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Abstract This paper considers overdetermined boundary problems. Firstly, the au-
thor gives a proof of the Payne-Schaefer conjecture about an overdetermined problem of
sixth order in the two-dimensional case and under an additional condition for the case
of dimension no less than three. Secondly, the author proves an integral identity for an
overdetermined problem of fourth order which can be used to deduce Bennett’s symmetry
theorem. Finally, the author proves a symmetry result for an overdetermined problem of
second order by integral identities.
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1 Introduction and the Main Results

In a celebrated paper in 1971, Serrin initiated the study of elliptic equations under an

overdetermined boundary condition and established in particular the following seminal result.

Theorem 1.1 (see [12]) If Q is a bounded domain with smooth boundary in R™ and if the

solution to the problem

Au=—1 in Q,
{ (1.1)

u=20 on 0f)

has the property that % is equal to a constant ¢ on O, then Q is a ball of radius |nc| and
u = "2622n_rz, where v is the outward unit normal of 02 and r is the distance from the center
of the ball.

Several proofs to the above result have appeared. Serrin’s proof is based on the Hopf
maximum principle and a reflection-in-moving-planes argument which could be extended to
more general elliptic equations and somewhat more general boundary conditions. A simple
proof of Serrin’s result based on a Rellich identity and a maximum principle was given by
Weinberger in [14]. By the method of duality theorem, Payne and Schaefer [10] gave a proof
of Theorem 1.1 which does not make explicit use of maximum principle. Choulli and Henrot
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[6] used domain derivative to prove Serrin’s theorem which also does not use the maximum
principle explicitly. From the need to extend Serrin overdetermined result to non-uniformly
elliptic operators of Hessian type, Brandolini, Nitsch, Salani and Trombetti [4] used an integral
approach via arithmetic-geometric mean inequality to prove Serrin’s theorem and they also
established the stability of the Serrin problem (see [5]). Serrin’s theorem is a landmark in
the study of overdetermined boundary value problem. The ideas and techniques in proving
Serrin’s theorem have been widely used and generalized to prove symmetry for more general
overdetermined problems. Troy [13] used Serrin’s moving planes method to prove a symmetry
theorem for a system of semilinear elliptic equations, Alessandrini [1] adapted this method to
condensers in a capacity problem. Farina and Kawohl [7], Garofalo and Lewis [8] extended
Weinberger’s method to more general second order partial differential equations. Benett [3],
Philippin and Ragoub [11] considered the fourth order elliptic overdetermined problems. In
[10], Payne and Schaefer studied overdetermined problems of higher orders, obtained various

symmetry results and proposed the following important conjecture.

Conjecture 1.1 (see [10]) Let 2 be a bounded domain in R™ with smooth boundary. If u
is a sufficiently smooth solution of the following overdetermined problem:

Ay =—1 in Q,
ou
u = W Au=0 on 01, (1.2)
O(Au) =c on 0f),
v

then Q is an n-ball.

In this paper, we prove Payne-Schaefer’s conjecture in the case n = 2 and also prove the

case n > 3 under an additional hypothesis.

Theorem 1.2 Let Q be a bounded domain in R™, n > 2, with C%t¢ boundary. Suppose that

the following overdetermined problem has a solution in C%(Q):

Ay = —1 in Q, (1.3)
Ju

u= 5 u=0 on 99, (1.4)
O(Au)

5 ¢ on 99, (1.5)

where ¢ is a constant. When n > 3, we assume that

2(n +2)c?|Q|

n+6 (16)

/ (A%u)*dz <
Q

Here |Q| denotes the volume of Q0 and ~ is the torsion function of Q0 given by

Av=—-1 1in Q,
=0 on 0f).
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Then ) is a ball of radius (|c|n(n + 2)(n + 4))%, and
u(z) = — 1 r6+(c—)§.r_
~ 48n(n+2)(n+4) n(n+2)(n+4) 16
7"2 n An(n+2)(n+4)
16 48 ’

2 4

Wl

—(c*n(n +2)(n+4))

(1.7)

where 1 denotes the distance from x to the center of ).

It should be mentioned that for a ball in R™, (1.6) becomes an equality. We shall explain
this in the next section.
An integral dual for (1.3)—(1.5) is

/ odz = ¢ Ag¢ds (1.8)
Q o9

for any triharmonic function ¢ in 2 with ¢ = % =0 on 0. Thus, we have from Theorem 1.2

the following corollary.

Corollary 1.1 Let Q be a bounded domain in R? with CT¢ boundary and if (1.8) holds for
any triharmonic function ¢ in Q with ¢ = % =0 on 092, where ¢ is a constant. Then € is a
disk.

In [3], Bennett established the following symmetry result.

Theorem 1.3 If Q is a bounded domain in R™ with C*T¢ boundary and if the following

overdetermined problem has a solution in C*() :

A?u=—1 inQ,

ou
u=o = 0 on 09, (1.9)

Au=c on 9Q (c is a constant),

then Q is a ball of radius (|c|n(n + 2))%, and

ule) = gy {3+ D0 + o+ ), (1.10)

where 1 denotes the distance from x to the center of (1.

A crucial point in Bennett’s proof is to use the following identity (see [9]):

%A(I) S - s V(AP
i,5,k
= 3 (o = 5 (A + (Bu)idin + (Au)kazj)}Q, (1.11)
.5,k
where
n—4 n—4 9 9 12
b= u+ (Au)® + |VZul* — (Vu, V(Au)). (1.12)

n+2 2(n+2)
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Since
3nc?
Dlgg = ———— 1.13
o6 2(n+2)’ (1.13)
it follows from the maximum principle that
3nc?
d< —— inQ. 1.14
=om+2 M (1.14)
On the other hand, from Green’s theorem and Rellich identity, one has
3nc?
dder = ——— Q. 1.15
/Q = 3t (1.15)

Thus, ® = 2(37’;—52) in Q and so A® = 0 in Q. Therefore, each term of the sum on the right hand

side of (1.11) vanishes which implies that
1
(Au)i; = ——6i;. (1.16)
n

One can then obtain the conclusions of Theorem 1.3 easily.

In this paper, we obtain an integral identity for an overdetermined problem of fourth order
from which one can prove Bennett’s theorem without using the subharmonicity of the function
.

Theorem 1.4 Let Q be a bounded domain in R™,n > 2, with C**t¢ boundary. Let g: R —
R be a C? function and set G(t) = fot g(s)ds. If u € C*(Q) is a solution of the following

overdetermined problem.:

A?u=—g(u) in 9, (1.17)
ou

U= o = 0 on 09, (1.18)

Au=c on 09, (1.19)

where ¢ is a constant, then, we have
/Q (2(n + 2)(3G(u) + ) + (3nAu — (n — 4)e)(Au — ¢))g(w)dz
—4(n+2) /Q(Au —o{|vhup - nin(Au)P}dx
+(n+ 2)/Q Vu2A(g(u)da. (1.20)

Here, V3u = V(V?2u) is the covariant derivative of the Hessian V*u of u.

Another proof of Theorem 1.3 We have from Rellich identity that

nc?|Q
= — . 1.21
/Quda: ) (1.21)

Observe that

/Audsz, /(Au)dezquQudxz—/udx. (1.22)
Q Q Q Q
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Taking g(u) =1, G(u) = u, the left hand side of (1.20) then becomes
/Q(Q(n +2)(3u + ) + (3nAu — (n — 4)c)(Au — ¢))dz
= /9(3(71 + 4)u + 3nc?)dz = 0. (1.23)
Since A%y = —11in ), Aulgq = ¢, we know that Au —c > 0 in the interior of Q. Therefore, we

have from (1.20) and (1.23) that

1 1
2 2 _ 3,2 2 _
iEjkuijk_n+2|v(Au)| = [Voul = —=[V(Au)|" =0 (1.24)

in the interior of Q, and so on € by continuity. Theorem 1.3 follows as above.
We shall also prove the following symmetry result using integral identities.

Theorem 1.5 Let Q be a bounded domain in R™,n > 2, with C? boundary. If the following

overdetermined problem has a solution in C?(€2):

Au=-1 inQ, uw=0 ondQ, (1.25)
0
a—:j =c|z| on 09, (1.26)
where ¢ is a constant, then € is a ball centered at the origin, ¢ = —% and
u(@) = (o — B?) (1.27)
2n ’

where R is the radius of €.

When €2 contains the origin strictly in its interior, Theorem 1.5 has been proven by Amde-

berhan [2] using the maximum principle.

2 Proof of the Results

In this section, we prove Theorems 1.2 and 1.4-1.5. Firstly we make some conventions about
notation to be used. Let © = (z1, -+ ,2,) and (, ) be the position vector and the standard inner
product of R™, respectively. We shall use u;, u;j, wijk, Uijre and wijrm to denote, respectively,

ou 0%u d3u 0*u q 0%u
—_— , , an .
ox; Ox;0x; 0x;0x 0z, 00z ;0x1,01) 0x;0x0x1,0x0Tm,

Lemma 2.1 Let u satisfy (1.3)—(1.5) and n be the solution of the Dirichlet problem

(2.1)

An = (V(Au),V(A%u)) in Q,
n=0 on 09).

The function

_— 2 _ 1 gt 2 _n-8 2
Fim 5 3w = 5 2 (Au)ius + (Ve VIA%) + o= |V (Aw)

5,k 0,J
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3

9 3n(n —2)
+—(n+4)(n+2)(A ulu +u) = 4 K (2.2)

(n+4)(n+2
assumes 1ts maximum value on OS).

Proof We need only to show that AF > 0 1in Q. A straightforward calculation gives

AF =) uljy + Y (Au)grugy
i,5.k,l i,4.k

_ %(Z((AQU)ijUij + (Au)fj) +2 Z(Au)ijkuijk)

1,7 i,5,k

+ i(z ;(Mu)ijuij +(V(A%), V(Au))
n—8

T
3
B CETCE)
3n(n —2) 9
- W<V(AU)7V(A u))

=3, - %4 S (Aw? + W?W(A%)?. (2.3)

(D (aw? +(vV(a%u), v(au))

,J

(A%u)? 4+ 2(V(A%u), V(Au)))

i,5,k,1 %,J

To see that the right hand side of (2.3) is nonnegative, it suffices to note that

1
Z {Uijkl - —4((Au)ij5kl + (Aw)iadjr + (Au)indj + (Auw)jxdu

igkl nt
AZ? 2
+ (Aw)jidik + (Au)pdiy) + W(Z_*_Q)((Sijakl + dudjk + 5ik5jz)}
_ > 6 o, 3 a2
= D uiu g 2 (AW + T Ll (2.4)

.55kl ,J
This completes the proof of Lemma 2.1.

Lemma 2.2 Let u be a solution of (1.3)—(1.5). The following identities hold:

~ nc?|Q

/Qudx— "6’ (2.5)
~ 3(n+2)nc?|Q) 3n(n —2)

/Q Fr = D +6) 8t +2) /Q(A2”)27dx' (26)

Proof It follows from (1.4) that
VZu=0 on Of. (2.7)
Here V2u denotes the Hessian of u and is given by

V2u(a, B) = (V4 Vu, B) (2.8)



On the Payne-Schaefer Conjecture About an Overdetermined Boundary Problem of Sizth Order

for all o, B € X(Q2). From (1.3), we have

A3z, Vu) = 6A3u + (2, V(A%u)) = —6.

219

(2.9)

Multiplying (2.9) by u and integrating on €2, one gets from (1.3)—(1.5), (2.7) and the divergence

theorem that

—6/udx=/uA3<x,Vu>da:
Q Q
:/Au A?(x, Vu)dzx
Q

_ _/Q<V(Au),V(A<x,Vu>)>dx

ds

= / APy Az, Vu)dz — Az, Vu) (&u)
Q o9 v

_ / A%y Alz, Vayda — ¢ / (2A8u + (2, V(Au)))ds
Q o0

= /QA2u Alz, Vu)dzr —c/ (z, V(Au))ds

o)
= / A%y Az, Vu)de — c/ <x,u>Mds
Q o0 v

z/AQu A(x,Vu>da:—cQ/ (x,v)ds
Q lo)

= _/<V(AQU),V<x,Vu>>d:z: + A%W
“ o0 v

= / A3z, Vu)dz + Au((v, Vu) + Vu(z,v))ds — nc?|Q|
Q

o9
=— / (z, Vu)dz — nc?|Q|
Q

= n/ udx — nc?|Q).
Q

This proves (2.5). In order to obtain (2.6), we integrate
1
5 SOA@E) = udy + > (A
i, ij.k ij
on © and use u;;|pn = 0 (Vi,j) to obtain
Z/ u?jkdx =— Z / (Au)ijujda.
igike 7S ij 78
Similarly, one gets by integrating

A(V(Au),Vu) = 2Z(Au)ijuz'j + [V (Au)|? + (V(A%u), Vu)

on () that

1 2 l QU w)axr
—/Q(Au)ijuijdxz 5/Q|V(Au)| dz + 2/Q<V(A ), Vayd

ds — nc?|Q

(2.10)

(2.11)

(2.12)
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1 1

= ——/ AuA*udz — = / uA3udx
2 Ja 2 Ja

= / udz. (2.13)
Q

Integrating F on Q and using (2.11), (2.13), (1.3), (2.5) and the divergence theorem, one has
/ Fdr = 3(n +2) / udz — M/ nda
Q 2(n+4) dn+4)(n+2) Jo

3(n + 2)nc?|)| 3n(n —2)
2n +4)(n+6)  4(n+4)(n+2) /Q”dilf- (2.14)

To finish the proof of (2.6), we need to calculate [, ndz. Multiplying the equation
An = (V(Au), V(A?u))

by ~ and integrating on €2, we infer

—/ ndxz/nA”ydx
Q Q
= / ~yAndx
Q

=/§27<V(Au),V(A2u)>daz
——/ Au((V7y, V(A%u)) + yA3u)dz
)
—/ Au(V%V(AQu»dx—i—/wAudx
Q Q
—/Au(V%V(Azu»dx—/udx. (2.15)
Q Q

On the other hand, we have
/Q Y (A2u)2dg = / AuA(vA2u)d
/ Au((Ay) A2 + 4 A3 + 2(V, V(A20)))da
/ Au(—A% — v + 2(V7y, V(A?u)))dz
—/Qu( Adu — Ay) dx+2/Au (Vr, V(A?u))da
:2/Qudx+2/QAu<V7,V(A2u)>dx. (2.16)
Combining the above two equalities, we arrive at
/Qndx = %/Q'y(A2u)2dx. (2.17)

Substituting (2.17) into (2.14), we obtain (2.6).
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Proof of Theorem 1.2 One knows from (1.4)—(1.5) that

I(Au 2
S wZulon = (V(Au)loa)” = (229] )'=e2 (218)
ik
Hence,
3nc?
Floa = TEEIE (2.19)

which, in turn implies from Lemma 2.1 that

3nc?

<——_ inQ. .
F*4(n—|—4) in Q (2.20)

When n = 2, we know from (2.6) that

_3-2-2%0)
Fdz
/. R

and when n > 3, we have from (1.6) and (2.6) that

3an|Q|
F 2.21
/ dz 2 4 4(n+4) (221)

Hence, forn > 2, F' = n +22) in Q and so AF vanishes identically in . Therefore, each term

of the sum on the left hand side of (2.4) vanishes. Consequently, we have

1
— 4{(AU)Z]6]€Z + (Au)zltsjk + (Au)zktsjl

+ (Auw) b + (Au)jidik + (Au) i 0i5}
A2y
S (n+4)(n+2)

WUijkl =

(5ij5kl + 5il5jk + 5ik5jl), Vi,j, kL. (2.22)
By differentiating the above equality with respect to z; and summing over [, we obtain

3w = (Auge = — (A0 + (A% 0+ (BPupdy).  (2:29)
l

Differentiating with respect to x; and summing over k, one gets

1
(A%u);; = —Eaij. (2.24)
Thus we have
1
A?u(z) = %(A — |z — ao)?), (2.25)

where A is a constant and A%u(ag) = %. Without loss of generality, we assume that ag is the

)
origin. Substituting (2.25) into (2.23), we get

1
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Differentiating (2.22) with respect to x.,, using (2.26) and

T
A2 —__om
(A%u)m, n’
we get

1
n(n+2)(n+4)
+ 2 (00t + 0itOkm + OimOkt)
+ 21 (85i01m + 0510im + Ojmdar)

Uijhim = — {2 (0£01m + 010km + 0jmOkr)

+ 21 (0jk0im + 05iOkm + OjmOri)
+ T (05100 + 0510k + 05:0k1) Y, Vi, j, k,1,m. (2.27)
Consider the function g : 2 — R given by

L 6
i 48n(n+2)(n+4) =1

q(z) = u(z) :

Using a straightforward calculation and (2.27), we get

qijklm = 0, Vi,j,k,l,m.

Thus ¢ is a polynomial of z1,--- ,z, of order 4 and so
1
Au(r) = ———|a|? : 2.28
u(w) = gy ol 9l (228)
Here, p is a quadratic polynomial of 21, --- ,2,. Now let us determine p. From (1.4) we know

from the divergence theorem that

/ (Au)hdz =0  for all harmonic A in Q. (2.29)
Q

After some calculations by using (2.25), we see that

0 0

— —ri—
J
ij al'l

h= (171 )(M(Au)j —z;j(Au);)

is harmonic in 2. Then integration by parts using Au|so = 0 results in
0 0
0= /Q(Au) (a:la—xj - xja_xl) (zi(Au); — z;(Au);)dx
=— / (zi(Au); — z;(Au);)*da. (2.30)
Q
Hence z;(Au); — zj(Au); =0 in Q and so Aw is a radial function. Consequently, we have

Au(z) = — lz|* + K1|z|? + Ko, (2.31)

1
8n(n+2)

where k1, ko are constants. Since Au = 0 on 99, Q is a ball. We note from (2.31) that

A(:z:iuj — :z:jui) =0 inQ (232)
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and from (1.4) that
($in — ZZ?j’UJi)|aQ =0. (233)

Hence, z;uj; — z;u; = 0 in  and so u is a radial function, which, combining with (2.31) and

the fact that u is a polynomial, gives

1

6 K1 4, K2, 2
= - — 2.34
) = s om0 T am ey gl s (2:34)
where k3 is a constant. Let us denote by p the radius of 2. One deduces from (1.4)—(1.5) that
1 6 K1 4 R2 o
— — =0 2.35
o+t d)” Timro? T Tl (2.35)
1 4 K1 2 R2
— — =0 2.36
8n(n+2)(n+4)p +n+2p T ’ (2:36)
1 4 2
—_— =0 2.37
8n(n + 2)/) + r1p” + k2 =0, (2.37)
1 3
—_— 2 =c. 2.38
Solving (2.35)—(2.38), we obtain

p = (lcln(n +2)(n +4))3, (2.39)

2 1

K1 C 3 1

= - — 2.40
4(n+2) (n(n—|—2)(n—|—4)) 16’ (240)

K2 4 1 1
= =_ 2 4 - — 2.41
5, = —(cn(n+2)(n+4))% - -, (2.41)

2 2 4

py = CnnE2)(n+4) (2.42)

48
Substituting (2.39)—(2.42) into (2.34), we get (1.7). This completes the proof of Theorem 1.2.

Remark 2.1 From (2.16), we have
/’y(AQu)de:2/ udx—l—Z/ uA(Vy, V(A%u))dz
Q Q Q
_ (A2
= 2/Quda:+4/9u{%:%](A u)”}dx. (2.43)

In the case that Q is a ball with center a and radius R, « is given by

|z —al®> — R?
= 2.44
1) - (2.44)
Thus
1 .
g = = 0ij, VisJ, (2.45)

which gives

/Q o 327 (A%w, o = —% /Q uAPy = % /Q uda. (2.46)
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We then obtain from (2.43) and (2.5) that

4 2(n +2)c2|Q|
2 2 = — = V—_—
/97(A u) dx_(2+n)/ﬂudx eerra—

That is, (1.6) becomes an equality when € is a ball.
Proof of Theorem 1.4 From (1.18)—(1.19), we know that
|V2ul?> = ¢*  on 0.

Multiplying (1.17) by |VZu|? and integrating on €, we have
—/ g(u)|V2ul2dz = / (A20)[V2u|2da.
Q Q
Observe that
1
5A|vu|2 = |V2u|? + (Vu, V(Au)).
Using (1.18)—(1.19), (2.48) and the divergence theorem, we have

—/Qg(u)|V2u|2d:z::—/Qg(u)(%A|Vu|2— (Vu, V(Au) )da

1

= 5/Q<V(g(u)),V|Vu|2>da:+/Q<V(G(u)),v(m)>d$

:_%/Q|Vu|2A(g(u))dx—/QG(U)AQudx

=5 [ IVuPalst)ar + | Gt

/(A2u)|V2u|2dx:/ |V2u|2Mds—/(V(Au),V|V2u|2>dx
Q o0 ov Q

o(|V?ul?)

:02/A2udx+/(Au)A|V2u|2dx—/ (Au)
0 o 50 ov

= —02/ g(u)dz + / (Au — ¢)A|VZu|?da.
Q Q
We have
A|V2u|2 =2 Z u?jk +2 Zuij (A’U,)U
ik ij
= 2|V3u|2 + 2 Zuij(Au)ij,
.3
A(Vu, V(Au)) =23 uig(Au)i; + |V(Au)|* + (Vu, V(A%u))
.3
=23 uij(Au)i; + [V(Au)? — (Vu, V(g(w))).
.3

Combining (2.52)—(2.54), we get

/ (A2%0)|VZu|*de
Q

C. Y. Xia

ds

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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= —02/ g(u)dz + / (Au — ¢)(2|V3ul* + A(Vu, V(Au)) — |V(Au)?
Q )
+ (Vu, V(g(u))))dz

= —02/Qg(u)dx+2/ﬂ(Au—c)(|V3u|2—%4_2|V(AU)|2)(196

4—n
+ /Q(Au —c) (A(Vu, V(Au)) + n——|—2|v(AU)|2 + (Vu, V(g(u))))dx

Observing
8(A

/|V Au)|?dz = Au /AuAQudx
o0
—c/ A2udx—/ AuA*udz
~ [ (du=agud.
Q
/Q Au|V(Au)de = % /Q (V(Au), V(Au)?)dz
= %{LQ(Au) B(éiu)d —/Q(Au)2A2uda:}
= 5 [ (AP = )gfuyda,
/(Au —¢)A(Vu, V(Au))dz = / A(Au — ¢)(Vu, V(Au))dz
Q
/A2 (Vu, V(Au))dx
/ Glu
/(Au —¢)(Vu,V(g(u)))dz = / g(u)((V(Au), Vu) + (Au — ¢)Au)dz
Q Q
=— /Q((Au —c¢)Au+ G(u))g(u)dz,
one arrives at
/Q(A2u)|v2u|2da: - 2/Q(Au o) (I9%uf? - nin(Au)P)dx
- /Q(G(u) + ?)g(u)dz

4—n

+ DIEE)) /Q(Au —¢)?g(u)dx

- /Q((Au —o)Au+ G(u))g(u)da.
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(2.55)

(2.56)

(2.57)

(2.58)

Combining (2.49), (2.51) and (2.58), we obtain (1.20). This completes the proof of Theorem

1.4.

Proof of Theorem 1.5 We have

/|Vu|2dx=—/uAuda:=/udx.
Q Q Q

(2.59)
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Multiplying Au = —1 by |Vu|? and integrating on €2, we get

—/udx:—/ |Vu|*da
Q Q

2/ |Vul? Audz
Q
0
—/(V|Vu|2,Vu>dx+/ wu22%4s
Q 90 v
:/uA|Vu|2dx+03/ |lz|3ds
Q o9

—2/u|V2u|2dx+c3/ |z|3ds. (2.60)
Q X9)

Multiplying Au = —1 by (x, Vu) and integrating on €, one has

n/ uder = —/(x,Vu)dx
Q Q
:/Au<x,Vu>dx
Q

0

= —/(Vu,V(x,Vu>>dx+/ <x,Vu>—uds

Q o9 v

ou\ 2
/uA( Vu}dx—l—/g(x I/>($) ds
:—2/udx—|—/ (z,v)|z]*ds
2 6|5L‘|4
—2/Qudx+z o OV ds
2

:—Q/udx—i——/ Alz|*da

Q 4 Jo

= —2/udx+c2(n+2)/ || ?dz. (2.61)
Q Q

/udx=c2/ |z|?dz. (2.62)
Q Q
On the other hand, multiplying Au = —1 by |z|> and integrating on 2, one arrives at
/|x| dx—/ |z|? Audz
= /<V|x|2 Vu}dx+/ |x|2@ds
v
z/uA|a:| da:—l—c/ |z|*ds
Q lo)
= 2n/ udx—!—c/ |z|3ds. (2.63)
Q o0

Substituting (2.63) into (2.62), we infer

(1 +2nc2)/ udx—|—63/ |z|3ds = 0. (2.64)
Q lo)

Thus, we have
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Also, we have

Q| = —/ Audz = — %ds = (—c)/ || ds
Q o0 OV 90

- |c|/ lldz > |c|/ (2, v)ds = |en|2], (2.65)
Q a0
which gives
e] < 1 (2.66)
of <. .
Thus, we have from (2.64)—(2.65) that
2
(1 n —) / udz + c3/ |z[3ds > 0. (2.67)
nsJao o0
It follows from (2.60) and (2.67) that
1 Au)?
0> / u(|V2u|2 — —)dx = / u(|V2u|2 - ﬂ)dgc (2.68)
Q n Q n
Since Au = —11in Q, ulgg = 0, u > 0 in the interior of . The Schwarz inequality implies that
A 2
IV2ul? — % > 0. (2.69)

Therefore, we conclude from (2.68) that
(Au)?

Viul? — —— =0 2.70
V2?2 (2.70)
and that the inequality (2.65) is actually an equality. Consequently, we have
1
= —— 2.71
=1, (2.71)
1 o
Ui5 = _Eéij7 VZ,] (272)
and
x=|zjv on 0N (2.73)

Consider the function 8 : 9Q — R given by #(z) = |z|?. For any w € X(99), it follows from
(2.73) that

wf = 2{x,w) = 2(|jz|v,w) =0, (2.74)

which shows that § is a constant. Hence, OS2 is a sphere centered at the origin and so € is a
ball centered at the origin. One then knows from (2.72) that

L pe
u= 2n(|ac| R?), (2.75)

where R is the radius of the ball. This completes the proof of Theorem 1.5.
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