A\ 3,522.
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Since R,, is skew-symmetric with respect to wy: R, = —R.,, we get (see e.g., [14])

WB
|Ro, Iitg—t! = tr(Ry, N #eR,)
= —2(0:2% NOZ® A #4(0:2% AN OZ%) + Ozt N OZE A x4 (0r2t A OZY))
— (02" N OFY A %(0:2% N OF?) 4+ 0522 N O:Z% A #4(Ds2t N O;EY)
+0:28 N OZ® A #i (0422 N OZY) + 0:2% A OZ' A x4(0:21 A 0:Z?)),
where %, is the Hodge star operator with respect to w;.
By (2.9)—(2.10), we have
Ozt N = |T31|2dZ1 AdC + |732|2d22 Ad¢?
+ 7'31?326121 Ad¢? + 7'32731dz2 Ad(t,
Dot A OF2 = TndC A dCY 4 TaoTandCo A dC
+ T31?42dzl Ad¢ + 732?410122 Ad(Y,
9,22 NOZ = |ra|2dC AdCY + |raal2dC A dC2
+ T TaadC AdC? + TpTade AdCE,
which together with (2.11) imply

3
= _ —= _ w
3tz1 A 3tz1 A\ *t(atzl A 3tz1) = —(|7'31|2 + |7'32|2)2—t

37
— — w3
0022 NOZE N (022 A DZY) = — (| |* + |7'42|2)23—t',
51521 A 8t21 A\ *t(5t22 A 8t22) = thQ A 81552 A *t(gtzl A\ 81531)

3
_ = — 2%
= —|731T41 + Ta2T32] 30

and
012" NOZE N x4(0:22 N OEY) = 0122 A OZ A x4 (052 N 0, ?)
= —(ral? + )l + riaf)
Combining the above yields

|Ruw, |2, = 2731741 + Ta2T32|* + (I731]% + [752]) (a1 |* + |7a2?)

+ (I731* + |732/*) + (I7a1* + |742/%)?).

By (2.11)—(2.12), the mean curvature K,,, = v/—1A,, R, is

—|Ta1]? = |7a2]®  Ta1T31 + Ta2Ta2 K3
K} = | 171 + m32Ta2 —|731)% — |732]? K3 ;
0 0 |7'31|2—|—|7'32|2+|7'41|2+|7'42|2

where

K} = (% = 2) (I + |32 ]” + 2 man[* + 2|72 /*) + 21 (Ta17a1 + Ta2712)

193

(2.12)
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and

K3 = =21 (2lms1[* + 272l + [raa [* + [742]?) + (¢F = 2%) (731741 + T32T2).

Since K, is skew-symmetric with respect to wy: K, = K., , we get (see e.g., [14])

|Kw = tr(Kwt © K:;t) = |th|3)t'

|2
tlwg

The conclusion for the Iwasawa manifold is valid.

3 Proof of Theorem 1.1

Let X be either the Iwasawa or the Nakamura manifold and {X;}+ca, be the Kuranishi
family of X(. In this section, we will perturb the natural metric w; (given by (2.2)) on X; via
a contraction mapping to show the existence of a Hermitian Yang-Mills metric w; on X;. We
refer to [5—6] and references therein for gluing constructions of Hermitian Yang-Mills metrics.
We refer to [2, 13] and references therein for constructions of Hermitian Yang-Mills metrics by
the implicit function theorem.

Fix t € A, for sufficiently small € (to be determined) and a diffeomorphism ¥, : X; — X,
such that ¥y =id. Let wgy be the natural balanced metric on Xj. For € < 1, the (1, 1)-part

&y = (W)™

of the 2-form ¥fwy on X; is a Hermitian metric (see e.g., [8, 11]). We introduce the extra
metric w; for the uniqueness in the contraction mapping argument (see (3.17)).

Let w; be the natural Hermitian metric (given by (2.2)) on X;. Let D; be the Chern
connection of w; and Vy be its covariant derivatives. Hereafter we will use wy, @y, g¢ and g,
interchangeably to denote the two metrics.

By calculations in Proposition 2.1, we have the following Lemma.
Lemma 3.1 Fore <1 andl=0,1,2,---, there exist uniform constants C; > 0 such that
9" = 9 'lg, < Coltl, V5, @ — g0)lg, < Cult],
where @@ is the covariant derivative of gy.
Denote
Wi = {n € T(End(T"°Xy)) : n* = n},

where the adjoint * is with respect to g;.
Recall the definition of Hélder spaces (see e.g., [5-6, 14]). For n € T'(End(T1°X;)), we
define

k
Il cr g, g, = ZSUP Vinlg, -
=0

For ® € AP%(X,), we define
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where the sup is taken over points & and y with distance less than the injectivity radius and
O(z) — P(y) is @@—parallel transport along the minimal g; geodesic connecting x and y. Then

we define

[nllcrexy = Inllcr g, g + [Vinlcoeg,)-
We need one more auxiliary result.

Lemma 3.2 Let Xy be a compact (non-Kdhler) Calabi-Yau manifold. If w is a Hermitian

metric with K., = @I for some ¢ € A%(X) of constant sign, then ¢ =0 and w is Chern-Ricci

flat.

Proof Since ¢cPY(Xy) = 0, there exists u € A%(X() such that the Chern-Ricci curvature

of w is

P =/ —100u,

which implies the scalar curvature is
50 = Appw = V—1A,00u.

On the other hand, since s, = trK, = ng is of constant sign, u is a constant by the
maximum principle (see e.g., [14, Lemma 7.2.7]).

Then we have ¢ = 0 and p,, = 0.

Let G© = I'(GL(T'°X,,C)) be the complex gauge group of 71:°X;. Denote

Hy =GN W,.
For f € W, with
S=f+1€Hy,
we define
Dy =D} +Df=So0D,0S+ 850D/ 08 (3.1)
and
D;=D,+D/=S0D;soS, (3.2)

where we have denoted S = S~! for convenience later.
For u,v € (T X,), we define g, = (52)Tg, by

Ge(u,v) = g:(S(u), S(v)) = g¢(5% (w),v), (3.3)

where the last identity follows from that S is symmetric with respect to g;. Then S and S are

also symmetric with respect to g;.

Lemma 3.3 The connection Dy is the Chern connection of (gi, D'f). The connection Dy is
the Chern connection of (gi, D).
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Proof Since
DY o }’:§OD£’OD£’OS:O,

to show the first statement, we only need to check
gt(D’f(u),U) + gt (u, D’f’(v)) = Ogt(u,v).

By definition (3.1), we get

9:(D's(u),v) + g¢(u, D} (v)) = g¢(D(S(u)), S(v)) + g:(S(u), DY (S(v)))
= 0194(S(w), S(v)) = Ahge(u,v).

Since
~}’:§OD}’05:DQ’,
to show the second statement, we only need to check
G¢(Dj(w),v) + Ge(u, DY (v)) = e (u, v).
By definitions (3.2)—(3.3), we get
G1(Di(w),v) + Ge(u, DY (v)) = g1(D}(S*(w)), v) + g:(S* (), DY (v))
= 3tgt(§2(u), v) = 0ige(u,v),
which completes the proof.

Indeed, one can deform either a metric or a connection for the convenience of their respective
problems, e.g., [2, 5-6, 13].
Denote the curvatures of Dy, 5,5 and Dy by Ry, , Rz, and Fp,, respectively. Then we obtain
from (3.1)—(3.2) that
Rg,t = SOFDf Og,

which implies that

V—1Az,Rz, =0 (3.4)
if and only if

V=1Ag,Fp, = 0. (3.5)

Here we have used Lemma 3.2.

We will solve the equation (3.5) in this part. To begin with, we calculate the linearization
of the mean curvature /—1Ag, Fp, at f =0.

Let {%}?:1 be a local holomorphic frame of D;. Then we can write

wr = V/=1g, 7d¢* A dT’

and 5 5
= fP___ C = p— i
f—fiacp@)dg and S Sl@(”@dg
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for S = fF 4 oP.

Denote the Chern connection of (g¢, D)) and its curvature by

_ P
M= T and Ry = -
) Bck t,ikl azl
Then we can express Ry, and Fp, by
R d¢k ad 0 ¢’
we tkl(/\(®a<®C
and 5
Fp, :F” dckAdc @ — G ®d¢t.
Thus the mean curvature is
o
~ — Kkl g 7
\/_1AthDf J; Ft i BCP ®d¢".

Let 7 € R and {S(7) : S(0) = I} C H;. Denote

Y = 0;5(7)|r=0 = wfa—CP ®d¢ e Wy.

Proposition 3.1 The linearization of the mean curvature /—1Ag,Fp, is

o, (GHF L u)lr=0 = = gl (VeaV, 5+ V, i Ver)o? + 295 fan i (3.6)

Proof By definition (3.3), we get
& = V=15, 7d¢" A dT,
where

§t71j gt le S =9 k]Sk Sm gtu = g?ljsfnsllcﬂ

m*~r

since

o ,
or Y i
S = S; acr ®d¢
is symmetric with respect to g:. Then we get
Tgtl|7' =0 = 2gtl¢k (3.7)
While we obtain from definition (3.1) that
0 " 0
Dfo(ac ) =D} (889,587 ®a<p)
-\ 0
= (SEVek(S}S5V,75) + 8PV, 1 Sn Ty )d ¢ AT @ — 57
and
0 0
/ _ " p P m
DD (ac ) = Dy (1% + 5,9, 57)dc* ®a<p)
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= (RY =S¥V, (8287, Vi xST")
Q r m =l 0
B vatjsm t,ik)dck ANd( ® B—CP
Since
Fp, = D}D% + D}{D%,
we have
FP o =RP -+ 8PV (S5S0V, 1SY) + 8PV, 7S5, Vi kS S)), (3.8)

t,ikl t,ikl
which together with S(0) = I implies
87Ffjikz|7:0 = (vt,kvt,f + vt,ivt,k)d’f'
Then (3.6) follows from
Or @lefikz”T:O =93¢ |T:ORZ1’IJ T gflaTthjikﬂT:O
and (3.7).

Fix an arbitrary point ¢ € X;. For

) ,
=n—®d{"' e W,
n ; 80’ ® C ty
we define
Lt77 = gfz(vmvtj + thvt,k)n - tl”q (’I])I
For any S € H;, we define a connection (see (3.1))

D=SoD,oS+S50D!'oS (3.9)

and a Hermitian metric (see (3.3))
9= (5"g.
Then D is the Chern connection of (g;, D) (see Lemma 3.3).
Let V be the covariant derivative of D. For n € W;, we define

Then L; ; = L;. Moreover, L; 5,11 € W; due to Lemma 3.3.

Lemma 3.4 Suppose that S € H; with ||S — I|| 2.« < ¢ for some ¢ < 1. Then
ILt,s = Le|l < C|IS = I g2

for some uniform constant C' > 0.
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Proof For n € C%*(W;), by definition (3.9), direct calculation (see e.g., [6, p. 539]) yields:

(Lis — Loit = (0" = g")(VeaVyg + Y, Ver)n?
+ S (VB8 Y, + V(88 i Sin)
+ 3LV, 1S Veanl" + Y, 3(Si STV Sin)). (3.10)

Since
g — gt = gl (Sp, Sk — 6k) = g (S, — 0, )(SE = 0F) + 2(Sk, — oF)), (3.11)
there exists a uniform constant C' > 0 such that
1™ = ) (VerVo1 + Vo iVer)n cow < CIS = Il gz |n]co.e.
For ¢ < 1, there exists a uniform constant C’ > 0 such that
IS = Igze < C'|S = Il c2a
Then we have

15 S8V 1S% Vi | oo

< @™ = gV kSEV, ™ lcoe + 198 Ve kSE Y, 07| oo
+ 113 = gF)(SE — )V 1SV, 0 | oo
+ gF (S = 62)V 1S,V 700" [ oo

< OIS ~ Ilcza |1l 20

We can estimate other terms on the right hand side of (3.10) similarly. Then we obtain
I(Lt,s = Le)nllcoe < CS = I|jc2ellnlloze,

which implies the conclusion.

Proposition 3.2 There exists a uniform constant C > 0 and some « € (0,1) such that
Lt : CQ’Q(Wt) — Co’a(Wt)

is invertible, and the inverse P, = L; ' satisfies | P;|| < C.

Proof For n € C%%(W,), we obtain from Lemma 3.1 and the Schauder estimate that

nllc2.e < C(lnllco + | Linllco.e),

where C' > 0 is uniform in ¢ and « € (0,1). We will show that the term ||n||co is superfluous.
Otherwise there exist sequences {t;} and {n,} C C%*(W;,) such that for ¢, — 0,

1
Imllczew,) =1 and |[Lemllcoemw,) < 7
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By the definition of w; and Lemma 3.1, there exists g € C* (W) such that
lm0llc2.e () =1 (3.12)
and
0= Lono = 65" (Vox Vi + Vo Vou)no — trg(mo)T, (3.13)

where gq is the natural balanced metric on Xy and V is the covariant derivative of the Chern
connection of go.

Since wy is Gauduchon (see Propositions 2.2, 4.1-4.2), there exists a uniform constant C' > 0

such that /3 .
w3 w C
3|trq m) |/ }/ Ltzmv 9t 3t|l — T

<
=0 x, 3!~
which implies trq(n9) = 0.

Since wy is a balanced metric on X with flat Chern connection V, the holomorphic tangent
bundle T1°X| is stable with respect to wy (see e.g., [27]). By [14, Lemma 1.2.5], we have

ker(gh (Vo Vo7 + Vo 7Vour)) = CL. (3.14)
Then we obtain from (3.13) that
no € H(Xo, End(T'°Xy)) = CI.

Thus we get 19 = 0 due to try(no) = 0, which contradicts (3.12).

Hence, we have
[nlleze < Cl[Lenllco.o, (3.15)

which implies L; is injective.

Since ¢}, ¢? and ¢} are global (1,0)-forms on X; (see Section 2.2), T1°X, is trivial smoothly
(but maybe not holomorphically). We obtain from the elliptic semicontinuity (see e.g., [28,
Theorem 4.13]), Lemma 3.1 and (3.14) that

ker(gf (Ve V7 + V,7Vex)) = CL. (3.16)
Denote

we =win{ne F(End(Tl’OXt)),/

tr(n)w? = O}.
Xt

Then we obtain from (3.16) and the standard theory of elliptic operator that
Le() + trg()] = gF (Ve kY, 7+ V, 1Ves) 1 C24(WE) — OO (W)

is isomorphic. For any o € C%%(W;), we have

/tr(cr)wt3

X

3/ wd
Xt

I % (Wy).

o —
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Then there exists a unique n € C**(Wy) such that

itrH—trq(n)I =0— 1.
3/ wd
Xt
Taking
/ tr(o)w?
Xt
A= - gtrq(n)
9/ wd
Xt
yields

Li(n+ ) = o.

Since n + M € C%%(W,), L; is surjective.
Then L, is isomorphic with a uniform bound of P, = L; ! given by (3.15).

For f € W, with f + I € H;, we define
Qu(f) = V=TAs,Fp, = V=TAu Ro, = 98 (VereV, 5+ Vi Vi) f-
We consider the equation

Ltf = CtI - \/__1AWtRWt - Qt(f)a (317)

~2
/ P, A W
X+
~3
Xt

If (3.17) admits a solution f, then f is the unique solution to (3.5) after forcing ¢, +try(f) =

0. However, if we replace W; by w;, then

2
/ Puwy A Wi
X
3
Xt

since wy is Gauduchon (see Propositions 2.2 and 4.1-4.2) and X} is Calabi-Yau. Thus the above

where

Ct =

:O’

trick for the uniqueness fails. It is why we have to introduce the metric wy.

Once the equation (3.5) admits a unique solution, the Hermitian metric w; (given by (3.3))
satisfies (3.4), i.e., @; is a Hermitian Yang-Mills metric with respect to itself.

To solve the equation (3.17), with Proposition 3.2 in hand, we define

./\/t : C27a(Wt) — 02’Q(Wt)

by
/\/t(f) = Pt(CtI - \/__1AWtth - Qt(f))

We want to show that A; restricted to some subset U; is a contraction mapping.
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Lemma 3.5 There exists a uniform constant C' > 0 such that
[N (0)l 2 < CIt-
Proof Since Q;(0) = 0, we have
N:(0) = Pi(ci — v/ —1A,, Ry,)-

According to Proposition 3.2, we have to estimate |c;] — v/ —1A,, Ry, ||co.e.

Since wy is a balanced metric on X with flat Chern connection Vg,

2
/ Puwy N wo
JXo
3
Xo

For @; = (V;wp)b!, there exists a uniform constant C' > 0 such that |¢;| < C|t|.

Co = =0.

By Proposition 2.1 and Lemma 3.1, there exists a uniform constant C' > 0 such that
|| V _1AththCO*D‘ < Cv|t|2

Then we have
[N (0)[[cze < Clleed [l coe + |V =1Aw, Ry, lco.a) < Clt],

which implies the conclusion for sufficiently small .
Lemma 3.6 If f1, fo € W, satisfy
[fillcze <¢, |fellc2a <c

for some ¢ < 1, then
[f1 = follczea.

N =

[Ne(f1) = Ne(f2)ll ez <

Proof Since

Ni(f1) = Ni(f2) = Pi(Q+(f2) — Qi(f1)),

by Proposition 3.2, we have to estimate ||Q¢(f2) — Q+(f1)|lco.a.
Denote
Si=f+IeH, So=fo+tIeH,

and S; = ST and S, = S5
By the definition of ), and the mean value theorem, there exists a A € [0, 1] such that

S = \S1 + (1 — )\)Sg € H;
satisfies

Qilf2) = Q1) = V=10 (gzyrg Fog, = V=131, Py,
— 98" (VerV, 1+ V1 Ver) (fa = f1)



Deformations of Hermitian Yang-Mills Metrics on the Iwasawa and Nakamura Threefolds 203

= (Lus — L) (foa — f1) + 25" (fo — fOmEr,

where
§=(5)"g
and Fl ". is the curvature of D (see (3.9)). Here we have used (3.6) for the second equality.

Moreover, we have
IS = Tlooe < Allfilleze + (1 = N falloze < c.

By Lemma 3.4, there exists a uniform constant C' > 0 such that

[(Le,s = Le)(f2 = fi)llcoe < OIS = Ifc2all fo = filloze
<cCO|f2 = filloza-

While we obtain from (3.8) that
g™ (f2 — fl)ﬁnpgd = (g™ - g:&nl + g:tnl)(fQ - fl)fn(Riikf
+ 5PV k(S S8V, 180) + SEV, (81, Ve kSESY)).
Similar to the estimations for (3.10), combining Proposition 2.1, Lemma 3.1 and (3.11) yields

1§ (f2 — fl)ﬁfﬁdllco,a <C(IS = Illcz.e + [t f2 — fillc2e
< Cle+ [t f2 = fillcze.

Then we get

Ilf1 = follc2e

| —

IN:(f1) = Ne(F2)lloze < Cle+ )1 f2 = fill oz <

for ¢ and e sufficiently small.

Choose € > 0 sufficiently small such that all the above propositions and lemmas hold. Choose
§ € (0,1) sufficiently small such that |t|° is smaller than ¢ (given by Lemma 3.6).
Denote
Uy ={f € CP2* (W)« [|fllcze < [}

We may assume S = f + 1 € H, for all f € U;.
Proposition 3.3 The N; restricted to U; is a contraction mapping.

Proof For f € U;, by Lemmas 3.5-3.6, we have

INe(Pllcze < INe(f) = Ne(0)ll ez + [INVe(0)lc2e < %Itl‘s +Clt].

Since § € (0,1), we get N; € U;.

By the Banach fixed point theorem, there exists f € U; such that N;(f) = f. Moreover, f
is smooth by the standard theory of elliptic equations. Then the Hermitian metric w; (given
by (3.3)) is a solution to (3.4).

For the solution to (3.17), we have the following observation.
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Since wy is a balanced metric on X with flat Chern connection Vj, we obtain from (3.5)—
(3.6) that for m € {1,2,3} and n € {1,2},

0=, (3" F); =0 = 96 (Vo Vo + VorVor)vf,
where ¥ = 0, fPl1=0 € Wy. Then we obtain from (3.14) that
UV = Apnl

for some A\, € R.

On the other hand, the Chern-Ricci curvature of w; is pz, = 0 due to Lemma 3.2. While
the Chern-Ricci curvature of w; is p,, = 0 by Proposition 2.1. We obtain from definition (3.3)
that

det Wi

0= puw, — pa, = V—1 0;0;log -
t

=/—1 9;0; logdet(f + I)%.

Then the function
1
=g logdet(f + 1)

depends only on ¢ by the maximum principle (see e.g., [14, Lemma 7.2.7]). Thus we obtain

1
Oty Mit]t=0 = §3t,,m logdet(f + I)lt=0 = Amn.

which implies

F = Ot tili=otmn) I + o([t]*).

m,n

Here we have used f|t—o = 0 since wy is already Hermitian Yang-Mills.

4 Appendix

Let X, be the Nakamura manifold and {X;}tea, be the Kuranishi family of X,. We refer
to [16] for details on the construction of Xy and X;. In this section, we will prove Proposition
2.1 for the current case.

Let {z!, 2%, 23} be holomorphic coordinates on Xg. A global basis of the space of holomorphic
(1,0)-forms on X is

{(b(]j _ le, ¢% _ ezld22, Q% _ e_zleB}-
It is direct to check the metric
3 1 1 1 1
wo=V=1) ¢ Adh=V-1(dz' AdZ' +e* 77 dz® AdZ® + e & T7)dz® A dF°)
=1

on X is balanced with flat Chern connection Vj.
As in [16, Theorem 1], we will distinguish two cases according to h%!(Xy), and prove
Proposition 2.1 for each case.
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4.1 Type III-(3a)

The integrable vector (0,1)-form ¢ € A%H(TH0Xg) is (see [16, p. 99])
t 0 0 dzt

o 9 9 L Z
© = .10 9.2’ .3 toe . 0 0 dz . (41)
(8z 022" 0z ) tse® 0 0 a4z

For the two subcases in [16, p. 99], here we only consider the case 1: t; # 0. While the following
calculations for the case 2: t; = 0 are similar.
The holomorphic coordinates {¢*,¢?, (3} on X; are given by (see [16, p. 99])

Cl _ Zl +t121, Cl _ 22 _,[Le_Z1, <3 _ 2'3 +Aez1’

where
A= (etﬁ1 - 1)75—3 and p= (e_t121 - 1)75—2
tl tl
Then we obtain from (2.1) that
Aig o Ay 100
: o= e 10 (4.2)
APy AR —Xe* 0 1

The three (1, 0)-forms

oF =’ (¢h) = dC',  ¢F = e'v(g]) = e d¢? — pd(?,
of = e’ (¢7) = e~ d¢® — Ad(!

form a basis of the space of smooth (1,0)-forms on X;. Since
¢y NG A @7 =d¢t AdC A AC,

the canonical bundle Kx, of X; is holomorphically trivial.

For € < 1, there is a natural Hermitian metric on Xj:

Wy = ei¢‘i¢(w0) = \/_1gt7i3d<i A dZJ,

where
Gea1 T Y3 T AR+ |2 —pe®  —Ae ®
: | = —ie?’ e 7 0 . (4.3)
¥ (2 4T
9e31 "0 Y933 —Ae 0 o )

It is direct to check s
—1
we=vV=1> ¢\ N,
=1

Proposition 4.1 Let X, be the Nakamura manifold for this case and {Xi}icea, be the
Kuranishi family of Xo. The natural metric wy on Xy is Gauduchon and Chern-Ricci flat.

Moreover, it is balanced if and only if to = t3 = 0.
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Proof We obtain from (4.3) that det w; = 1, which implies that w; is Chern-Ricci flat.
While we obtain from (4.1) that

1
—— 0 0
(g = | 170 (4.4
w7 * 1 0’ .
* 0 1

where elements denoted by * are irrelevant for us.
By [20, Lemma 2.4], we obtain from (4.2) and (4.4) that

1
o e 0
z — |t
=T -op) tA, =
(8§) (L= ¢p) A s 10
* 0 1
Similarly, we obtain from (4.1)—(4.2) and (4.4) that
3
0 0
AN - L—[t:]?
—(a—g)—w(l—sw) A = . 0 0
* 0 0
Then we get
ozt 1 ozt B t1

= —— — and = =-— .
ot 1P M T 1P

By (4.5), we calculate

Buw? = 20/ T (=B (e~ ) AdCt AT AdCE AT
— 3O A A AAEE A D)

_ 2/ T

L—[tf?

Ftze” dCE AT AdCE AT A D),

(—toe=* dCt AdC AdC AdCE AT

which implies
8155150],52 = 0,

i.e., wt is Gauduchon. While wy is balanced if and only if t5 = t3 = 0.

Proof of Proposition 2.1 Let X, be the Nakamura manifold for this case and {X;}en,
be the Kuranishi family of Xj.
By (4.3) and (4.5), we get

1 1

gtlT [ g?T 1 'LLe_Z Aez
: D= me T (e Aper (4.6)
g - g Ne? pe® == (1+ [A[2)ex' 7
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and

_ _ tgfl 1 2\ b

s+ N~ 7)6 (pA -+ ntsFr)e
1
Orgig; ' = o . o _de
tQGZ ,utz — tl +1 )\tQGQZ 1-— |151|2
—E3e_z1 —Mf3e_2zl —/\fg + El -1

where

Uzetﬁl, pz/\fs—MEQ—fl, qzqu—)\fs—fL

Since RY, = 94(0:g:9; '), we obtain from (4.5) that

v (taq +vp)e™  (tsp+vA)e*
o [t2]? z 22t | dC AdC!
RT _ —t1tloe i t3t2(2 - 77)6
o 1 (1= [ta]?)*’
- 1 - 1 oyt 2
—t1t3e Z t2t3 (2 — —)e z —|t3| n
n
where )
_ |t 2
v="—"——+lt5]°n.

By (4.6), the mean curvature K, = /—1Ay, Ry, is

v (taq +vp)e™  (tsp+vA)e*
- to|? -
KT _ —tltgezl ——l 2| t3t2(2 — n)e2z1 -1
- Z (1= [ta]?)?
—t1%3e_z1 tgfg, (2 — —)e_2z1 —|t3|2’l7
n

Since K, = K.,, direct calculation yields

2([t2]* + [t3]*) (1] + [t2]* + [t3]%)

2 _ —
|Kwt|wt - tr(Kwt o Kj),g) - (1 _ |t1|2)4
Since R,,, is skew-symmetric with respect to wy: R, = —R,,, we get
tr(Ry, A *¢Ry,)
L
3

The conclusion for this case is valid.

4.2 Type III-(3b)

The integrable vector (0, 1)-form ¢ € A%YH(TH0Xy) is (see [16, p. 97])

1 1
11 t12e®  f13e”? dz!
o 0 0 1 e Z
A 1A 90 A 2 tore”” too toge™ <% .| dz . (47)
z 1 2,1 d—3
ts1e” t30e%* t33 “
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For the four subcases in [16, p. 98], here we only consider the case 1:
t11 #0 and tyo = t13 = tog = t30 = 0.

The calculations for cases 2 to 4 are similar and are omitted.
The holomorphic coordinates {¢!,(?,(3} on X; are given by (see [16, p. 98])

C= 7, =2t AN, (B =28 1T — pe”

where

N N
/\:(l—e_t“'zl)2 and u:(l—etllzl)ﬂ.

tn ln
Then we obtain from (2.1) that

A%,l T A%ﬁ 1 0 0
: ; =X 1 0]. (4.8)
Af)l e AiB ne® 0 1

The three (1, 0)-forms

oL =o' (g) = d¢t,  6F = e (¢2) = * ¢ + Ad(,
¢? = eie (¢3) = e d¢® + pd(!

form a basis of the space of smooth (1,0)-forms on X;. Since
o1 NG A G =d¢h Ad¢? AdCP,

the canonical bundle Kx, of X; is holomorphically trivial.

For € < 1, there is a natural Hermitian metric on X;:

wy = e (wy) = V—_lgtﬁijdci Adl,

where
1 =
Geat  9ua3 LA+ pf? Ae? pe~?
: : = e’ e 7 0 . (4.9)
9i3T " 94,33 ﬁe‘zl 0 e (147

It is direct to check

3
W= VLY @A
=1

Proposition 4.2 Let X, be the Nakamura manifold for this case and {Xi}icen, be the
Kuranishi family of Xo. The natural metric wy on Xy is Gauduchon and Chern-Ricci flat.

Moreover, it is balanced if and only if to; = t31 = 0.
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Proof We obtain from (4.9) that det w; = 1, which implies that w; is Chern-Ricci flat.
While we obtain from (4.1) that

1

— 0 0
1—|t11]?
1 1
(I —¢p) = * Tl 0 : (4.10)
1
* 0 R
1— |tas|?

By [20, Lemma 2.4], we obtain from (4.8) and (4.10) that

1
— 0 0
1— 112
0z 1
Z) = —-¢p) T A = * 0
((%) ( ©P) t 1 — [tga]?
1
* 0
1— |tas|?
Similarly, we obtain from (4.7)—(4.8) and (4.10) that
1
—_— 0 0
L — [t11]?
0z _ o too
(=) =3(I — A = _Ee 0
(8C) P — ¢P) t * 1— ]2
133
* 0 [ ——
1 — [tss]?
Then we get
0z! 1 02! t
0 1 g 0t @i
¢t 1 — [t aC 1— [t

By (4.11), we calculate

Piw? = 2/ "1 (By(pe* ) AdCt AdC2 AT A AT
L3 0e ) AACE AT AdCE AdD)
_ 2T
[EETE
—tpe A AT AdC A AT,

(tsre” dCt AdC AdCE AdC AT

which implies
atgtw,? = 0,

i.e., wy is Gauduchon. While w; is balanced if and only if 91 = t3; = 0.

Proof of Proposition 2.1 Let X, be the Nakamura manifold for this case and {X;}ea,
be the Kuranishi family of Xj.
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By (4.9) and (4.11), we get

gt oo gt 1 e ? —pe?’
: = e F @ AR)e D pxe® =% (4.12)
gtl3 e g?g _ﬁezl /\ﬁezl—zl (1 + |‘LL|2)eZ1+El
and
-1 (M —afi)e™  (un+ Blr)e” e
_ - 1 - - _ 1
Oigrgr = | Tme? 1=t — Mo —pitg1e* T— [t [’
— 1 - 1 — —
—t31e” " NEzre™ 2 —(1 =111 — pt31)
where
n=—MNa +pts1, a=ty+(1—ti)\, S=ts+(1—ti)p
Since RS = 0:(d:g:9; ), we obtain from (4.11) that
RE
— 1 — 1
v (to1rn — v —tartin)e™  —(tain + pv + ta1t11)e” )
o L B act adct
= | —tutae’ —[t1[Pe7 1% (t31 + t11p)tare® A= |22
—tyifze 7 (to1 + tll)\)f3le_2zl —|t31|2€t1121
where
v = |t21|2€_tuz1 + |t31|2€t1121.
By (4.12), the mean curvature K, = v—1A,, R, is
K,
— 1 — 1
v (torn — Av —torti)e ™  —(ts1in + pv + taitr)e? .
= | —tulare” —[ta1|2etF (tar +tupine® | Gy
—tyTge? (ta1 + 7511)\)5316_2‘21 —|7531|2€t“31

Since K, = K., , direct calculation yields

2(Jta1]? + lts1|?) ([t11]? + [t21]? + [ta1]?)

2 _ * )
Hole it o) = (- TPy
Since R,,, is skew-symmetric with respect to wy: R, = —R,,, we get
tr(Ry, A *tRy,)
R 2, =~ B hreRa) e 2
3

The conclusion for this case is valid.
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