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Abstract This paper considers overdetermined boundary problems. Firstly, the au-

thor gives a proof of the Payne-Schaefer conjecture about an overdetermined problem of

sixth order in the two-dimensional case and under an additional condition for the case

of dimension no less than three. Secondly, the author proves an integral identity for an

overdetermined problem of fourth order which can be used to deduce Bennett’s symmetry

theorem. Finally, the author proves a symmetry result for an overdetermined problem of

second order by integral identities.
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1 Introduction and the Main Results

In a celebrated paper in 1971, Serrin initiated the study of elliptic equations under an

overdetermined boundary condition and established in particular the following seminal result.

Theorem 1.1 (see [12]) If Ω is a bounded domain with smooth boundary in R
n and if the

solution to the problem

{

∆u = −1 in Ω,

u = 0 on ∂Ω
(1.1)

has the property that ∂u
∂ν

is equal to a constant c on ∂Ω, then Ω is a ball of radius |nc| and

u = n2c2−r2

2n , where ν is the outward unit normal of ∂Ω and r is the distance from the center

of the ball.

Several proofs to the above result have appeared. Serrin’s proof is based on the Hopf

maximum principle and a reflection-in-moving-planes argument which could be extended to

more general elliptic equations and somewhat more general boundary conditions. A simple

proof of Serrin’s result based on a Rellich identity and a maximum principle was given by

Weinberger in [14]. By the method of duality theorem, Payne and Schaefer [10] gave a proof

of Theorem 1.1 which does not make explicit use of maximum principle. Choulli and Henrot
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[6] used domain derivative to prove Serrin’s theorem which also does not use the maximum

principle explicitly. From the need to extend Serrin overdetermined result to non-uniformly

elliptic operators of Hessian type, Brandolini, Nitsch, Salani and Trombetti [4] used an integral

approach via arithmetic-geometric mean inequality to prove Serrin’s theorem and they also

established the stability of the Serrin problem (see [5]). Serrin’s theorem is a landmark in

the study of overdetermined boundary value problem. The ideas and techniques in proving

Serrin’s theorem have been widely used and generalized to prove symmetry for more general

overdetermined problems. Troy [13] used Serrin’s moving planes method to prove a symmetry

theorem for a system of semilinear elliptic equations, Alessandrini [1] adapted this method to

condensers in a capacity problem. Farina and Kawohl [7], Garofalo and Lewis [8] extended

Weinberger’s method to more general second order partial differential equations. Benett [3],

Philippin and Ragoub [11] considered the fourth order elliptic overdetermined problems. In

[10], Payne and Schaefer studied overdetermined problems of higher orders, obtained various

symmetry results and proposed the following important conjecture.

Conjecture 1.1 (see [10]) Let Ω be a bounded domain in R
n with smooth boundary. If u

is a sufficiently smooth solution of the following overdetermined problem:



























∆3u = −1 in Ω,

u =
∂u

∂ν
= ∆u = 0 on ∂Ω,

∂(∆u)

∂ν
= c on ∂Ω,

(1.2)

then Ω is an n-ball.

In this paper, we prove Payne-Schaefer’s conjecture in the case n = 2 and also prove the

case n ≥ 3 under an additional hypothesis.

Theorem 1.2 Let Ω be a bounded domain in R
n, n ≥ 2, with C6+ǫ boundary. Suppose that

the following overdetermined problem has a solution in C6(Ω):

∆3u = −1 in Ω, (1.3)

u =
∂u

∂ν
= ∆u = 0 on ∂Ω, (1.4)

∂(∆u)

∂ν
= c on ∂Ω, (1.5)

where c is a constant. When n ≥ 3, we assume that

∫

Ω

(∆2u)2γdx ≤
2(n+ 2)c2|Ω|

n+ 6
. (1.6)

Here |Ω| denotes the volume of Ω and γ is the torsion function of Ω given by

{

∆γ = −1 in Ω,
γ = 0 on ∂Ω.
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Then Ω is a ball of radius (|c|n(n+ 2)(n+ 4))
1

3 , and

u(x) = −
1

48n(n+ 2)(n+ 4)
r6 +

( c2

n(n+ 2)(n+ 4)

)
1

3

·
r4

16

−(c4n(n+ 2)(n+ 4))
1

3 ·
r2

16
+

c2n(n+ 2)(n+ 4)

48
, (1.7)

where r denotes the distance from x to the center of Ω.

It should be mentioned that for a ball in R
n, (1.6) becomes an equality. We shall explain

this in the next section.

An integral dual for (1.3)–(1.5) is

∫

Ω

φdx = c

∫

∂Ω

∆φds (1.8)

for any triharmonic function φ in Ω with φ = ∂φ
∂ν

= 0 on ∂Ω. Thus, we have from Theorem 1.2

the following corollary.

Corollary 1.1 Let Ω be a bounded domain in R
2 with C6+ǫ boundary and if (1.8) holds for

any triharmonic function φ in Ω with φ = ∂φ
∂ν

= 0 on ∂Ω, where c is a constant. Then Ω is a

disk.

In [3], Bennett established the following symmetry result.

Theorem 1.3 If Ω is a bounded domain in R
n with C4+ǫ boundary and if the following

overdetermined problem has a solution in C4(Ω) :



















∆2u = −1 in Ω,

u =
∂u

∂ν
= 0 on ∂Ω,

∆u ≡ c on ∂Ω (c is a constant),

(1.9)

then Ω is a ball of radius (|c|n(n+ 2))
1

2 , and

u(x) =
−1

2n

{1

4
(n+ 2)(nc)2 +

nc

2
r2 +

1

4(n+ 2)
r4
}

, (1.10)

where r denotes the distance from x to the center of Ω.

A crucial point in Bennett’s proof is to use the following identity (see [9]):

1

2
∆Φ =

∑

i,j,k

u2
ijk −

3

n+ 2
|∇(∆u)|2

=
∑

i,j,k

{

uijk −
1

n+ 2
((∆u)iδjk + (∆u)jδik + (∆u)kδij)

}2

, (1.11)

where

Φ =
n− 4

n+ 2
u+

n− 4

2(n+ 2)
(∆u)2 + |∇2u|2 − 〈∇u,∇(∆u)〉. (1.12)
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Since

Φ|∂Ω =
3nc2

2(n+ 2)
, (1.13)

it follows from the maximum principle that

Φ ≤
3nc2

2(n+ 2)
in Ω. (1.14)

On the other hand, from Green’s theorem and Rellich identity, one has
∫

Ω

Φdx =
3nc2

2(n+ 2)
|Ω|. (1.15)

Thus, Φ ≡ 3nc2

2(n+2) in Ω and so ∆Φ ≡ 0 in Ω. Therefore, each term of the sum on the right hand

side of (1.11) vanishes which implies that

(∆u)ij = −
1

n
δij . (1.16)

One can then obtain the conclusions of Theorem 1.3 easily.

In this paper, we obtain an integral identity for an overdetermined problem of fourth order

from which one can prove Bennett’s theorem without using the subharmonicity of the function

Φ.

Theorem 1.4 Let Ω be a bounded domain in R
n, n ≥ 2, with C4+ǫ boundary. Let g : R →

R be a C2 function and set G(t) =
∫ t

0
g(s)ds. If u ∈ C4(Ω) is a solution of the following

overdetermined problem :

∆2u = −g(u) in Ω, (1.17)

u =
∂u

∂ν
= 0 on ∂Ω, (1.18)

∆u = c on ∂Ω, (1.19)

where c is a constant, then, we have
∫

Ω

(2(n+ 2)(3G(u) + c2) + (3n∆u− (n− 4)c)(∆u− c))g(u)dx

= 4(n+ 2)

∫

Ω

(∆u− c)
{

|∇3u|2 −
3

n+ 2
|∇(∆u)|2

}

dx

+ (n+ 2)

∫

Ω

|∇u|2∆(g(u))dx. (1.20)

Here, ∇3u = ∇(∇2u) is the covariant derivative of the Hessian ∇2u of u.

Another proof of Theorem 1.3 We have from Rellich identity that
∫

Ω

udx = −
nc2|Ω|

n+ 4
. (1.21)

Observe that
∫

Ω

∆udx = 0,

∫

Ω

(∆u)2dx =

∫

Ω

u∆2udx = −

∫

Ω

udx. (1.22)
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Taking g(u) = 1, G(u) = u, the left hand side of (1.20) then becomes

∫

Ω

(2(n+ 2)(3u+ c2) + (3n∆u− (n− 4)c)(∆u − c))dx

=

∫

Ω

(3(n+ 4)u+ 3nc2)dx = 0. (1.23)

Since ∆2u = −1 in Ω, ∆u|∂Ω = c, we know that ∆u− c > 0 in the interior of Ω. Therefore, we

have from (1.20) and (1.23) that

∑

i,j,k

u2
ijk −

1

n+ 2
|∇(∆u)|2 = |∇3u|2 −

1

n+ 2
|∇(∆u)|2 = 0 (1.24)

in the interior of Ω, and so on Ω by continuity. Theorem 1.3 follows as above.

We shall also prove the following symmetry result using integral identities.

Theorem 1.5 Let Ω be a bounded domain in R
n, n ≥ 2, with C2 boundary. If the following

overdetermined problem has a solution in C2(Ω):

∆u = −1 in Ω, u = 0 on ∂Ω, (1.25)

∂u

∂ν
= c|x| on ∂Ω, (1.26)

where c is a constant, then Ω is a ball centered at the origin, c = − 1
n
and

u(x) = −
1

2n
(|x|2 −R2), (1.27)

where R is the radius of Ω.

When Ω contains the origin strictly in its interior, Theorem 1.5 has been proven by Amde-

berhan [2] using the maximum principle.

2 Proof of the Results

In this section, we prove Theorems 1.2 and 1.4–1.5. Firstly we make some conventions about

notation to be used. Let x = (x1, · · · , xn) and 〈 , 〉 be the position vector and the standard inner

product of Rn, respectively. We shall use ui, uij , uijk, uijkl and uijklm to denote, respectively,

∂u

∂xi

,
∂2u

∂xi∂xj

,
∂3u

∂xi∂xj∂xk

,
∂4u

∂xi∂xj∂xk∂xl

and
∂5u

∂xi∂xj∂xk∂xl∂xm

.

Lemma 2.1 Let u satisfy (1.3)–(1.5) and η be the solution of the Dirichlet problem

{

∆η = 〈∇(∆u),∇(∆2u)〉 in Ω,

η = 0 on ∂Ω.
(2.1)

The function

F :=
1

2

∑

i,j,k

u2
ijk −

1

2

∑

i,j

(∆u)ijuij +
1

4
〈∇u,∇(∆2u)〉+

n− 8

4(n+ 4)
|∇(∆u)|2
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+
3

(n+ 4)(n+ 2)
(∆2u∆u+ u)−

3n(n− 2)

4(n+ 4)(n+ 2)
η (2.2)

assumes its maximum value on ∂Ω.

Proof We need only to show that ∆F ≥ 0 in Ω. A straightforward calculation gives

∆F =
∑

i,j,k,l

u2
ijkl +

∑

i,j,k

(∆u)ijkuijk

−
1

2

(

∑

i,j

((∆2u)ijuij + (∆u)2ij) + 2
∑

i,j,k

(∆u)ijkuijk

)

+
1

4

(

2
∑

i,j

(∆2u)ijuij + 〈∇(∆2u),∇(∆u)〉
)

+
n− 8

2(n+ 4)

(

∑

i,j

(∆u)2ij + 〈∇(∆2u),∇(∆u)〉
)

+
3

(n+ 4)(n+ 2)
((∆2u)2 + 2〈∇(∆2u),∇(∆u)〉)

−
3n(n− 2)

4(n+ 4)(n+ 2)
〈∇(∆u),∇(∆2u)〉

=
∑

i,j,k,l

u2
ijkl −

6

n+ 4

∑

i,j

(∆u)2ij +
3

(n+ 4)(n+ 2)
(∆2u)2. (2.3)

To see that the right hand side of (2.3) is nonnegative, it suffices to note that

∑

i,j,k,l

{

uijkl −
1

n+ 4
((∆u)ijδkl + (∆u)ilδjk + (∆u)ikδjl + (∆u)jkδil

+ (∆u)jlδik + (∆u)klδij) +
∆2u

(n+ 4)(n+ 2)
(δijδkl + δilδjk + δikδjl)

}2

=
∑

i,j,k,l

u2
ijkl −

6

n+ 4

∑

i,j

(∆u)2ij +
3

(n+ 4)(n+ 2)
(∆2u)2. (2.4)

This completes the proof of Lemma 2.1.

Lemma 2.2 Let u be a solution of (1.3)–(1.5). The following identities hold :

∫

Ω

udx =
nc2|Ω|

n+ 6
, (2.5)

∫

Ω

Fdx =
3(n+ 2)nc2|Ω|

2(n+ 4)(n+ 6)
−

3n(n− 2)

8(n+ 4)(n+ 2)

∫

Ω

(∆2u)2γdx. (2.6)

Proof It follows from (1.4) that

∇2u = 0 on ∂Ω. (2.7)

Here ∇2u denotes the Hessian of u and is given by

∇2u(α, β) = 〈∇α∇u, β〉 (2.8)
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for all α, β ∈ X(Ω). From (1.3), we have

∆3〈x,∇u〉 = 6∆3u+ 〈x,∇(∆3u)〉 = −6. (2.9)

Multiplying (2.9) by u and integrating on Ω, one gets from (1.3)–(1.5), (2.7) and the divergence

theorem that

−6

∫

Ω

udx =

∫

Ω

u∆3〈x,∇u〉dx

=

∫

Ω

∆u ∆2〈x,∇u〉dx

= −

∫

Ω

〈∇(∆u),∇(∆〈x,∇u〉)〉dx

=

∫

Ω

∆2u ∆〈x,∇u〉dx −

∫

∂Ω

∆〈x,∇u〉
∂(∆u)

∂ν
ds

=

∫

Ω

∆2u ∆〈x,∇u〉dx − c

∫

∂Ω

(2∆u+ 〈x,∇(∆u)〉)ds

=

∫

Ω

∆2u ∆〈x,∇u〉dx − c

∫

∂Ω

〈x,∇(∆u)〉ds

=

∫

Ω

∆2u ∆〈x,∇u〉dx − c

∫

∂Ω

〈x, ν〉
∂(∆u)

∂ν
ds

=

∫

Ω

∆2u ∆〈x,∇u〉dx − c2
∫

∂Ω

〈x, ν〉ds

= −

∫

Ω

〈∇(∆2u),∇〈x,∇u〉〉dx +

∫

∂Ω

∆2u
∂〈x,∇u〉

∂ν
ds− nc2|Ω|

=

∫

Ω

∆3u〈x,∇u〉dx+

∫

∂Ω

∆2u(〈ν,∇u〉+∇2u(x, ν))ds− nc2|Ω|

= −

∫

Ω

〈x,∇u〉dx − nc2|Ω|

= n

∫

Ω

udx− nc2|Ω|.

This proves (2.5). In order to obtain (2.6), we integrate

1

2

∑

i,j

∆(u2
ij) =

∑

i,j,k

u2
ijk +

∑

i,j

(∆u)ijuij (2.10)

on Ω and use uij |∂Ω = 0 (∀i, j) to obtain

∑

i,j,k

∫

Ω

u2
ijkdx = −

∑

i,j

∫

Ω

(∆u)ijuijdx. (2.11)

Similarly, one gets by integrating

∆〈∇(∆u),∇u〉 = 2
∑

i,j

(∆u)ijuij + |∇(∆u)|2 + 〈∇(∆2u),∇u〉 (2.12)

on Ω that

−

∫

Ω

(∆u)ijuijdx =
1

2

∫

Ω

|∇(∆u)|2dx+
1

2

∫

Ω

〈∇(∆2u),∇u〉dx
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= −
1

2

∫

Ω

∆u∆2udx−
1

2

∫

Ω

u∆3udx

=

∫

Ω

udx. (2.13)

Integrating F on Ω and using (2.11), (2.13), (1.3), (2.5) and the divergence theorem, one has

∫

Ω

Fdx =
3(n+ 2)

2(n+ 4)

∫

Ω

udx−
3n(n− 2)

4(n+ 4)(n+ 2)

∫

Ω

ηdx

=
3(n+ 2)nc2|Ω|

2(n+ 4)(n+ 6)
−

3n(n− 2)

4(n+ 4)(n+ 2)

∫

Ω

ηdx. (2.14)

To finish the proof of (2.6), we need to calculate
∫

Ω ηdx. Multiplying the equation

∆η = 〈∇(∆u),∇(∆2u)〉

by γ and integrating on Ω, we infer

−

∫

Ω

ηdx =

∫

Ω

η∆γdx

=

∫

Ω

γ∆ηdx

=

∫

Ω

γ〈∇(∆u),∇(∆2u)〉dx

= −

∫

Ω

∆u(〈∇γ,∇(∆2u)〉+ γ∆3u)dx

= −

∫

Ω

∆u〈∇γ,∇(∆2u)〉dx+

∫

Ω

γ∆udx

= −

∫

Ω

∆u〈∇γ,∇(∆2u)〉dx−

∫

Ω

udx. (2.15)

On the other hand, we have

∫

Ω

γ(∆2u)2dx =

∫

Ω

∆u∆(γ∆2u)dx

=

∫

Ω

∆u((∆γ)∆2u+ γ∆3u+ 2〈∇γ,∇(∆2u)〉)dx

=

∫

Ω

∆u(−∆2u− γ + 2〈∇γ,∇(∆2u)〉)dx

=

∫

Ω

u(−∆3u−∆γ)dx+ 2

∫

Ω

∆u〈∇γ,∇(∆2u)〉dx

= 2

∫

Ω

udx+ 2

∫

Ω

∆u〈∇γ,∇(∆2u)〉dx. (2.16)

Combining the above two equalities, we arrive at

∫

Ω

ηdx =
1

2

∫

Ω

γ(∆2u)2dx. (2.17)

Substituting (2.17) into (2.14), we obtain (2.6).
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Proof of Theorem 1.2 One knows from (1.4)–(1.5) that

∑

i,j,k

u2
ijk|∂Ω = (|∇(∆u)|∂Ω)

2 =
(∂(∆u)

∂ν

∣

∣

∣

∂Ω

)2

= c2. (2.18)

Hence,

F |∂Ω =
3nc2

4(n+ 4)
, (2.19)

which, in turn implies from Lemma 2.1 that

F ≤
3nc2

4(n+ 4)
in Ω. (2.20)

When n = 2, we know from (2.6) that

∫

Ω

Fdx =
3 · 2 · c2|Ω|

4 · 6

and when n ≥ 3, we have from (1.6) and (2.6) that

∫

Ω

Fdx ≥
3nc2|Ω|

4(n+ 4)
. (2.21)

Hence, for n ≥ 2, F ≡ 3nc2

4(n+2) in Ω and so ∆F vanishes identically in Ω. Therefore, each term

of the sum on the left hand side of (2.4) vanishes. Consequently, we have

uijkl =
1

n+ 4
{(∆u)ijδkl + (∆u)ilδjk + (∆u)ikδjl

+ (∆u)jkδil + (∆u)jlδik + (∆u)klδij}

−
∆2u

(n+ 4)(n+ 2)
(δijδkl + δilδjk + δikδjl), ∀i, j, k, l. (2.22)

By differentiating the above equality with respect to xl and summing over l, we obtain

∑

l

uijkll = (∆u)ijk =
1

n+ 2
((∆2u)iδjk + (∆2u)jδik + (∆2u)kδij). (2.23)

Differentiating with respect to xk and summing over k, one gets

(∆2u)ij = −
1

n
δij . (2.24)

Thus we have

∆2u(x) =
1

2n
(A− |x− a0|

2), (2.25)

where A is a constant and ∆2u(a0) =
A
2n . Without loss of generality, we assume that a0 is the

origin. Substituting (2.25) into (2.23), we get

(∆u)ijk(x) = −
1

n(n+ 2)
(xiδjk + xjδik + xkδij). (2.26)
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Differentiating (2.22) with respect to xm, using (2.26) and

(∆2u)m = −
xm

n
,

we get

uijklm = −
1

n(n+ 2)(n+ 4)
{xi(δjkδlm + δjlδkm + δjmδkl)

+ xj(δikδlm + δilδkm + δimδkl)

+ xk(δjiδlm + δjlδim + δjmδil)

+ xl(δjkδim + δjiδkm + δjmδki)

+ xm(δjkδli + δjlδki + δjiδkl)}, ∀i, j, k, l,m. (2.27)

Consider the function q : Ω → R given by

q(x) = u(x) +
1

48n(n+ 2)(n+ 4)
|x|6.

Using a straightforward calculation and (2.27), we get

qijklm = 0, ∀i, j, k, l,m.

Thus q is a polynomial of x1, · · · , xn of order 4 and so

∆u(x) = −
1

8n(n+ 2)
|x|4 + p(x). (2.28)

Here, p is a quadratic polynomial of x1, · · · , xn. Now let us determine p. From (1.4) we know

from the divergence theorem that
∫

Ω

(∆u)hdx = 0 for all harmonic h in Ω. (2.29)

After some calculations by using (2.25), we see that

h =
(

xi

∂

∂xj

− xj

∂

∂xi

)

(xi(∆u)j − xj(∆u)i)

is harmonic in Ω. Then integration by parts using ∆u|∂Ω = 0 results in

0 =

∫

Ω

(∆u)
(

xi

∂

∂xj

− xj

∂

∂xi

)

(xi(∆u)j − xj(∆u)i)dx

= −

∫

Ω

(xi(∆u)j − xj(∆u)i)
2dx. (2.30)

Hence xi(∆u)j − xj(∆u)i ≡ 0 in Ω and so ∆u is a radial function. Consequently, we have

∆u(x) = −
1

8n(n+ 2)
|x|4 + κ1|x|

2 + κ2, (2.31)

where κ1, κ2 are constants. Since ∆u = 0 on ∂Ω, Ω is a ball. We note from (2.31) that

∆(xiuj − xjui) = 0 in Ω (2.32)
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and from (1.4) that

(xiuj − xjui)|∂Ω = 0. (2.33)

Hence, xiuj − xjui = 0 in Ω and so u is a radial function, which, combining with (2.31) and

the fact that u is a polynomial, gives

u(x) = −
1

48n(n+ 2)(n+ 4)
|x|6 +

κ1

4(n+ 2)
|x|4 +

κ2

2n
|x|2 + κ3, (2.34)

where κ3 is a constant. Let us denote by ρ the radius of Ω. One deduces from (1.4)–(1.5) that

−
1

48n(n+ 2)(n+ 4)
ρ6 +

κ1

4(n+ 2)
ρ4 +

κ2

2n
ρ2 + κ3 = 0, (2.35)

−
1

8n(n+ 2)(n+ 4)
ρ4 +

κ1

n+ 2
ρ2 +

κ2

n
= 0, (2.36)

−
1

8n(n+ 2)
ρ4 + κ1ρ

2 + κ2 = 0, (2.37)

−
1

2n(n+ 2)
ρ3 + 2κ1ρ = c. (2.38)

Solving (2.35)–(2.38), we obtain

ρ = (|c|n(n+ 2)(n+ 4))
1

3 , (2.39)

κ1

4(n+ 2)
=

( c2

n(n+ 2)(n+ 4)

)
1

3

·
1

16
, (2.40)

κ2

2n
= −(c4n(n+ 2)(n+ 4))

1

3 ·
1

16
, (2.41)

κ3 =
c2n(n+ 2)(n+ 4)

48
. (2.42)

Substituting (2.39)–(2.42) into (2.34), we get (1.7). This completes the proof of Theorem 1.2.

Remark 2.1 From (2.16), we have
∫

Ω

γ(∆2u)2dx = 2

∫

Ω

udx+ 2

∫

Ω

u∆〈∇γ,∇(∆2u)〉dx

= 2

∫

Ω

udx+ 4

∫

Ω

u
{

∑

i,j

γij(∆
2u)ij

}

dx. (2.43)

In the case that Ω is a ball with center a and radius R, γ is given by

γ(x) = −
|x− a|2 −R2

2n
. (2.44)

Thus

γij = −
1

n
δij , ∀i, j, (2.45)

which gives
∫

Ω

u
{

∑

i,j

γij(∆
2u)ij

}

dx = −
1

n

∫

Ω

u∆3u =
1

n

∫

Ω

udx. (2.46)



224 C. Y. Xia

We then obtain from (2.43) and (2.5) that

∫

Ω

γ(∆2u)2dx =
(

2 +
4

n

)

∫

Ω

udx =
2(n+ 2)c2|Ω|

n+ 6
. (2.47)

That is, (1.6) becomes an equality when Ω is a ball.

Proof of Theorem 1.4 From (1.18)–(1.19), we know that

|∇2u|2 = c2 on ∂Ω. (2.48)

Multiplying (1.17) by |∇2u|2 and integrating on Ω, we have

−

∫

Ω

g(u)|∇2u|2dx =

∫

Ω

(∆2u)|∇2u|2dx. (2.49)

Observe that

1

2
∆|∇u|2 = |∇2u|2 + 〈∇u,∇(∆u)〉. (2.50)

Using (1.18)–(1.19), (2.48) and the divergence theorem, we have

−

∫

Ω

g(u)|∇2u|2dx = −

∫

Ω

g(u)
(1

2
∆|∇u|2 − 〈∇u,∇(∆u)〉

)

dx

=
1

2

∫

Ω

〈∇(g(u)),∇|∇u|2〉dx +

∫

Ω

〈∇(G(u)),∇(∆u)〉dx

= −
1

2

∫

Ω

|∇u|2∆(g(u))dx−

∫

Ω

G(u)∆2udx

= −
1

2

∫

Ω

|∇u|2∆(g(u))dx+

∫

Ω

G(u)g(u)dx, (2.51)

∫

Ω

(∆2u)|∇2u|2dx =

∫

∂Ω

|∇2u|2
∂(∆u)

∂ν
ds−

∫

Ω

〈∇(∆u),∇|∇2u|2〉dx

= c2
∫

Ω

∆2udx+

∫

Ω

(∆u)∆|∇2u|2dx −

∫

∂Ω

(∆u)
∂(|∇2u|2)

∂ν
ds

= − c2
∫

Ω

g(u)dx+

∫

Ω

(∆u− c)∆|∇2u|2dx. (2.52)

We have

∆|∇2u|2 = 2
∑

i,j,k

u2
ijk + 2

∑

i,j

uij(∆u)ij

= 2|∇3u|2 + 2
∑

i,j

uij(∆u)ij , (2.53)

∆〈∇u,∇(∆u)〉 = 2
∑

i,j

uij(∆u)ij + |∇(∆u)|2 + 〈∇u,∇(∆2u)〉

= 2
∑

i,j

uij(∆u)ij + |∇(∆u)|2 − 〈∇u,∇(g(u))〉. (2.54)

Combining (2.52)–(2.54), we get
∫

Ω

(∆2u)|∇2u|2dx



On the Payne-Schaefer Conjecture About an Overdetermined Boundary Problem of Sixth Order 225

= −c2
∫

Ω

g(u)dx+

∫

Ω

(∆u − c)(2|∇3u|2 +∆〈∇u,∇(∆u)〉 − |∇(∆u)|2

+ 〈∇u,∇(g(u))〉)dx

= −c2
∫

Ω

g(u)dx+ 2

∫

Ω

(∆u − c)
(

|∇3u|2 −
3

n+ 2
|∇(∆u)|2

)

dx

+

∫

Ω

(∆u− c)
(

∆〈∇u,∇(∆u)〉 +
4− n

n+ 2
|∇(∆u)|2 + 〈∇u,∇(g(u))〉

)

dx.

Observing
∫

Ω

|∇(∆u)|2dx =

∫

∂Ω

∆u
∂(∆u)

∂ν
ds−

∫

Ω

∆u∆2udx

= c

∫

Ω

∆2udx−

∫

Ω

∆u∆2udx

=

∫

Ω

(∆u − c)g(u)dx, (2.55)

∫

Ω

∆u|∇(∆u)|2dx =
1

2

∫

Ω

〈∇(∆u),∇(∆u)2〉dx

=
1

2

{

∫

∂Ω

(∆u)2
∂(∆u)

∂ν
ds−

∫

Ω

(∆u)2∆2udx
}

=
1

2

∫

Ω

((∆u)2 − c2)g(u)dx, (2.56)

∫

Ω

(∆u− c)∆〈∇u,∇(∆u)〉dx =

∫

Ω

∆(∆u − c)〈∇u,∇(∆u)〉dx

=

∫

Ω

∆2u〈∇u,∇(∆u)〉dx

= −

∫

Ω

G(u)g(u)dx,

∫

Ω

(∆u − c)〈∇u,∇(g(u))〉dx = −

∫

Ω

g(u)(〈∇(∆u),∇u〉+ (∆u− c)∆u)dx

= −

∫

Ω

((∆u − c)∆u+G(u))g(u)dx, (2.57)

one arrives at
∫

Ω

(∆2u)|∇2u|2dx = 2

∫

Ω

(∆u − c)
(

|∇3u|2 −
3

n+ 2
|∇(∆u)|2

)

dx

−

∫

Ω

(G(u) + c2)g(u)dx

+
4− n

2(n+ 2)

∫

Ω

(∆u − c)2g(u)dx

−

∫

Ω

((∆u− c)∆u +G(u))g(u)dx. (2.58)

Combining (2.49), (2.51) and (2.58), we obtain (1.20). This completes the proof of Theorem

1.4.

Proof of Theorem 1.5 We have
∫

Ω

|∇u|2dx = −

∫

Ω

u∆udx =

∫

Ω

udx. (2.59)
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Multiplying ∆u = −1 by |∇u|2 and integrating on Ω, we get

−

∫

Ω

udx = −

∫

Ω

|∇u|2dx

=

∫

Ω

|∇u|2∆udx

= −

∫

Ω

〈∇|∇u|2,∇u〉dx+

∫

∂Ω

|∇u|2
∂u

∂ν
ds

=

∫

Ω

u∆|∇u|2dx+ c3
∫

∂Ω

|x|3ds

= 2

∫

Ω

u|∇2u|2dx+ c3
∫

∂Ω

|x|3ds. (2.60)

Multiplying ∆u = −1 by 〈x,∇u〉 and integrating on Ω, one has

n

∫

Ω

udx = −

∫

Ω

〈x,∇u〉dx

=

∫

Ω

∆u〈x,∇u〉dx

= −

∫

Ω

〈∇u,∇〈x,∇u〉〉dx +

∫

∂Ω

〈x,∇u〉
∂u

∂ν
ds

=

∫

Ω

u∆〈x,∇u〉dx +

∫

∂Ω

〈x, ν〉
(∂u

∂ν

)2

ds

= −2

∫

Ω

udx+

∫

∂Ω

c2〈x, ν〉|x|2ds

= −2

∫

Ω

udx+
c2

4

∫

∂Ω

∂|x|4

∂ν
ds

= −2

∫

Ω

udx+
c2

4

∫

Ω

∆|x|4dx

= −2

∫

Ω

udx+ c2(n+ 2)

∫

Ω

|x|2dx. (2.61)

Thus, we have
∫

Ω

udx = c2
∫

Ω

|x|2dx. (2.62)

On the other hand, multiplying ∆u = −1 by |x|2 and integrating on Ω, one arrives at

−

∫

Ω

|x|2dx =

∫

Ω

|x|2∆udx

= −

∫

Ω

〈∇|x|2,∇u〉dx+

∫

∂Ω

|x|2
∂u

∂ν
ds

=

∫

Ω

u∆|x|2dx+ c

∫

∂Ω

|x|3ds

= 2n

∫

Ω

udx+ c

∫

∂Ω

|x|3ds. (2.63)

Substituting (2.63) into (2.62), we infer

(1 + 2nc2)

∫

Ω

udx+ c3
∫

∂Ω

|x|3ds = 0. (2.64)



On the Payne-Schaefer Conjecture About an Overdetermined Boundary Problem of Sixth Order 227

Also, we have

|Ω| = −

∫

Ω

∆udx = −

∫

∂Ω

∂u

∂ν
ds = (−c)

∫

∂Ω

|x|ds

= |c|

∫

Ω

|x|dx ≥ |c|

∫

∂Ω

〈x, ν〉ds = |c|n|Ω|, (2.65)

which gives

|c| ≤
1

n
. (2.66)

Thus, we have from (2.64)–(2.65) that

(

1 +
2

n

)

∫

Ω

udx+ c3
∫

∂Ω

|x|3ds ≥ 0. (2.67)

It follows from (2.60) and (2.67) that

0 ≥

∫

Ω

u
(

|∇2u|2 −
1

n

)

dx =

∫

Ω

u
(

|∇2u|2 −
(∆u)2

n

)

dx. (2.68)

Since ∆u = −1 in Ω, u|∂Ω = 0, u > 0 in the interior of Ω. The Schwarz inequality implies that

|∇2u|2 −
(∆u)2

n
≥ 0. (2.69)

Therefore, we conclude from (2.68) that

|∇2u|2 −
(∆u)2

n
= 0 (2.70)

and that the inequality (2.65) is actually an equality. Consequently, we have

c = −
1

n
, (2.71)

uij = −
1

n
δij , ∀i, j (2.72)

and

x = |x|ν on ∂Ω. (2.73)

Consider the function β : ∂Ω → R given by β(x) = |x|2. For any w ∈ X(∂Ω), it follows from

(2.73) that

wβ = 2〈x,w〉 = 2〈|x|ν, w〉 = 0, (2.74)

which shows that β is a constant. Hence, ∂Ω is a sphere centered at the origin and so Ω is a

ball centered at the origin. One then knows from (2.72) that

u = −
1

2n
(|x|2 −R2), (2.75)

where R is the radius of the ball. This completes the proof of Theorem 1.5.
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