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Abstract This paper considers maps from pseudo-Hermitian manifolds to Kähler man-
ifolds and introduces partial energy functionals for these maps. First, the authors obtain
a foliated Lichnerowicz type result on general pseudo-Hermitian manifolds, which general-
izes a related result on Sasakian manifolds by Shen–Shen–Zhang (2013). Next, the authors
investigate critical maps of the partial energy functionals, which are referred to as ∂b -
harmonic maps and ∂b-harmonic maps. The authors give a foliated result for both ∂b- and
∂b-harmonic maps, generalizing a foliated result of Petit (2002) for harmonic maps. Then
the authors are able to generalize Siu’s holomorphicity result for harmonic maps by Siu
(1980) to the case for ∂b- and ∂b-harmonic maps.
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1 Introduction

In [19], Siu proved the following theorem.

Theorem A Let f : M → N be a harmonic map between compact Kähler manifolds. If

(N, g) has strongly negative curvature and rankR(dfx) ≥ 4 at some point x ∈ M , then f is

holomorphic or anti-holomorphic.

The above theorem, combined with Eells-Sampson’s existence theorem (cf. [7]), implies

Siu’s celebrated strong rigidity for compact Kähler manifolds with strongly negative curvature.

Subsequently, there have been some research efforts to generalize Siu’s theorem to the case

of non-Kähler Hermitian manifolds. In [11], Jost and Yau used Hermitian harmonic maps to

generalize Siu’s rigidity theorem to the case where the domain manifold is astheno-Kähler. In

[14], Liu and Yang considered the critical points of partial energies for maps from Hermitian

manifolds, and discussed related holomorphicity results for these critical maps.
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A pseudo-Hermitian manifold (M2m+1, H, J, θ) is a strictly pseudoconvex CR manifold

(M,H, J) endowed with a pseudo-Hermitian 1-form θ. It can be regarded as an odd dimen-

sional analogue of a Hermitian manifold. Harmonic maps and their generalizations have also

been used to study pseudo-Hermitian manifolds. In [15], Petit established some rigidity result-

s for harmonic maps from pseudo-Hermitian manifolds. First, he proved that any harmonic

map from a compact Sasakian manifold to a Riemannian manifold with non-positive section-

al curvature is trivial on the Reeb field of the pseudo-Hermitian structure. A map with this

property is said to be foliated. Next he proved that under a similar rank condition as above,

the harmonic map from a compact Sasakian manifold to a Kähler manifold with strongly neg-

ative curvature is CR-holomorphic or CR-antiholomorphic. In [2], among other results, the

authors generalized Petit’s results to the case of pseudoharmonic maps. Besides, Li and Son

[12] defined the following ∂b-energy functional for maps from a pseudo-Hermitian manifold to

a Kähler manifold:

E∂b
(f) =

1

2

∫

M

|∂bf |2dvθ.

The ∂b-energy functional E∂b
(f) can be defined similarly. A critical point of E∂b

(·) was called
pseudo-Hermitian harmonic. Then they proved a “Siu-type holomorphicity” result for a pseudo-

Hermitian harmonic map under a rank condition on a dense subset of M .

In this paper, we consider maps from a pseudo-Hermitian manifold M to a Kähler manifold

(N, J̃, g̃), and introduce the following partial energy functionals:

E∂b,ξ
(f) =

1

2

∫

M

{
|∂bf |2 +

1

4
|df(ξ)|2

}
dvθ (1.1)

and

E∂b,ξ(f) =
1

2

∫

M

{
|∂bf |2 +

1

4
|df(ξ)|2

}
dvθ, (1.2)

where ξ denotes the Reeb vector field of (M, θ). Note that the usual energy E(f) = E∂b,ξ
(f) +

E∂b,ξ(f). A critical point of E∂b,ξ
(f) (resp. E∂b,ξ(f)) will be referred to as a ∂b-harmonic map

(resp. ∂b-harmonic map). Clearly E∂b,ξ
(f) = 0 (resp. E∂b,ξ(f) = 0) if and only if f is a foliated

CR map (resp. foliated anti-CR map).

For a map f : (M2m+1, H, J, θ) → (N, J̃, g̃), we set

Kb(f) = E∂b,ξ(f)− E∂b,ξ
(f) = E∂b

(f)− E∂b
(f).

The authors in [18] proved that if M is a compact Sasakian manifold, then Kb(f) is invariant

under a foliated deformation. First, we want to generalize their result to the case that the

domain manifold is a general pseudo-Hermitian manifold.

Theorem 1.1 Let (M2m+1, H, J, θ) be a compact pseudo-Hermitian manifold, and (N, J̃, g̃)

be a Kähler manifold. Then Kb(f) is a smooth foliated homotopy invariant, that is, Kb(ft) is

constant for any family {ft} of foliated maps.
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This is a foliated Lichnerowicz type result, which implies that the E∂b,ξ
-, E∂b,ξ- and E-

critical points through foliated maps coincide. Furthermore, in a given foliated homotopy class,

the E∂b,ξ
-, E∂b,ξ- and E-minima coincide.

Next, we try to generalize Petit’s foliated rigidity theorem and get the following result.

Theorem 1.2 Let (M2m+1, H, J, θ) be a compact Sasakian manifold with m ≥ 2, and

(N, J̃, g̃) be a Kähler manifold with strongly semi-negative curvature. If f : M → N is a

∂b-harmonic map or a ∂b-harmonic map, then f is foliated. Furthermore, f must be ∂b-

pluriharmonic (that is, fα
ij
= fα

ji
= 0), and

R̃βαγσ(f
α
i
f
β

j
− fα

j
f
β

i
)(fγ

i
fσ
j
− f

γ

j
fσ
i
) = 0.

Subsequently, by a similar argument as in [2, 10, 19], we obtain the following CR rigidity

result for ∂b-harmonic maps.

Theorem 1.3 Let (M2m+1, H, J, θ) be a compact Sasakian manifold with m ≥ 2, and

(N, J̃, g̃) be a Kähler manifold with strongly negative curvature. Suppose that f : M → N is a

∂b-harmonic map, and rankR(dfp) ≥ 3 at some point p ∈ M . Then f is a foliated CR map or

foliated anti-CR map.

2 Preliminaries

Let M2m+1 be a (2m + 1)-dimensional smooth orientable manifold. A CR structure on

M2m+1 is a complex rank-m subbundle H1,0 of T (M)⊗ C with the following properties

H1,0 ∩H0,1 = {0}, H0,1 = H1,0,

[Γ(H1,0),Γ(H1,0)] ⊆ Γ(H1,0).
(2.1)

The complex subbundle H1,0 corresponds to a real rank-2m subbundle H := ℜ{H1,0 ⊕H0,1}
of T (M), which carries a complex structure Jb defined by

Jb(V + V ) = i(V − V )

for any V ∈ H1,0. The synthetic object (M,H1,0) or (M,H, Jb) is called a CR manifold.

Let E be a real line bundle of T ∗M , whose fiber at each point x ∈ M is given by

Ex = {ω ∈ T ∗
xM : kerω ⊇ Hx}.

Since both TM and H are orientable vector bundles on M , the real line bundle E is orientable,

E has globally defined nowhere vanishing sections. Any such a section θ ∈ Γ(E\{0}) is referred
to as a pseudo-Hermitian 1-form on M .

Given a pseudo-Hermitian 1-form θ on M , we have the Levi form Lθ corresponding to θ,

which is defined by

Lθ(X,Y ) = dθ(X, JbY ) (2.2)
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for any X,Y ∈ H . The second condition in (2.1) implies that Lθ is Jb-invariant, and thus

symmetric. If Lθ is positive definite on H for some θ, then (M,H1,0) is said to be strictly

pseudoconvex. From now on, we will always assume that (M,H1,0) is a strictly pseudoconvex

CR manifold endowed with a pseudo-Hermitian 1-form θ, such that its Levi form Lθ is positive

definite. In this case the synthetic object (M,H1,0, θ) is referred to as a pseudo-Hermitian

manifold.

Let (M2m+1, H1,0, θ) be a pseudo-Hermitian manifold. Clearly θ is a contact form. Thus

there is a unique vector field ξ ∈ Γ(T (M)), called the Reeb vector field, such that

θ(ξ) = 1, iξdθ = 0, (2.3)

where iξ denotes the interior product with respect to ξ. The collection of all its integral

curves forms an oriented one-dimensional foliation Fξ on M , which is called the Reeb foliation.

The first condition in (2.3) implies that ξ is transversal to H . Therefore, T (M) admits a

decomposition

T (M) = H ⊕ Vξ, (2.4)

where Vξ := span{ξ} is a trivial line bundle on M . In terms of terminology from foliation theory,

H and Vξ are called the horizontal and vertical distributions, respectively. Let πH : TM → H

and πV : TM → Vξ be the natural projections associated with the direct sum decomposition

(2.4). In terms of θ, the Levi form Lθ can be extended to a Riemannian metric

gθ = Lθ(πH , πH) + θ ⊗ θ, (2.5)

which is called the Webster metric. It is convenient to extend the complex structure Jb on H

to an endomorphism J of T (M) by requiring that

J |H = Jb and J |Vξ
= 0, (2.6)

where | denotes the fiberwise restriction.

It is known that there exists a unique linear connection ∇ on (M2m+1, H1,0, θ), called the

Tanaka-Webster connection, such that (cf. [5, 20–21])

(1) ∇XΓ(H) ⊆ Γ(H) and ∇XJ = 0 for any X ∈ Γ(TM);

(2) ∇gθ = 0;

(3) T∇(X,Y ) = 2dθ(X,Y )ξ and T∇(ξ, JX) + JT∇(ξ,X) = 0 for any X,Y ∈ H , where

T∇(·, ·) denotes the torsion of the connection ∇.

One important partial component of T∇ is the pseudo-Hermitian torsion τ given by

τ(X) = T∇(ξ,X) (2.7)

for any X ∈ TM . Then (M,H1,0, θ) is said to be Sasakian if τ = 0.

For the pseudo-Hermitian manifold (M,H1,0, θ), we choose a local orthonormal frame field

{eA}2mA=0 = {ξ, e1, · · · , em, em+1, · · · , e2m} with respect to gθ such that

{em+1, · · · , e2m} = {Je1, · · · , Jem}.
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Such a frame field {eA}2mA=0 is referred to as an adapted frame field M . Set

ηj =
1√
2
(ej −

√
−1Jej), ηj = ηj , j = 1, · · · ,m. (2.8)

Let {θj}mj=1 be the dual frame field of {ηj}mj=1. By the properties of the Tanaka-Webster

connection ∇, we have (cf. [5])

∇ξ = 0, ∇ηj = θij ⊗ ηi, ∇ηj = θi
j
⊗ ηi, (2.9)

where {θij} denotes the connection 1-forms with respect to the frame field. Since τ(H1,0) ⊂ H0,1,

one may write

τ = τ iηi + τ iηi

= Ai
j
θj ⊗ ηi +Ai

j θ
j ⊗ ηi. (2.10)

From [21], we know that {θ, θi, θij} satisfies the following structure equations (cf. also [5, §1.4]):

dθ = 2
√
−1θi ∧ θi,

dθi = −θij ∧ θj +Ai
j
θ ∧ θj , (2.11)

dθij = −θik ∧ θkj + Πi
j

with

Πi
j = 2

√
−1(θi ∧ τ j − τ i ∧ θj) +Ri

jkl
θk ∧ θl

+W i

jk
θ ∧ θk −W i

jkθ ∧ θk, (2.12)

where W i

jk
= Ai

k,j
, W i

jk = Ak
j,i

are the covariant derivatives of A and Ri

jkl
are the components

of curvature tensor of the Tanaka-Webster connection.

Lemma 2.1 (cf. [2]) Let (M2m+1, H, J, θ) be a pseudo-Hermitian manifold with Tanaka-

Webster connection ∇. Let X and ρ be a vector field and 1-form on M, respectively. Then

divX =

2m∑

A=0

gθ(∇eAX, eA) and δρ = −
2m∑

A=0

(∇eAρ)(eA),

where {eA}2mA=0 = {ξ, e1, · · · , e2m} is an orthonormal frame field on M . Here div(·) and δ(·)
denote the divergence and codifferential, respectively.

Definition 2.1 A map f : (M,H, J) → (N, J̃) from a CR manifold to a complex manifold

is called a CR map (resp. anti-CR map) if df(H1,0) ⊂ T 1,0(N) (resp. df(H0,1) ⊂ T 1,0(N)),

equivalently, dfH ◦ J = J̃ ◦ dfH (resp. dfH ◦ J = −J̃ ◦ dfH), where dfH = df |H . In particular,

if N = C, then f is called a CR function (resp. anti-CR function).

A map f : (M,H, J, θ) → N from a pseudo-Hermitian manifold to a smooth manifold is

said to be foliated if df(ξ) = 0. Here the target manifold is regarded as a trivial foliation by

points. In [2, 8], the following type of generalized holomorphic maps was investigated.
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Definition 2.2 (cf. [8]) A smooth map f : (M,H, J, θ) → (N, J̃) from a pseudo-Hermitian

manifold to a complex manifold is called (J, J̃)-holomorphic (resp. anti-(J, J̃)-holomorphic) if

it satisfies df ◦ J = J̃ ◦ df (resp. df ◦ J = −J̃ ◦ df).

Remark 2.1 Clearly f : (M,H, J, θ) → (N, J̃) is a (J, J̃)-holomorphic map if and only if

it is a foliated CR map. Note that (J, J̃)-holomorphic map is also called CR-holomorphic map

in [15].

Let f : (M2m+1, H, J, θ) → (N, J̃, g̃) be a map from a pseudo-Hermitian manifold to a

Kähler manifold. We have the partial differentials

∂bf : H0,1 → T 1,0N, ∂bf : H1,0 → T 1,0N

defined by

∂bf = π1,0(df |H0,1 ), ∂bf = π1,0(df |H1,0 ),

where π1,0 : TCN → T 1,0N is the natural projection morphism. Let {e0, e1, · · · , e2m} be the

adapted frame field on M as given above. Similarly, let {ẽ1, · · · , ẽ2n} be a local orthonormal

frame field on (N, J̃, g̃) with ẽn+1 = J̃ ẽ1, · · · , ẽ2n = J̃ ẽn. Set

η̃α =
1√
2
(ẽα −

√
−1J̃ ẽα), α = 1, · · · , n. (2.13)

Let {θ̃α}nα=1 be the dual frame field of {η̃α}nα=1. In terms of the frame fields, we can write

∂bf = fα
j
θj ⊗ η̃α, ∂bf = fα

j θ
j ⊗ η̃α. (2.14)

Then

|∂bf |2 =
∑

j,α

fα
j
fα
j , |∂bf |2 =

∑

j,α

fα
j f

α
j

(2.15)

or

|∂bf |2 =
1

4
{〈df(ej), df(ej)〉+ 〈df(Jej), df(Jej)〉

− 2〈df(Jej), J̃df(ej)〉}

=
1

4

2m∑

A=1

{〈df(eA), df(eA)〉 − 〈J̃df(eA), df(JeA)〉}, (2.16)

|∂bf |2 =
1

4
{〈df(ej), df(ej)〉+ 〈df(Jej), df(Jej)〉

+ 2〈df(Jej), J̃df(ej)〉}

=
1

4

2m∑

A=1

{〈df(eA), df(eA)〉+ 〈J̃df(eA), df(JeA)〉}. (2.17)

Then we can introduce the following two energy functionals:

E∂b,ξ
(f) =

∫

M

{
|∂bf |2 +

1

4
|df(ξ)|2

}
dvθ (2.18)
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and

E∂b,ξ(f) =

∫

M

{
|∂bf |2 +

1

4
|df(ξ)|2

}
dvθ, (2.19)

where ξ is the Reeb vector field of (M, θ). Clearly E∂b,ξ
(f) ≡ 0 (resp. E∂b,ξ(f) ≡ 0) if and only

if f is a foliated CR map (resp. foliated anti-CR map).

Definition 2.3 A critical point of E∂b,ξ
(f) (resp. E∂b,ξ(f)) is called a ∂b-harmonic map

(resp. ∂b-harmonic map).

Remark 2.2 In [12], Li and Son introduced the ∂b-energy functional E∂b
(f) of f . Compared

with their definition, we include the term 1
4 |df(ξ)|2 in (2.18).

For a map f : (M,H1,0, θ) → (N, J̃, g̃), we define its second fundamental form by

β(X,Y ) = ∇̃Y df(X)− df(∇Y X)

for any X,Y ∈ Γ(TM), where ∇ and ∇̃ denote the Tanaka-Webster connection of M and the

Levi-Civita connection of N , respectively. The notion of the above second fundamental form

has appeared in literature in various special cases (cf. [4, 6, 15–16], etc.).

Lemma 2.2 (cf. [3]) Let f : (M,∇)→(N, ∇̃) be a map between manifolds with the linear

connections. Then

∇̃Xdf(Y )− ∇̃Y df(X)− df([X,Y ]) = T∇̃(df(X), df(Y ))

for any X,Y ∈ Γ(TM), where T∇̃ denotes the torsion of ∇̃. Equivalently, we have

β(X,Y )− β(Y,X) = df(T∇(X,Y ))− T∇̃(df(X), df(Y )).

Now we want to derive the variation formulas of the energy functionals defined by (2.18)

and (2.19).

Lemma 2.3 Let (M2m+1, H, J, θ) be a pseudo-Hermitian manifold and (N, J̃, g̃) be a Kähler

manifold. Suppose that {ft}|t|<ε is a family of maps from M to N with f0 = f and v =
(
∂ft
∂t

)∣∣
t=0

∈ Γ(f−1TN). Then

dE∂b,ξ
(ft)

dt

∣∣∣
t=0

= −1

2

∫

M

〈v, trgθ β − 2mJ̃df(ξ)〉

and

dE∂b,ξ(ft)

dt

∣∣∣
t=0

= −1

2

∫

M

〈v, trgθ β + 2mJ̃df(ξ)〉.

Proof Set F : M × (−ε, ε) → N by F (x, t) = ft(x) for any x ∈ M and t ∈ (−ε, ε). Then

dE∂b,ξ
(ft)

dt

∣∣∣
t=0
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=
1

4

∫

M

2m∑

A=1

{2〈∇̃ ∂
∂t
dF (eA), dF (eA)〉 − 〈J̃∇̃ ∂

∂t
dF (eA), dF (JeA)〉

− 〈J̃dF (eA), ∇̃ ∂
∂t
dF (JeA)〉}dvθ +

1

2

∫

M

〈∇̃ ∂
∂t
dF (ξ), dF (ξ)〉dvθ

=

2m∑

A=1

∫

M

1

4
{2〈∇̃eAv, df(eA)〉 − 〈J̃∇̃eAv, df(JeA)〉

− 〈J̃df(eA), ∇̃JeAv〉}dvθ +
1

2

∫

M

〈∇̃ξv, df(ξ)〉dvθ

=
1

2

2m∑

A=0

∫

M

{〈∇̃eAv, df(eA)〉+ 〈∇̃eAv, J̃df(JeA)〉}dvθ

=
1

2

2m∑

A=0

∫

M

{eA〈v, df(eA)〉 − 〈v, df(∇eAeA)〉 − 〈v, (∇̃eAdf)(eA)〉

+ eA〈v, J̃df(JeA)〉 − 〈v, J̃dfJ(∇eAeA)〉 − 〈v, (∇̃eA J̃dfJ)(eA)〉}. (2.20)

Define a 1-form ρ by ρ(X) = 〈v, df(X)〉+ 〈v, J̃ ◦ df ◦ J(X)〉 for any X ∈ TM . By Lemma 2.1,

we deduce that

δρ = −
2m∑

A=0

(∇eAρ)(eA). (2.21)

It follows from (2.20)–(2.21) that

dE∂b,ξ
(ft)

dt

∣∣∣
t=0

= −1

2

∫

M

〈
v,

2m∑

A=0

(∇̃eAdf)(eA) + [∇̃eA(J̃ ◦ df ◦ J)](eA)
〉
. (2.22)

Next,

2m∑

A=1

[∇̃eA(J̃ ◦ df ◦ J)](eA) =
2m∑

A=1

∇̃eA(J̃ ◦ df ◦ JeA)− J̃ ◦ df ◦ J(∇eAeA)

=

2m∑

A=1

J̃ [∇̃eAdf(JeA)− df(∇eAJeA)]

=

2m∑

A=1

J̃β(JeA, eA)

=

m∑

j=1

J̃ [β(Jej , ej)− β(ej , Jej)]

=

m∑

j=1

J̃df(T∇(Jej , ej))

= −2mJ̃df(ξ).

Then we get the variation formula for E∂b,ξ
(f) from (2.22). The variation formula for E∂b,ξ(f)

may be derived in a similar way. Hence we complete the proof of this lemma.
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Define the tension field τ∂b,ξ
(f) of f with respect to the functional E∂b,ξ

by

τ∂b,ξ
(f) := trgθ β − 2mJ̃df(ξ).

Then, according to Lemma 2.3, f is ∂b-harmonic if and only if τ∂b,ξ
(f) = 0.

Note that τ∂b,ξ
(f) = 0 (or τ∂b,ξ(f) = 0) is a system of elliptic differential equations that

differ from the harmonic map equation by a linear first-order term. By a similar argument as

in [17], we have the following theorem.

Theorem 2.1 (Unique continuation) Let f : (M2m+1, H, J, θ) → (N2n, J̃ , g̃) be a ∂b-

harmonic map or ∂b-harmonic map. If f is constant on a non-empty open subset U of M , then

f is constant on M .

Let us recall some definitions of generalized harmonic maps from pseudo-Hermitian mani-

folds.

Definition 2.4 Let (M2m+1, H, J, θ) be a pseudo-Hermitian manifold and (N2n, J̃ , g̃) be a

Kähler manifold. Suppose that f : M → N is a smooth map. We say f is

(i) pseudo-harmonic, if trgθ (πHβ) = 0 (cf. [1]);

(ii) pseudo-Hermitian harmonic, if it is a critical point of E∂b
(·) (cf. [12]);

(iii) ∂b-pluriharmonic, if β(X,Y ) + β(JX, JY ) = 0 for all X,Y ∈ H (cf. [4]).

Remark 2.3 Clearly, we have the following results:

(a) If f is ∂b-pluriharmonic, then it must be pseudoharmonic (cf. [3]);

(b) if f is a CR map, then f is pseudo-Hermitian harmonic;

(c) if f is a CR map (resp. anti-CR map), then f is ∂b-harmonic (resp. ∂b-harmonic) if

and only if β(ξ, ξ) = 0 (cf. (5.3));

(d) if f is foliated, then notions of ∂b-harmonic, ∂b-harmonic, pseudoharmonic, pseudo-

Hermitian harmonic and harmonic maps coincide.

Besides, as proved in [2], if f is ∂b-pluriharmonic, then it is foliated; if f is ±(J, J̃)-

holomorphic, then it is ∂b-pluriharmonic.

3 Lichnerowicz Type Results

In this section, we generalize the Lichnerowicz type result in [18] to the case that the domain

manifold is a general pseudo-Hermitian manifold.

Let f : (M2m+1, H, J, θ) → (N, J̃, ωN ) be a smooth map from a pseudo-Hermitian manifold

to a Kähler manifold, where ωN is the Kähler form of N , given by ωN (X,Y ) = g̃(JX, Y ) for

all X,Y ∈ TN . Set

kb(f) = |∂bf |2 − |∂bf |2 (3.1)

and

Kb(f) = E∂b,ξ(f)− E∂b,ξ
(f). (3.2)
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Lemma 3.1 Under the above notations, we have

kb(f) = 〈dθ, f∗ωN〉.

Proof Let {ξ, e1, · · · , em, Je1, · · · , Jem} be an adapted frame on M . Using (2.2) and

(2.16)–(2.17), we deduce that

〈dθ, f∗ωN〉 =
∑

i<j

{(f∗ωN)(ei, ej)dθ(ei, ej) + (f∗ωN )(Jei, Jej)dθ(Jei, Jej)}

+
∑

i,j

(f∗ωN )(ei, Jej)dθ(ei, Jej)

=
∑

i

〈J̃df(ei), df(Jei)〉

= kb(f).

The following lemma is useful.

Lemma 3.2 (Homotopy Lemma) (cf. [6, 13]) Let ft : M → N be a family of smooth

maps between smooth manifolds, parameterized by real number t, and let ω be a closed two-form

on N . Then

∂

∂t
(f∗

t ω) = d
(
f∗
t i
(∂ft
∂t

)
ω
)
,

where the notation i(X) denotes the interior product with respect to the vector X.

Lemma 3.3 Let ft : (M2m+1, H, J, θ) → (N, J̃, ωN) be a family of smooth maps from a

compact pseudo-Hermitian manifold to a Kähler manifold. Then

d

dt
Kb(ft) = 2m

∫

M

ωN(vt, dft(ξ))dvθ ,

where vt =
∂ft
∂t

.

Proof In terms of Lemmas 3.1–3.2, we have

d

dt
Kb(ft) =

∫

M

〈 ∂

∂t
f∗
t ω

N , dθ
〉
dvθ

=

∫

M

〈
d
(
f∗
t i
(∂ft
∂t

)
ωN

)
, dθ

〉
dvθ

=

∫

M

〈
f∗
t i
(∂ft
∂t

)
ωN , δdθ

〉
dvθ.

Recall that (cf. [5])

∇θ
XY = ∇XY − (dθ(X,Y ) +A(X,Y ))ξ + θ(Y )τ(X) + θ(X)JY + θ(Y )JX

for any X,Y ∈ Γ(TM), where ∇θ denotes the Levi-Civita connection of gθ. Let {eA}2mA=0 =

{ξ, e1, · · · , e2m} be an adapted frame field in M . For X ∈ HM , we compute

(δdθ)(X) = −
2m∑

A=0

(∇θ
eA
dθ)(eA, X)
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= −
2m∑

A=0

{eAdθ(eA, X)− dθ(∇θ
eA
eA, X)− dθ(eA,∇θ

eA
X)}

= −
2m∑

A=1

{eAdθ(eA, X)− dθ(∇eAeA, X)− dθ(eA,∇eAX)}

= −
2m∑

A=1

(∇eAdθ)(eA, X)

= 0,

where the last equality is due to ∇dθ = 0. Next,

(δdθ)(ξ) =

2m∑

A=1

dθ(eA,∇θ
eA
ξ)

=

2m∑

A=1

dθ(eA, τ(eA) + JeA)

= 2m,

since

dθ(ei, τ(ei)) + dθ(Jei, τJei)

= dθ(ei, τ(ei))− dθ(ei, τ(ei))

= 0.

Therefore,

d

dt
Kb(ft) =

∫

M

〈
f∗
t i
(∂ft
∂t

)
ωN , δdθ

〉
dvθ

=

∫

M

〈f∗
t [ω

N (vt, ·)], δdθ〉dvθ

=

∫

M

ωN(vt, dft(ξ))δdθ(ξ)dvθ

= 2m

∫

M

ωN (vt, dft(ξ))dvθ .

Corollary 3.1 Let ft : (M2m+1, H, J, θ) → (N, J̃, ωN ) be a family of smooth maps from

a compact pseudo-Hermitian manifold to a Kähler manifold, such that dft(ξ) = 0 for every t.

We refer to such {ft} as a family of foliated maps. Then Kb(ft) is a constant.

Thus, if ft : M → N is a family of foliated maps, then

d

dt
E∂b,ξ

(ft) =
d

dt
E∂b,ξ(ft) =

1

2

d

dt
E(ft),

where E(f) = E∂b,ξ
(f) + E∂b,ξ(f) is the usual energy functional of f . Then, the following

theorems are evident.
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Theorem 3.1 (i) The E∂b,ξ
-, E∂b,ξ- and E-critical points through foliated maps coincide.

Moreover, in a given foliated homotopy class, the E∂b,ξ
-, E∂b,ξ- and E-minima coincide.

(ii) If f is ±(J, J̃)-holomorphic, then it is an absolute minimum of E in its foliated class.

Proof (i) For any f, f0 in the same foliated homotopy class, the following equality holds:

E∂b,ξ
(f)− E∂b,ξ

(f0) = E∂b,ξ(f)− E∂b,ξ(f0).

Consequently, if E∂b,ξ
(f0) ≤ E∂b,ξ

(f) for all f , then E∂b,ξ(f0) ≤ E∂b,ξ(f) for all f . Similarly,

from the equality

E(f)− E(f0) = 2E∂b,ξ
(f)− 2E∂b,ξ

(f0),

we conclude that E∂b,ξ
and E-minima coincide.

(ii) A (J, J̃)-holomorphic map (resp. anti-(J, J̃)-holomorphic map) satisfies E∂b,ξ
(f) = 0

(resp. E∂b,ξ(f) = 0) and is therefore an absolute minimum of E in its foliated class.

Theorem 3.2 Let ft : (M
2m+1, H, J, θ) → (N, J̃, ωN) be a family of foliated maps from a

pseudo-Hermitian manifold to a Kähler manifold with 0 ≤ t ≤ 1. Suppose that f0 is (J, J̃)-

holomorphic and f1 is anti-(J, J̃)-holomorphic, then f0 and f1 are constant. In particular, any

±(J, J̃)-holomorphic map in a trivial foliated homotopy class is constant.

Proof Since E∂b,ξ
(f0) = E∂b,ξ(f1) = 0, 0 ≤ E∂b,ξ(f0) = −E∂b,ξ

(f1) ≤ 0, which leads to

E∂b,ξ(f0) = E∂b,ξ
(f1) = 0. Thus, E(f0) = E(f1) = 0.

4 Commutation Relations

In this section, we derive the commutation relations for maps from a pseudo-Hermitian

manifold to a Kähler manifold. While the case of a map from a pseudo-Hermitian manifold to

a general Riemannian manifold has been addressed in [2], we present it here using our notation

for the sake of clarity and convenience.

Let f : (M2m+1, H, J, θ) → (N2n, J̃ , g̃) be a smooth map, where (M2m+1, H, J, θ) is a

pseudo-Hermitian manifold and (N2n, J̃ , g̃) is a Kähler manifold. Let {θi} be a local adapted

coframe on M , and let {ω̃α} be a local orthonormal coframe on N as aforementioned. Unless

otherwise stated, we adhere to the following index conventions:

A,B,C,D = 0, 1, · · · ,m, 1, · · · ,m;

i, j, k, l, s = 1, · · · ,m;

I, J,K, L, P = 1, · · · , n, 1, · · · , n;
α, β, γ, σ = 1, · · ·n,

and employ the summation convention on repeated indices. The structure equations for Levi-

Civita connection ∇̃ on (N, J̃) can be expressed by

dω̃α = −ω̃α
β ∧ ω̃β , ω̃α

β + ω̃
β
α = 0,
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dω̃α
β = −ω̃α

γ ∧ ω̃
γ
β + Ω̃α

β ,

where Ω̃α
β = R̃α

βγσω̃
γ ∧ ω̃σ. Since N is Kähler, the only possibly non-zero components of R̃L

IJK

are

R̃α
βγσ, R̃α

βγσ
, R̃α

βγσ, R̃α

βγσ
.

Set

R̃IJKL = g̃(R̃(η̃K , η̃L)η̃J , η̃I) = g̃PIR̃
P
JKL.

Let

df = f I
Aθ

A ⊗ η̃I ,

β = f I
ABθ

A ⊗ θB ⊗ η̃I ,

∇̃β = f I
ABCθ

A ⊗ θB ⊗ θC ⊗ η̃I ,

(4.1)

where ∇̃β is the covariant derivative of β with respect to (∇, ∇̃). Here, β denotes the second

fundamental form of f . Thus we have

f∗ω̃α = fα
j θ

j + fα
j
θj + fα

0 θ. (4.2)

Differentiating (4.2), we have

f∗dω̃α = fα
j dθ

j + fα
j
dθj + fα

0 dθ

+ dfα
j ∧ θj + dfα

j
∧ θj + dfα

0 ∧ θ.

By structure equations on M and N , we have

−f∗ω̃α
β ∧ f∗ω̃β = −f∗ω̃α

β ∧ (fβ
j θ

j + f
β

j
θj + f

β
0 θ)

= fα
j (θ

k ∧ θ
j
k + θ ∧ τ j) + fα

j
(θk ∧ θ

j

k
+ θ ∧ τ j) + fα

0 (2
√
−1hjkθ

j ∧ θk)

+ dfα
j ∧ θj + dfα

j
∧ θj + dfα

0 ∧ θ.

After rearranging the above formula, we get

Dfα
B ∧ θB + 2

√
−1fα

0 hkl θ
k ∧ θl − fα

k A
k

l
θl ∧ θ − fα

k
Ak

l θ
l ∧ θ = 0, (4.3)

where

Dfα
k ≡ dfα

k − fα
l θ

l
k + f

β
k ω̃

α
β = fα

kBθ
B, (4.4)

Dfα
k
≡ dfα

k
− fα

l
θl
k
+ f

β

k
ω̃α
β = fα

kB
θB, (4.5)

Dfα
0 ≡ dfα

0 + f
β
0 ω̃

α
β = fα

0Bθ
B. (4.6)

Here, for simplicity, we write f∗(ω̃α
β ) as ω̃

α
β on the right hand side of the above formulas. Then

(4.3) gives

fα
jk = fα

kj , fα

jk
= fα

kj
, fα

jk
− fα

kj
= 2

√
−1fα

0 hjk,

fα
0j − fα

j0 = fα
k
Ak

j , fα
0j

− fα
j0

= fα
k A

k
j
.

(4.7)
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Since we have adopted a unitary frame here and in the following, we have hjk = δjk.

Differentiating (4.4), we have

−fα
l dθ

l
k + f

β
k dω̃

α
β − dfα

l ∧ θlk + dfβ
k ∧ ω̃α

β = fα
kBdθ

B + dfα
kB ∧ θB.

Using structure equations again, we have

0 = fα
j (−θ

j
l ∧ θlk +Πj

k)− f
β
k (−ω̃α

γ ∧ ω̃
γ
β + Ω̃α

β)

+ fα
kj(θ

l ∧ θ
j
l + θ ∧ τ j) + fα

kj
(θl ∧ θ

j

l
+ θ ∧ τ j) + 2

√
−1hjkf

α
k0θ

j ∧ θk

+ dfα
l ∧ θlk − dfβ

k ∧ ω̃α
β + dfα

kB ∧ θB.

It follows that

Dfα
kB ∧ θB + 2

√
−1fα

k0hjlθ
j ∧ θl − fα

klA
l
j
θj ∧ θ − fα

kl
Al

jθ
j ∧ θ = −fα

l Π
l
k + f

β
k Ω̃

α
β , (4.8)

where

Dfα
jk ≡ dfα

jk − fα
jlθ

l
k − fα

lkθ
l
j + f

β
jkω̃

α
β = fα

jkBθ
B, (4.9)

Dfα

jk
≡ dfα

jk
− fα

jl
θl
k
− fα

lk
θlj + f

β

jk
ω̃α
β = fα

jkB
θB, (4.10)

Dfα
j0 ≡ dfα

j0 − fα
l0θ

l
j + f

β
j0ω̃

α
β = fα

j0Bθ
B . (4.11)

From (4.8), we have

fα
ijk = fα

ikj − f
β
i f

γ
j f

σ
k R̃

α
βγσ + f

β
i f

γ
k f

σ
j R̃

α
βγσ + 2

√
−1fα

j Aik − 2
√
−1fα

k Aij ,

fα

ijk
= fα

ikj
− f

β
i f

γ

j
fσ

k
R̃α

βγσ + f
β
i f

γ

k
fσ
j
R̃α

βγσ + 2
√
−1fα

l hijA
l

k
− 2

√
−1fα

l hikA
l
j
,

fα

ijk
= fα

ikj
− f

β
i f

γ
j f

σ

k
R̃α

βγσ + f
β
i f

γ

k
fσ
j R̃

α
βγσ + fα

l R
l

ijk
+ 2

√
−1fα

i0hjk,

fα
ij0 = fα

i0j − f
β
i f

γ
j f

σ
0 R̃

α
βγσ + f

β
i f

γ
0 f

σ
j R̃

α
βγσ + fα

l h
lkAij,k − fα

ik
Ak

j ,

fα
ij0

= fα
i0j

− f
β
i f

γ

j
fσ
0 R̃

α
βγσ + f

β
i f

γ
0 f

σ
j
R̃α

βγσ − fα
l h

lkAjk,i − fα
ikA

k
j
.

(4.12)

Similarly, differentiating (4.5), we have

Dfα
kB

∧ θB + 2
√
−1fα

k0
hjlθ

j ∧ θl − fα
kl
Al

j
θj ∧ θ − fα

kl
Al

jθ
j ∧ θ = −fα

l
Πl

k
+ f

β

k
Ω̃α

β , (4.13)

where

Dfα
jk

≡ dfα
jk

− fα
jl
θlk − fα

lk
θl
j
+ f

β

jk
ω̃α
β = fα

jkB
θB, (4.14)

Dfα

jk
≡ dfα

jk
− fα

jl
θl
k
− fα

lk
θl
j
+ f

β

jk
ω̃α
β = fα

jkB
θB, (4.15)

Dfα
j0

≡ dfα
j0

− fα

l0
θl
j
+ f

β

j0
ω̃α
β = fα

j0B
θB . (4.16)

From (4.13), we have

fα
ijk

= fα
ikj

− f
β

i
f
γ
j f

σ
k R̃

α
βγσ + f

β

i
f
γ
k f

σ
j R̃

α
βγσ + 2

√
−1fα

l
hikA

l
j − 2

√
−1fα

l
hijA

l
k,

fα

ijk
= fα

ikj
− f

β

i
f
γ

j
fσ

k
R̃α

βγσ + f
β

i
f
γ

k
fσ
j
R̃α

βγσ + 2
√
−1fα

k
Aij − 2

√
−1fα

j
Aik,

fα

ijk
= fα

ikj
− f

β

i
f
γ
j f

σ

k
R̃α

βγσ + f
β

i
f
γ

k
fσ
j R̃

α
βγσ + fα

l
Rl

ijk
+ 2

√
−1fα

i0
hjk,

fα
ij0

= fα
i0j

− f
β

i
f
γ
j f

σ
0 R̃

α
βγσ + f

β

i
f
γ
0 f

σ
j R̃

α
βγσ − fα

l
hlkAjk,i − fα

ik
Ak

j ,

fα
ij0

= fα
i0j

− f
β

i
f
γ

j
fσ
0 R̃

α
βγσ + f

β

i
f
γ
0 f

σ
j
R̃α

βγσ + fα

l
hlkAij,k − fα

ik
Ak

j
.

(4.17)
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Differentiating (4.6) using the same argument yields

Dfα
0B ∧ θB + 2

√
−1fα

00hjkθ
j ∧ θk − fα

0jA
j

k
θk ∧ θ − fα

0j
A

j
kθ

k ∧ θ = f
β
0 Ω̃

α
β , (4.18)

where

Dfα
0k ≡ dfα

0k − fα
0jθ

j
k + f

β
0kω̃

α
β = fα

0kBθ
B , (4.19)

Dfα

0k
≡ dfα

0k
− fα

0j
θ
j

k
+ f

β

0k
ω̃α
β = fα

0kB
θB , (4.20)

Dfα
00 ≡ dfα

00 + f
β
00ω̃

α
β = fα

00Bθ
B . (4.21)

From (4.18), we have

fα
0jk = fα

0kj − f
β
0 f

γ
j f

σ
k R̃

α
βγσ + f

β
0 f

γ
k f

σ
j R̃

α
βγσ,

fα

0jk
= fα

0kj
− f

β
0 f

γ
j f

σ

k
R̃α

βγσ + f
β
0 f

γ

k
fσ
j R̃

α
βγσ + 2

√
−1fα

00hjk,

fα
00k = fα

0k0 − f
β
0 f

γ
0 f

σ
k R̃

α
βγσ + f

β
0 f

γ
k f

σ
0 R̃

α
βγσ + fα

0j
A

j
k,

fα

00k
= fα

0k0
− f

β
0 f

γ
0 f

σ

k
R̃α

βγσ + f
β
0 f

γ

k
fσ
0 R̃

α
βγσ + fα

0jA
j

k
.

(4.22)

Last, from (4.7), we have

fα
ijk

= fα
jik

+ 2
√
−1hijf

α
0k,

fα

ijk
= fα

jik
+ 2

√
−1hijf

α

0k
,

fα
0jk = fα

j0k + fα

lk
Al

j + fα

l
Al

j,k,

fα

0jk
= fα

j0k
+ fα

lk
Al

j + fα

l
Al

j,k
,

fα
0jk

= fα
j0k

+ fα
lkA

l
j
+ fα

l A
l
j,k

,

fα

0jk
= fα

j0k
+ fα

lk
Al

j
+ fα

l A
l

j,k
.

(4.23)

5 Foliated and (J, J̃)-Holomorphicity Results

A divergence of a vector field X on (M,H, θ) is defined by

LXΨ = div(X)Ψ,

where Ψ = θ ∧ (dθ)m is the volume form. One has (cf. Lemma 2.1)

div(X) = trgθ (Y ∈ TM → ∇Y X). (5.1)

Also note that div is a real operator:

div(X) = div(X). (5.2)

If u is a function on (M,H, θ), then its sub-Laplacian ∆b is defined by, under an adapted

frame,

∆bu := div(∇Hu) = uii + uii,
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where ∇Hu is the horizontal component of the gradient of u. Note that the usual Laplacian of

u is

∆u = uii + uii + u00.

Using an adapted frame, we can express τ∂b,ξ
(f) as follows:

τ∂b,ξ
(f) = (fα

jj
+ fα

jj
+ fα

00 − 2m
√
−1fα

0 )η̃α + (fα
jj

+ fα
jj

+ fα
00 + 2m

√
−1fα

0 )η̃α.

Besides, it follows from the third equation of (4.7) that

fα
jj

+ fα
jj

+ fα
00 − 2m

√
−1fα

0 = 2fα
jj

+ fα
00.

Therefore, defining (Lf)α := 2fα
jj

+ fα
00, we may express τ∂b,ξ

(f) as

τ∂b,ξ
(f) = (Lf)αη̃α + (Lf)αη̃α. (5.3)

By applying the commutation relations in §4, we have the following lemma.

Lemma 5.1

1

2
∆|df(ξ)|2 = 2(|fα

0j |2 + |fα
0j
|2 + |fα

00|2) + fα
0 (Lf)

α
0 + fα

0 (Lf)
α
0 + 2

√
−1m(fα

0 f
α
00 − fα

0 f
ᾱ
00)

+ 2fα
0 f

β

j
f
γ
j f

σ
0 R̃αβγσ + 2fα

j
f
β
0 f

γ
0 f

σ
j R̃αβγσ

− 2fα
0 f

β

j
f
γ
0 f

σ
j R̃αβγσ − 2fα

0 f
β
j f

γ
0 f

σ
j
R̃αβγσ

+ 2(fα
0 f

α

l
+ fα

0 f
α

l
)Al

j,j
+ 2(fα

0 f
α
l + fα

0 f
α
l )A

l
j,j

+ 2(fα
0 f

α

jk
+ fα

0 f
α

jk
)Ak

j + 2(fα
0 f

α
lj + fα

0 f
α
lj)A

l
j
. (5.4)

Proof First,

1

2
∆|df(ξ)|2 = (fα

0 f
α
0 )jj + (fα

0 f
α
0 )jj + (fα

0 f
α
0 )00

= 2(fα
0jf

α
0j

+ fα
0j
fα
0j + fα

00f
α
00) + fα

0 (f
α
0jj

+ fα
0jj

+ fα
000) + fα

0 (f
α
0jj

+ fα
0jj

+ fα
000). (5.5)

From (4.17) and (4.23), we have

fα
0jj

= fα
j0j

+ fα
ljA

l
j
+ fα

l A
l
j,j

= fα
jj0

+ f
β

j
f
γ
j f

σ
0 R̃

α
βγσ − f

β

j
f
γ
0 f

σ
j R̃

α
βγσ

+ fα

l
hlkAjk,j + fα

jk
Ak

j + fα
ljA

l
j
+ fα

l A
l
j,j

. (5.6)

From (4.12) and (4.23), we have

fα
0jj

= fα
j0j

+ fα

lj
Al

j + fα

l
Al

j,j

= fα
jj0

+ f
β
j f

γ

j
fσ
0 R̃

α
βγσ − f

β
j f

γ
0 f

σ
j
R̃α

βγσ

+ fα
l h

lkAjk,j + fα
jkA

k
j
+ fα

lj
Al

j + fα

l
Al

j,j
. (5.7)



On ∂b-Harmonic Maps from Pseudo-Hermitian Manifolds to Kähler Manifolds 245

Note that

fα
0 (f

β

j
f
γ
j f

σ
0 R̃

α
βγσ − f

β

j
f
γ
0 f

σ
j R̃

α
βγσ + f

β
j f

γ

j
fσ
0 R̃

α
βγσ − f

β
j f

γ
0 f

σ
j
R̃α

βγσ)

= 2fα
0 f

β

j
f
γ
j f

σ
0 R̃αβγσ − fα

0 f
β

j
f
γ
0 f

σ
j R̃αβγσ − fα

0 f
β
j f

γ
0 f

σ
j
R̃αβγσ (5.8)

and, by (4.7),

fα
0 (f

α

l
hlkAjk,j + fα

jk
Ak

j + fα
ljA

l
j
+ fα

l A
l
j,j

)

+ fα
0 (f

α
l h

lkAjk,j + fα
jkA

k
j
+ fα

lj
Al

j + fα

l
Al

j,j
)

= 2fα
0 f

α
l
Al

j,j
+ 2fα

0 f
α
l A

l
j,j

+ 2fα
0 f

α
jk
Ak

j + 2fα
0 f

α
ljA

l
j
. (5.9)

Therefore, substituting (5.6)–(5.9) into (5.5), we get

1

2
∆|df(ξ)|2 = 2(|fα

0j|2 + |fα
0j
|2 + |fα

00|2) + fα
0 (f

α
jj0

+ fα
jj0

+ fα
000) + fα

0 (f
α
jj0

+ fα
jj0

+ fα
000)

+ 2fα
0 f

β

j
f
γ
j f

σ
0 R̃αβγσ + 2fα

j
f
β
0 f

γ
0 f

σ
j R̃αβγσ − 2fα

0 f
β

j
f
γ
0 f

σ
j R̃αβγσ

− 2fα
0 f

β
j f

γ
0 f

σ
j
R̃αβγσ + 2(fα

0 f
α

l
+ fα

0 f
α

l
)Al

j,j
+ 2(fα

0 f
α
l + fα

0 f
α
l )A

l
j,j

+ 2(fα
0 f

α

jk
+ fα

0 f
α

jk
)Ak

j + 2(fα
0 f

α
lj + fα

0 f
α
lj)A

l
j
.

Taking into account the identity

(Lf)α0 = fα
jj0

+ fα
jj0

+ fα
000 − 2m

√
−1fα

00,

we obtain (5.4).

Remark 5.1 One can check that

g̃(R̃(df(ηj), df(ξ))df(ηj), df(ξ))

= g̃(R̃(fβ
j η̃β + fα

j η̃α, f
γ
0 η̃γ + fσ

0 η̃σ)(f
α
j
η̃α + f

β

j
η̃β), f

γ
0 η̃γ + fσ

0 η̃σ)

= fα
0 f

β

j
f
γ
j f

σ
0 R̃αβγσ + fα

j
f
β
0 f

γ
0 f

σ
j R̃αβγσ

− fα
0 f

β

j
f
γ
0 f

σ
j R̃αβγσ − fα

0 f
β
j f

γ
0 f

σ
j
R̃αβγσ.

If N has non-positive sectional curvature, then

g̃(R̃(Z,X)Z,X) ≥ 0

for any complex vector Z and any real vector X on N . Thus, if this is the case, the curvature

terms on the right-hand side of (5.4) combine to yield a non-negative quantity.

Lemma 5.2 Let (M2m+1, H, J, θ) be a compact pseudo-Hermitian manifold. Let f : M2m+1

→ (N2n, J̃ , g̃) be a smooth map. If the second fundamental form satisfies

β(ξ,X) = 0 ∀X ∈ H,

then f is foliated.
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Proof Since N is a Riemannian manifold, the claim follows directly from [2]. We present

the proof for readers’ convenience.

By the integration by parts and the third formula in (4.7), we have

0 =
√
−1

∫

M

(fα
j f

α
0j

− fα
j
fα
0j)dVg = −

√
−1

∫

M

(fα
jj
fα
0 − fα

jj
fα
0 )dVg

= 2m

∫

M

|fα
0 |2dVg.

Therefore, fα
0 = 0.

The main difficulty in applying Lemma 5.1 arises from the mixed term

2
√
−1m(fα

0 f
α
00 − fα

0 f
α
00)

and the terms related to torsion. To address the mixed term, we need to add an extra term |fα
00|2

(see below for details). Inspired by [2], we define the following generalized Paneitz operator

acting on maps:

Pf :=
(
fα
jjk

+
1

2
fα
00k + 2m

√
−1Akjf

α
j

)

︸ ︷︷ ︸
:=(Pf)α

k

θk ⊗ η̃α.

In [12] (cf. also [9]), Li and Son defined the following tensors

Bf = Bijf
αθi ⊗ θj ⊗ η̃α

and

E = Ejθ
j ,

where

Bijf
α := fα

ij
− 1

m
fα

kk
hij

and

Ej := (Bijf
α)fα

i
.

Then −δE is given by

Ej,j =
(
fα
ijj

− 1

m
fα

kkj
hij

)
fα
i
+ (Bijf

α)fα
ij

= |Bijf
α|2 + m− 1

m
〈Pf, ∂bf〉 − R̃αβγσf

σ
i
f
β

j
(fγ

i f
α
j − f

γ
j f

α
i )−

m− 1

2m
fα
00kf

α
k
.

Taking integration of δE over M gives

−m− 1

m

∫

M

〈Pf, ∂bf〉dVg =

∫

M

|Bijf
α|2dVg −

∫

M

R̃αβγσf
σ
i
f
β

j
(fγ

i f
α
j − f

γ
j f

α
i )dVg

− m− 1

2m

∫

M

fα
00kf

α

k
dVg .

Note that

fα

kk
− fα

kk
= −2

√
−1mfα

0 ,
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thus,
∫

M

fα
00kf

α

k
dVg = −

∫

M

fα
00f

α

kk
dVg

= −
∫

M

fα
00(f

α

kk
− 2m

√
−1fα

0 )dVg

= −1

2

∫

M

fα
00((Lf)

α − fα
00)dVg + 2m

√
−1

∫

M

fα
00f

α
0 dVg

=
1

2

∫

M

|fα
00|2dVg −

1

2

∫

M

fα
00(Lf)

αdVg + 2m
√
−1

∫

M

fα
00f

α
0 dVg.

Therefore,

−m− 1

m

∫

M

〈Pf, ∂bf〉dVg =

∫

M

|Bijf
α|2dVg −

∫

M

R̃αβγσf
σ
i
f
β

j
(fγ

i f
α
j − f

γ
j f

α
i )dVg

− m− 1

4m

∫

M

|fα
00|2dVg +

m− 1

4m

∫

M

fα
00(Lf)

αdVg

− (m− 1)
√
−1

∫

M

fα
00f

α
0 dVg. (5.10)

Recall that the curvature tensor R̃βαγσ is said to be strongly negative (resp. strongly semi-

negative) if

R̃βαγσ(A
βBα − CβDα)(AσBγ − CσDγ)

is positive (resp. non-negative) for any complex numbers Aα, Bα, Cα, Dα whenever there exists

at least one pair of indices (α, β) such that AβBα − CβDα 6= 0 (cf. [19]). Evidently, strongly

negative curvature (resp. strongly semi-negative curvature) implies negative sectional curvature

(resp. semi-negative sectional curvature). If N has strongly semi-negative curvature, then

−R̃αβγσf
σ
i
f
β

j
(fγ

i f
α
j − f

γ
j f

α
i ) =

1

2
R̃βαγσ(f

α
i
f
β

j
− fα

j
f
β

i
)(fγ

i
fσ
j
− f

γ

j
fσ
i
) ≥ 0.

Next, we introduce the 1-form F = Fkθ
k with

Fk :=
(
fα
jj

+
1

2
fα
00

)
fα

k
.

Then

Fk,k =
(
fα
jjk

+
1

2
fα
00k

)
fα
k
+
(
fα
jj

+
1

2
fα
00

)
fα
kk

= ((Pf)αk − 2m
√
−1Akjf

α
j
)fα

k
+

1

2
(Lf)αfα

kk
.

Integrating δF on M yields
∫

M

〈Pf, ∂bf〉dVg = −1

2

∫

M

(Lf)αfα

kk
dVg + 2m

√
−1

∫

M

Akjf
α
j
fα

k
dVg. (5.11)

Theorem 5.1 Let (M2m+1, H, J, θ) be a compact Sasakian manifold with m ≥ 2, and

(N2n, J̃ , g̃) be a Kähler manifold with strongly semi-negative curvature. If f : M → N is a ∂b-

harmonic map or a ∂b-harmonic map, then f is foliated. Therefore, f must be ∂b-pluriharmonic

(that is, fα
ij
= fα

ji
= 0) and

R̃βαγσ(f
α
i
f
β

j
− fα

j
f
β

i
)(fγ

i
fσ
j
− f

γ

j
fσ
i
) = 0. (5.12)
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Proof Suppose that f is ∂b-harmonic (the case for ∂b-harmonic map is similar). Then

(Lf)α = 0, or equivalently,

fα
jj

+ fα
jj

+ fα
00 − 2m

√
−1fα

0 = 0. (5.13)

Since M is Sasakian, we have Aij = 0, and hence, (5.4) simplifies to

1

2
∆|df(ξ)|2 = 2

∑

j

(|fα
0j |2 + |fα

0j
|2) + 2|fα

00|2 + 2m
√
−1(fα

0 f
α
00 − fα

0 f
ᾱ
00)

+ 2fα
0 f

β

j
f
γ
j f

σ
0 R̃αβγσ + 2fα

j
f
β
0 f

γ
0 f

σ
j R̃αβγσ

− 2fα
0 f

β

j
f
γ
0 f

σ
j R̃αβγσ − 2fα

0 f
β
j f

γ
0 f

σ
j
R̃αβγσ. (5.14)

Therefore, by Remark 5.1, integrating (5.14) overM and applying integrating by parts, we have

4m
√
−1

∫

M

fα
0 f

α
00dVg + 2

∫

M

|fα
00|2dVg ≤ 0. (5.15)

On the other hand, since f is ∂b-harmonic, we get from (5.11) that
∫

M

〈Pf, ∂bf〉dVg = 0. (5.16)

From (5.10) and the curvature condition, we obtain

−
∫

M

|fα
00|2dVg − 4m

√
−1

∫

M

fα
00f

α
0 dVg ≤ 0. (5.17)

Then (5.15) and (5.17) imply that fα
00 = 0. Substituting it into (5.14), we get

1

2
∆|df(ξ)|2 ≥ 2

∑

j

(|fα
0j |2 + |fα

0j
|2) ≥ 0.

Thus, df(ξ) = 0 by utilizing the divergence theorem and Lemma 5.2.

Furthermore, by substituting (5.16) and fα
0 = 0 into (5.10), we obtain

∫

M

|Bijf
α|2dVg −

∫

M

R̃αβγσf
σ
i
f
β

j
(fγ

i f
α
j − f

γ
j f

α
i )dVg = 0.

Note that

−R̃αβγσf
σ
i
f
β

j
(fγ

i f
α
j − f

γ
j f

α
i ) =

1

2
R̃βαγσ(f

α
i
f
β

j
− fα

j
f
β

i
)(fγ

i
fσ
j
− f

γ

j
fσ
i
) ≥ 0.

Thus, we get (5.12) and Bijf
α = 0. Clearly, fα

0 = 0 and Aij = 0 imply that fα
jj

= fα
jj

= 0.

Consequently, from the definition of Bijf
α, we have

fα
ji
= fα

ij
=

1

m
fα

kk
hij = 0.

This completes the proof.

Note that the rank condition in Siu’s theorem mentioned in the introduction can be im-

proved as rankR(dfx) ≥ 3 at some point x (cf. [10]). By a similar argument as [2, 19], we get

immediately from (5.12) the following theorem.
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Theorem 5.2 Let (M2m+1, H, J, θ) be a compact Sasakian manifold with m ≥ 2 and

(N2n, J̃ , g̃) be a Kähler manifold with strongly negative curvature. Suppose that f : M → N

is a ∂b-harmonic map and df has real rank at least 3 at some point p ∈ M . Then f is either

(J, J̃)-holomorphic or anti-(J, J̃)-holomorphic.

Remark 5.2 If f is ∂b-harmonic (with the other assumptions unchanged), then the con-

clusion remains valid.
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