

On $\bar{\partial}_b$ -Harmonic Maps from Pseudo-Hermitian Manifolds to Kähler Manifolds*

Yuxin DONG¹ Hui LIU² Biqiang ZHAO³

Abstract This paper considers maps from pseudo-Hermitian manifolds to Kähler manifolds and introduces partial energy functionals for these maps. First, the authors obtain a foliated Lichnerowicz type result on general pseudo-Hermitian manifolds, which generalizes a related result on Sasakian manifolds by Shen–Shen–Zhang (2013). Next, the authors investigate critical maps of the partial energy functionals, which are referred to as $\bar{\partial}_b$ -harmonic maps and ∂_b -harmonic maps. The authors give a foliated result for both $\bar{\partial}_b$ - and ∂_b -harmonic maps, generalizing a foliated result of Petit (2002) for harmonic maps. Then the authors are able to generalize Siu’s holomorphicity result for harmonic maps by Siu (1980) to the case for $\bar{\partial}_b$ - and ∂_b -harmonic maps.

Keywords Pseudo-Hermitian manifold, $\bar{\partial}_b$ -Harmonic maps, Foliated CR map

2020 MR Subject Classification 53C25, 58E20

1 Introduction

In [19], Siu proved the following theorem.

Theorem A *Let $f : M \rightarrow N$ be a harmonic map between compact Kähler manifolds. If (N, g) has strongly negative curvature and $\text{rank}_{\mathbb{R}}(df_x) \geq 4$ at some point $x \in M$, then f is holomorphic or anti-holomorphic.*

The above theorem, combined with Eells–Sampson’s existence theorem (cf. [7]), implies Siu’s celebrated strong rigidity for compact Kähler manifolds with strongly negative curvature. Subsequently, there have been some research efforts to generalize Siu’s theorem to the case of non-Kähler Hermitian manifolds. In [11], Jost and Yau used Hermitian harmonic maps to generalize Siu’s rigidity theorem to the case where the domain manifold is astheno-Kähler. In [14], Liu and Yang considered the critical points of partial energies for maps from Hermitian manifolds, and discussed related holomorphicity results for these critical maps.

Manuscript received March 31, 2025.

¹School of Mathematical Sciences, Laboratory of Mathematics for Nonlinear Science, Fudan University, Shanghai 200433, China. E-mail: yxdong@fudan.edu.cn

²School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
E-mail: 21110180015@m.fudan.edu.cn liu_iuh41@163.com

³Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.
E-mail: 2306394354@pku.edu.cn

*This work was supported by the National Natural Science Foundation of China (No. 12171091) and the China Scholarship Council (No. 202306100156).

A pseudo-Hermitian manifold (M^{2m+1}, H, J, θ) is a strictly pseudoconvex CR manifold (M, H, J) endowed with a pseudo-Hermitian 1-form θ . It can be regarded as an odd dimensional analogue of a Hermitian manifold. Harmonic maps and their generalizations have also been used to study pseudo-Hermitian manifolds. In [15], Petit established some rigidity results for harmonic maps from pseudo-Hermitian manifolds. First, he proved that any harmonic map from a compact Sasakian manifold to a Riemannian manifold with non-positive sectional curvature is trivial on the Reeb field of the pseudo-Hermitian structure. A map with this property is said to be foliated. Next he proved that under a similar rank condition as above, the harmonic map from a compact Sasakian manifold to a Kähler manifold with strongly negative curvature is CR-holomorphic or CR-antiholomorphic. In [2], among other results, the authors generalized Petit's results to the case of pseudoharmonic maps. Besides, Li and Son [12] defined the following $\bar{\partial}_b$ -energy functional for maps from a pseudo-Hermitian manifold to a Kähler manifold:

$$E_{\bar{\partial}_b}(f) = \frac{1}{2} \int_M |\bar{\partial}_b f|^2 dv_\theta.$$

The ∂_b -energy functional $E_{\partial_b}(f)$ can be defined similarly. A critical point of $E_{\bar{\partial}_b}(\cdot)$ was called pseudo-Hermitian harmonic. Then they proved a “Siu-type holomorphicity” result for a pseudo-Hermitian harmonic map under a rank condition on a dense subset of M .

In this paper, we consider maps from a pseudo-Hermitian manifold M to a Kähler manifold $(N, \tilde{J}, \tilde{g})$, and introduce the following partial energy functionals:

$$E_{\bar{\partial}_b, \xi}(f) = \frac{1}{2} \int_M \left\{ |\bar{\partial}_b f|^2 + \frac{1}{4} |\mathrm{d}f(\xi)|^2 \right\} dv_\theta \quad (1.1)$$

and

$$E_{\partial_b, \xi}(f) = \frac{1}{2} \int_M \left\{ |\partial_b f|^2 + \frac{1}{4} |\mathrm{d}f(\xi)|^2 \right\} dv_\theta, \quad (1.2)$$

where ξ denotes the Reeb vector field of (M, θ) . Note that the usual energy $E(f) = E_{\bar{\partial}_b, \xi}(f) + E_{\partial_b, \xi}(f)$. A critical point of $E_{\bar{\partial}_b, \xi}(f)$ (resp. $E_{\partial_b, \xi}(f)$) will be referred to as a $\bar{\partial}_b$ -harmonic map (resp. ∂_b -harmonic map). Clearly $E_{\bar{\partial}_b, \xi}(f) = 0$ (resp. $E_{\partial_b, \xi}(f) = 0$) if and only if f is a foliated CR map (resp. foliated anti-CR map).

For a map $f : (M^{2m+1}, H, J, \theta) \rightarrow (N, \tilde{J}, \tilde{g})$, we set

$$K_b(f) = E_{\partial_b, \xi}(f) - E_{\bar{\partial}_b, \xi}(f) = E_{\partial_b}(f) - E_{\bar{\partial}_b}(f).$$

The authors in [18] proved that if M is a compact Sasakian manifold, then $K_b(f)$ is invariant under a foliated deformation. First, we want to generalize their result to the case that the domain manifold is a general pseudo-Hermitian manifold.

Theorem 1.1 *Let (M^{2m+1}, H, J, θ) be a compact pseudo-Hermitian manifold, and $(N, \tilde{J}, \tilde{g})$ be a Kähler manifold. Then $K_b(f)$ is a smooth foliated homotopy invariant, that is, $K_b(f_t)$ is constant for any family $\{f_t\}$ of foliated maps.*

This is a foliated Lichnerowicz type result, which implies that the $E_{\bar{\partial}_b, \xi^-}$, E_{∂_b, ξ^-} and E -critical points through foliated maps coincide. Furthermore, in a given foliated homotopy class, the $E_{\bar{\partial}_b, \xi^-}$, E_{∂_b, ξ^-} and E -minima coincide.

Next, we try to generalize Petit's foliated rigidity theorem and get the following result.

Theorem 1.2 *Let (M^{2m+1}, H, J, θ) be a compact Sasakian manifold with $m \geq 2$, and $(N, \tilde{J}, \tilde{g})$ be a Kähler manifold with strongly semi-negative curvature. If $f : M \rightarrow N$ is a $\bar{\partial}_b$ -harmonic map or a ∂_b -harmonic map, then f is foliated. Furthermore, f must be $\bar{\partial}_b$ -pluriharmonic (that is, $f_{ij}^\alpha = f_{\bar{j}i}^\alpha = 0$), and*

$$\tilde{R}_{\beta\bar{\alpha}\gamma\bar{\sigma}}(f_i^\alpha f_{\bar{j}}^\beta - f_{\bar{j}}^\alpha f_{\bar{i}}^\beta)(\overline{f_{\bar{i}}^\gamma f_{\bar{j}}^\sigma} - \overline{f_{\bar{j}}^\gamma f_{\bar{i}}^\sigma}) = 0.$$

Subsequently, by a similar argument as in [2, 10, 19], we obtain the following CR rigidity result for $\bar{\partial}_b$ -harmonic maps.

Theorem 1.3 *Let (M^{2m+1}, H, J, θ) be a compact Sasakian manifold with $m \geq 2$, and $(N, \tilde{J}, \tilde{g})$ be a Kähler manifold with strongly negative curvature. Suppose that $f : M \rightarrow N$ is a $\bar{\partial}_b$ -harmonic map, and $\text{rank}_{\mathbb{R}}(df_p) \geq 3$ at some point $p \in M$. Then f is a foliated CR map or foliated anti-CR map.*

2 Preliminaries

Let M^{2m+1} be a $(2m+1)$ -dimensional smooth orientable manifold. A CR structure on M^{2m+1} is a complex rank- m subbundle $H^{1,0}$ of $T(M) \otimes \mathbb{C}$ with the following properties

$$\begin{aligned} H^{1,0} \cap H^{0,1} &= \{0\}, \quad H^{0,1} = \overline{H^{1,0}}, \\ [\Gamma(H^{1,0}), \Gamma(H^{1,0})] &\subseteq \Gamma(H^{1,0}). \end{aligned} \tag{2.1}$$

The complex subbundle $H^{1,0}$ corresponds to a real rank- $2m$ subbundle $H := \Re\{H^{1,0} \oplus H^{0,1}\}$ of $T(M)$, which carries a complex structure J_b defined by

$$J_b(V + \overline{V}) = i(V - \overline{V})$$

for any $V \in H^{1,0}$. The synthetic object $(M, H^{1,0})$ or (M, H, J_b) is called a CR manifold.

Let E be a real line bundle of T^*M , whose fiber at each point $x \in M$ is given by

$$E_x = \{\omega \in T_x^*M : \ker \omega \supseteq H_x\}.$$

Since both TM and H are orientable vector bundles on M , the real line bundle E is orientable, E has globally defined nowhere vanishing sections. Any such a section $\theta \in \Gamma(E \setminus \{0\})$ is referred to as a pseudo-Hermitian 1-form on M .

Given a pseudo-Hermitian 1-form θ on M , we have the Levi form L_θ corresponding to θ , which is defined by

$$L_\theta(X, Y) = d\theta(X, J_b Y) \tag{2.2}$$

for any $X, Y \in H$. The second condition in (2.1) implies that L_θ is J_b -invariant, and thus symmetric. If L_θ is positive definite on H for some θ , then $(M, H^{1,0})$ is said to be strictly pseudoconvex. From now on, we will always assume that $(M, H^{1,0})$ is a strictly pseudoconvex CR manifold endowed with a pseudo-Hermitian 1-form θ , such that its Levi form L_θ is positive definite. In this case the synthetic object $(M, H^{1,0}, \theta)$ is referred to as a pseudo-Hermitian manifold.

Let $(M^{2m+1}, H^{1,0}, \theta)$ be a pseudo-Hermitian manifold. Clearly θ is a contact form. Thus there is a unique vector field $\xi \in \Gamma(T(M))$, called the Reeb vector field, such that

$$\theta(\xi) = 1, \quad i_\xi d\theta = 0, \quad (2.3)$$

where i_ξ denotes the interior product with respect to ξ . The collection of all its integral curves forms an oriented one-dimensional foliation \mathcal{F}_ξ on M , which is called the Reeb foliation. The first condition in (2.3) implies that ξ is transversal to H . Therefore, $T(M)$ admits a decomposition

$$T(M) = H \oplus V_\xi, \quad (2.4)$$

where $V_\xi := \text{span}\{\xi\}$ is a trivial line bundle on M . In terms of terminology from foliation theory, H and V_ξ are called the horizontal and vertical distributions, respectively. Let $\pi_H : TM \rightarrow H$ and $\pi_V : TM \rightarrow V_\xi$ be the natural projections associated with the direct sum decomposition (2.4). In terms of θ , the Levi form L_θ can be extended to a Riemannian metric

$$g_\theta = L_\theta(\pi_H, \pi_H) + \theta \otimes \theta, \quad (2.5)$$

which is called the Webster metric. It is convenient to extend the complex structure J_b on H to an endomorphism J of $T(M)$ by requiring that

$$J|_H = J_b \quad \text{and} \quad J|_{V_\xi} = 0, \quad (2.6)$$

where $|$ denotes the fiberwise restriction.

It is known that there exists a unique linear connection ∇ on $(M^{2m+1}, H^{1,0}, \theta)$, called the Tanaka-Webster connection, such that (cf. [5, 20–21])

- (1) $\nabla_X \Gamma(H) \subseteq \Gamma(H)$ and $\nabla_X J = 0$ for any $X \in \Gamma(TM)$;
- (2) $\nabla g_\theta = 0$;
- (3) $T_\nabla(X, Y) = 2d\theta(X, Y)\xi$ and $T_\nabla(\xi, JX) + JT_\nabla(\xi, X) = 0$ for any $X, Y \in H$, where $T_\nabla(\cdot, \cdot)$ denotes the torsion of the connection ∇ .

One important partial component of T_∇ is the pseudo-Hermitian torsion τ given by

$$\tau(X) = T_\nabla(\xi, X) \quad (2.7)$$

for any $X \in TM$. Then $(M, H^{1,0}, \theta)$ is said to be Sasakian if $\tau = 0$.

For the pseudo-Hermitian manifold $(M, H^{1,0}, \theta)$, we choose a local orthonormal frame field $\{e_A\}_{A=0}^{2m} = \{\xi, e_1, \dots, e_m, e_{m+1}, \dots, e_{2m}\}$ with respect to g_θ such that

$$\{e_{m+1}, \dots, e_{2m}\} = \{Je_1, \dots, Je_m\}.$$

Such a frame field $\{e_A\}_{A=0}^{2m}$ is referred to as an adapted frame field M . Set

$$\eta_j = \frac{1}{\sqrt{2}}(e_j - \sqrt{-1}Je_j), \quad \eta_{\bar{j}} = \bar{\eta_j}, \quad j = 1, \dots, m. \quad (2.8)$$

Let $\{\theta^j\}_{j=1}^m$ be the dual frame field of $\{\eta_j\}_{j=1}^m$. By the properties of the Tanaka-Webster connection ∇ , we have (cf. [5])

$$\nabla \xi = 0, \quad \nabla \eta_j = \theta_j^i \otimes \eta_i, \quad \nabla \eta_{\bar{j}} = \theta_{\bar{j}}^{\bar{i}} \otimes \eta_{\bar{i}}, \quad (2.9)$$

where $\{\theta_j^i\}$ denotes the connection 1-forms with respect to the frame field. Since $\tau(H^{1,0}) \subset H^{0,1}$, one may write

$$\begin{aligned} \tau &= \tau^i \eta_i + \tau^{\bar{i}} \eta_{\bar{i}} \\ &= A_{\bar{j}}^i \theta^{\bar{j}} \otimes \eta_i + A_j^{\bar{i}} \theta^j \otimes \eta_{\bar{i}}. \end{aligned} \quad (2.10)$$

From [21], we know that $\{\theta, \theta^i, \theta_j^i\}$ satisfies the following structure equations (cf. also [5, §1.4]):

$$\begin{aligned} d\theta &= 2\sqrt{-1}\theta^i \wedge \theta^{\bar{i}}, \\ d\theta^i &= -\theta_j^i \wedge \theta^j + A_{\bar{j}}^i \theta \wedge \theta^{\bar{j}}, \\ d\theta_j^i &= -\theta_k^i \wedge \theta_j^k + \Pi_j^i \end{aligned} \quad (2.11)$$

with

$$\begin{aligned} \Pi_j^i &= 2\sqrt{-1}(\theta^i \wedge \theta^{\bar{j}} - \theta^i \wedge \theta^{\bar{j}}) + R_{jk\bar{l}}^i \theta^k \wedge \theta^{\bar{l}} \\ &\quad + W_{jk}^i \theta \wedge \theta^{\bar{k}} - W_{jk}^i \theta \wedge \theta^k, \end{aligned} \quad (2.12)$$

where $W_{jk}^i = A_{k,j}^i$, $W_{jk}^i = A_{j,\bar{i}}^{\bar{k}}$ are the covariant derivatives of A and $R_{jk\bar{l}}^i$ are the components of curvature tensor of the Tanaka-Webster connection.

Lemma 2.1 (cf. [2]) *Let (M^{2m+1}, H, J, θ) be a pseudo-Hermitian manifold with Tanaka-Webster connection ∇ . Let X and ρ be a vector field and 1-form on M , respectively. Then*

$$\text{div } X = \sum_{A=0}^{2m} g_\theta(\nabla_{e_A} X, e_A) \quad \text{and} \quad \delta \rho = - \sum_{A=0}^{2m} (\nabla_{e_A} \rho)(e_A),$$

where $\{e_A\}_{A=0}^{2m} = \{\xi, e_1, \dots, e_{2m}\}$ is an orthonormal frame field on M . Here $\text{div}(\cdot)$ and $\delta(\cdot)$ denote the divergence and codifferential, respectively.

Definition 2.1 *A map $f : (M, H, J) \rightarrow (N, \tilde{J})$ from a CR manifold to a complex manifold is called a CR map (resp. anti-CR map) if $df(H^{1,0}) \subset T^{1,0}(N)$ (resp. $df(H^{0,1}) \subset T^{1,0}(N)$), equivalently, $df_H \circ J = \tilde{J} \circ df_H$ (resp. $df_H \circ J = -\tilde{J} \circ df_H$), where $df_H = df|_H$. In particular, if $N = \mathbb{C}$, then f is called a CR function (resp. anti-CR function).*

A map $f : (M, H, J, \theta) \rightarrow N$ from a pseudo-Hermitian manifold to a smooth manifold is said to be foliated if $df(\xi) = 0$. Here the target manifold is regarded as a trivial foliation by points. In [2, 8], the following type of generalized holomorphic maps was investigated.

Definition 2.2 (cf. [8]) A smooth map $f : (M, H, J, \theta) \rightarrow (N, \tilde{J})$ from a pseudo-Hermitian manifold to a complex manifold is called (J, \tilde{J}) -holomorphic (resp. anti- (J, \tilde{J}) -holomorphic) if it satisfies $df \circ J = \tilde{J} \circ df$ (resp. $df \circ J = -\tilde{J} \circ df$).

Remark 2.1 Clearly $f : (M, H, J, \theta) \rightarrow (N, \tilde{J})$ is a (J, \tilde{J}) -holomorphic map if and only if it is a foliated CR map. Note that (J, \tilde{J}) -holomorphic map is also called CR-holomorphic map in [15].

Let $f : (M^{2m+1}, H, J, \theta) \rightarrow (N, \tilde{J}, \tilde{g})$ be a map from a pseudo-Hermitian manifold to a Kähler manifold. We have the partial differentials

$$\bar{\partial}_b f : H^{0,1} \rightarrow T^{1,0}N, \quad \partial_b f : H^{1,0} \rightarrow T^{1,0}N$$

defined by

$$\bar{\partial}_b f = \pi^{1,0}(df|_{H^{0,1}}), \quad \partial_b f = \pi^{1,0}(df|_{H^{1,0}}),$$

where $\pi^{1,0} : T^{\mathbb{C}}N \rightarrow T^{1,0}N$ is the natural projection morphism. Let $\{e_0, e_1, \dots, e_{2m}\}$ be the adapted frame field on M as given above. Similarly, let $\{\tilde{e}_1, \dots, \tilde{e}_{2n}\}$ be a local orthonormal frame field on $(N, \tilde{J}, \tilde{g})$ with $\tilde{e}_{n+1} = \tilde{J}\tilde{e}_1, \dots, \tilde{e}_{2n} = \tilde{J}\tilde{e}_n$. Set

$$\tilde{\eta}_\alpha = \frac{1}{\sqrt{2}}(\tilde{e}_\alpha - \sqrt{-1}\tilde{J}\tilde{e}_\alpha), \quad \alpha = 1, \dots, n. \quad (2.13)$$

Let $\{\tilde{\theta}^\alpha\}_{\alpha=1}^n$ be the dual frame field of $\{\tilde{\eta}_\alpha\}_{\alpha=1}^n$. In terms of the frame fields, we can write

$$\bar{\partial}_b f = f_j^\alpha \theta^j \otimes \tilde{\eta}_\alpha, \quad \partial_b f = f_j^\alpha \theta^j \otimes \tilde{\eta}_\alpha. \quad (2.14)$$

Then

$$|\bar{\partial}_b f|^2 = \sum_{j,\alpha} f_j^\alpha f_j^{\alpha\bar{}} \quad |\partial_b f|^2 = \sum_{j,\alpha} f_j^\alpha f_j^{\alpha\bar{}} \quad (2.15)$$

or

$$\begin{aligned} |\bar{\partial}_b f|^2 &= \frac{1}{4} \{ \langle df(e_j), df(e_j) \rangle + \langle df(Je_j), df(Je_j) \rangle \\ &\quad - 2\langle df(Je_j), \tilde{J}df(e_j) \rangle \} \\ &= \frac{1}{4} \sum_{A=1}^{2m} \{ \langle df(e_A), df(e_A) \rangle - \langle \tilde{J}df(e_A), df(Je_A) \rangle \}, \end{aligned} \quad (2.16)$$

$$\begin{aligned} |\partial_b f|^2 &= \frac{1}{4} \{ \langle df(e_j), df(e_j) \rangle + \langle df(Je_j), df(Je_j) \rangle \\ &\quad + 2\langle df(Je_j), \tilde{J}df(e_j) \rangle \} \\ &= \frac{1}{4} \sum_{A=1}^{2m} \{ \langle df(e_A), df(e_A) \rangle + \langle \tilde{J}df(e_A), df(Je_A) \rangle \}. \end{aligned} \quad (2.17)$$

Then we can introduce the following two energy functionals:

$$E_{\bar{\partial}_b, \xi}(f) = \int_M \left\{ |\bar{\partial}_b f|^2 + \frac{1}{4} |df(\xi)|^2 \right\} dv_\theta \quad (2.18)$$

and

$$E_{\partial_b, \xi}(f) = \int_M \left\{ |\partial_b f|^2 + \frac{1}{4} |df(\xi)|^2 \right\} dv_\theta, \quad (2.19)$$

where ξ is the Reeb vector field of (M, θ) . Clearly $E_{\bar{\partial}_b, \xi}(f) \equiv 0$ (resp. $E_{\partial_b, \xi}(f) \equiv 0$) if and only if f is a foliated CR map (resp. foliated anti-CR map).

Definition 2.3 A critical point of $E_{\bar{\partial}_b, \xi}(f)$ (resp. $E_{\partial_b, \xi}(f)$) is called a $\bar{\partial}_b$ -harmonic map (resp. ∂_b -harmonic map).

Remark 2.2 In [12], Li and Son introduced the $\bar{\partial}_b$ -energy functional $E_{\bar{\partial}_b}(f)$ of f . Compared with their definition, we include the term $\frac{1}{4} |df(\xi)|^2$ in (2.18).

For a map $f : (M, H^{1,0}, \theta) \rightarrow (N, \tilde{J}, \tilde{g})$, we define its second fundamental form by

$$\beta(X, Y) = \tilde{\nabla}_Y df(X) - df(\nabla_Y X)$$

for any $X, Y \in \Gamma(TM)$, where ∇ and $\tilde{\nabla}$ denote the Tanaka-Webster connection of M and the Levi-Civita connection of N , respectively. The notion of the above second fundamental form has appeared in literature in various special cases (cf. [4, 6, 15–16], etc.).

Lemma 2.2 (cf. [3]) Let $f : (M, \nabla) \rightarrow (N, \tilde{\nabla})$ be a map between manifolds with the linear connections. Then

$$\tilde{\nabla}_X df(Y) - \tilde{\nabla}_Y df(X) - df([X, Y]) = T_{\tilde{\nabla}}(df(X), df(Y))$$

for any $X, Y \in \Gamma(TM)$, where $T_{\tilde{\nabla}}$ denotes the torsion of $\tilde{\nabla}$. Equivalently, we have

$$\beta(X, Y) - \beta(Y, X) = df(T_{\nabla}(X, Y)) - T_{\tilde{\nabla}}(df(X), df(Y)).$$

Now we want to derive the variation formulas of the energy functionals defined by (2.18) and (2.19).

Lemma 2.3 Let (M^{2m+1}, H, J, θ) be a pseudo-Hermitian manifold and $(N, \tilde{J}, \tilde{g})$ be a Kähler manifold. Suppose that $\{f_t\}_{|t|<\varepsilon}$ is a family of maps from M to N with $f_0 = f$ and $v = (\frac{\partial f_t}{\partial t})|_{t=0} \in \Gamma(f^{-1}TN)$. Then

$$\frac{dE_{\bar{\partial}_b, \xi}(f_t)}{dt} \Big|_{t=0} = -\frac{1}{2} \int_M \langle v, \text{tr}_{g_\theta} \beta - 2m \tilde{J} df(\xi) \rangle$$

and

$$\frac{dE_{\partial_b, \xi}(f_t)}{dt} \Big|_{t=0} = -\frac{1}{2} \int_M \langle v, \text{tr}_{g_\theta} \beta + 2m \tilde{J} df(\xi) \rangle.$$

Proof Set $F : M \times (-\varepsilon, \varepsilon) \rightarrow N$ by $F(x, t) = f_t(x)$ for any $x \in M$ and $t \in (-\varepsilon, \varepsilon)$. Then

$$\frac{dE_{\bar{\partial}_b, \xi}(f_t)}{dt} \Big|_{t=0}$$

$$\begin{aligned}
&= \frac{1}{4} \int_M \sum_{A=1}^{2m} \{ 2\langle \tilde{\nabla}_{\frac{\partial}{\partial t}} dF(e_A), dF(e_A) \rangle - \langle \tilde{J} \tilde{\nabla}_{\frac{\partial}{\partial t}} dF(e_A), dF(Je_A) \rangle \\
&\quad - \langle \tilde{J} dF(e_A), \tilde{\nabla}_{\frac{\partial}{\partial t}} dF(Je_A) \rangle \} dv_\theta + \frac{1}{2} \int_M \langle \tilde{\nabla}_{\frac{\partial}{\partial t}} dF(\xi), dF(\xi) \rangle dv_\theta \\
&= \sum_{A=1}^{2m} \int_M \frac{1}{4} \{ 2\langle \tilde{\nabla}_{e_A} v, df(e_A) \rangle - \langle \tilde{J} \tilde{\nabla}_{e_A} v, df(Je_A) \rangle \\
&\quad - \langle \tilde{J} df(e_A), \tilde{\nabla}_{Je_A} v \rangle \} dv_\theta + \frac{1}{2} \int_M \langle \tilde{\nabla}_\xi v, df(\xi) \rangle dv_\theta \\
&= \frac{1}{2} \sum_{A=0}^{2m} \int_M \{ \langle \tilde{\nabla}_{e_A} v, df(e_A) \rangle + \langle \tilde{\nabla}_{e_A} v, \tilde{J} df(Je_A) \rangle \} dv_\theta \\
&= \frac{1}{2} \sum_{A=0}^{2m} \int_M \{ e_A \langle v, df(e_A) \rangle - \langle v, df(\nabla_{e_A} e_A) \rangle - \langle v, (\tilde{\nabla}_{e_A} df)(e_A) \rangle \\
&\quad + e_A \langle v, \tilde{J} df(Je_A) \rangle - \langle v, \tilde{J} df J(\nabla_{e_A} e_A) \rangle - \langle v, (\tilde{\nabla}_{e_A} \tilde{J} df J)(e_A) \rangle \}. \tag{2.20}
\end{aligned}$$

Define a 1-form ρ by $\rho(X) = \langle v, df(X) \rangle + \langle v, \tilde{J} \circ df \circ J(X) \rangle$ for any $X \in TM$. By Lemma 2.1, we deduce that

$$\delta\rho = - \sum_{A=0}^{2m} (\nabla_{e_A} \rho)(e_A). \tag{2.21}$$

It follows from (2.20)–(2.21) that

$$\frac{dE_{\bar{\partial}_b, \xi}(f_t)}{dt} \Big|_{t=0} = -\frac{1}{2} \int_M \left\langle v, \sum_{A=0}^{2m} (\tilde{\nabla}_{e_A} df)(e_A) + [\tilde{\nabla}_{e_A} (\tilde{J} \circ df \circ J)](e_A) \right\rangle. \tag{2.22}$$

Next,

$$\begin{aligned}
\sum_{A=1}^{2m} [\tilde{\nabla}_{e_A} (\tilde{J} \circ df \circ J)](e_A) &= \sum_{A=1}^{2m} \tilde{\nabla}_{e_A} (\tilde{J} \circ df \circ Je_A) - \tilde{J} \circ df \circ J(\nabla_{e_A} e_A) \\
&= \sum_{A=1}^{2m} \tilde{J} [\tilde{\nabla}_{e_A} df(Je_A) - df(\nabla_{e_A} Je_A)] \\
&= \sum_{A=1}^{2m} \tilde{J} \beta(Je_A, e_A) \\
&= \sum_{j=1}^m \tilde{J} [\beta(Je_j, e_j) - \beta(e_j, Je_j)] \\
&= \sum_{j=1}^m \tilde{J} df(T_\nabla(Je_j, e_j)) \\
&= -2m \tilde{J} df(\xi).
\end{aligned}$$

Then we get the variation formula for $E_{\bar{\partial}_b, \xi}(f)$ from (2.22). The variation formula for $E_{\partial_b, \xi}(f)$ may be derived in a similar way. Hence we complete the proof of this lemma.

Define the tension field $\tau_{\bar{\partial}_b, \xi}(f)$ of f with respect to the functional $E_{\bar{\partial}_b, \xi}$ by

$$\tau_{\bar{\partial}_b, \xi}(f) := \text{tr}_{g_\theta} \beta - 2m\tilde{J}df(\xi).$$

Then, according to Lemma 2.3, f is $\bar{\partial}_b$ -harmonic if and only if $\tau_{\bar{\partial}_b, \xi}(f) = 0$.

Note that $\tau_{\bar{\partial}_b, \xi}(f) = 0$ (or $\tau_{\partial_b, \xi}(f) = 0$) is a system of elliptic differential equations that differ from the harmonic map equation by a linear first-order term. By a similar argument as in [17], we have the following theorem.

Theorem 2.1 (Unique continuation) *Let $f : (M^{2m+1}, H, J, \theta) \rightarrow (N^{2n}, \tilde{J}, \tilde{g})$ be a $\bar{\partial}_b$ -harmonic map or ∂_b -harmonic map. If f is constant on a non-empty open subset U of M , then f is constant on M .*

Let us recall some definitions of generalized harmonic maps from pseudo-Hermitian manifolds.

Definition 2.4 *Let (M^{2m+1}, H, J, θ) be a pseudo-Hermitian manifold and $(N^{2n}, \tilde{J}, \tilde{g})$ be a Kähler manifold. Suppose that $f : M \rightarrow N$ is a smooth map. We say f is*

- (i) *pseudo-harmonic, if $\text{tr}_{g_\theta}(\pi_H \beta) = 0$ (cf. [1]);*
- (ii) *pseudo-Hermitian harmonic, if it is a critical point of $E_{\bar{\partial}_b}(\cdot)$ (cf. [12]);*
- (iii) *$\bar{\partial}_b$ -pluriharmonic, if $\beta(X, Y) + \beta(JX, JY) = 0$ for all $X, Y \in H$ (cf. [4]).*

Remark 2.3 Clearly, we have the following results:

- (a) If f is $\bar{\partial}_b$ -pluriharmonic, then it must be pseudoharmonic (cf. [3]);
- (b) if f is a CR map, then f is pseudo-Hermitian harmonic;
- (c) if f is a CR map (resp. anti-CR map), then f is $\bar{\partial}_b$ -harmonic (resp. ∂_b -harmonic) if and only if $\beta(\xi, \xi) = 0$ (cf. (5.3));
- (d) if f is foliated, then notions of $\bar{\partial}_b$ -harmonic, ∂_b -harmonic, pseudoharmonic, pseudo-Hermitian harmonic and harmonic maps coincide.

Besides, as proved in [2], if f is $\bar{\partial}_b$ -pluriharmonic, then it is foliated; if f is $\pm(J, \tilde{J})$ -holomorphic, then it is $\bar{\partial}_b$ -pluriharmonic.

3 Lichnerowicz Type Results

In this section, we generalize the Lichnerowicz type result in [18] to the case that the domain manifold is a general pseudo-Hermitian manifold.

Let $f : (M^{2m+1}, H, J, \theta) \rightarrow (N, \tilde{J}, \omega^N)$ be a smooth map from a pseudo-Hermitian manifold to a Kähler manifold, where ω^N is the Kähler form of N , given by $\omega^N(X, Y) = \tilde{g}(JX, Y)$ for all $X, Y \in TN$. Set

$$k_b(f) = |\partial_b f|^2 - |\bar{\partial}_b f|^2 \tag{3.1}$$

and

$$K_b(f) = E_{\partial_b, \xi}(f) - E_{\bar{\partial}_b, \xi}(f). \tag{3.2}$$

Lemma 3.1 *Under the above notations, we have*

$$k_b(f) = \langle d\theta, f^*\omega^N \rangle.$$

Proof Let $\{\xi, e_1, \dots, e_m, Je_1, \dots, Je_m\}$ be an adapted frame on M . Using (2.2) and (2.16)–(2.17), we deduce that

$$\begin{aligned} \langle d\theta, f^*\omega^N \rangle &= \sum_{i < j} \{ (f^*\omega^N)(e_i, e_j) d\theta(e_i, e_j) + (f^*\omega^N)(Je_i, Je_j) d\theta(Je_i, Je_j) \} \\ &\quad + \sum_{i, j} (f^*\omega^N)(e_i, Je_j) d\theta(e_i, Je_j) \\ &= \sum_i \langle \tilde{J}df(e_i), df(Je_i) \rangle \\ &= k_b(f). \end{aligned}$$

The following lemma is useful.

Lemma 3.2 (Homotopy Lemma) (cf. [6, 13]) *Let $f_t : M \rightarrow N$ be a family of smooth maps between smooth manifolds, parameterized by real number t , and let ω be a closed two-form on N . Then*

$$\frac{\partial}{\partial t} (f_t^* \omega) = d \left(f_t^* i \left(\frac{\partial f_t}{\partial t} \right) \omega \right),$$

where the notation $i(X)$ denotes the interior product with respect to the vector X .

Lemma 3.3 *Let $f_t : (M^{2m+1}, H, J, \theta) \rightarrow (N, \tilde{J}, \omega^N)$ be a family of smooth maps from a compact pseudo-Hermitian manifold to a Kähler manifold. Then*

$$\frac{d}{dt} K_b(f_t) = 2m \int_M \omega^N(v_t, df_t(\xi)) dv_\theta,$$

where $v_t = \frac{\partial f_t}{\partial t}$.

Proof In terms of Lemmas 3.1–3.2, we have

$$\begin{aligned} \frac{d}{dt} K_b(f_t) &= \int_M \left\langle \frac{\partial}{\partial t} f_t^* \omega^N, d\theta \right\rangle dv_\theta \\ &= \int_M \left\langle d \left(f_t^* i \left(\frac{\partial f_t}{\partial t} \right) \omega^N \right), d\theta \right\rangle dv_\theta \\ &= \int_M \left\langle f_t^* i \left(\frac{\partial f_t}{\partial t} \right) \omega^N, \delta d\theta \right\rangle dv_\theta. \end{aligned}$$

Recall that (cf. [5])

$$\nabla_X^\theta Y = \nabla_X Y - (d\theta(X, Y) + A(X, Y))\xi + \theta(Y)\tau(X) + \theta(X)JY + \theta(Y)JX$$

for any $X, Y \in \Gamma(TM)$, where ∇^θ denotes the Levi-Civita connection of g_θ . Let $\{e_A\}_{A=0}^{2m} = \{\xi, e_1, \dots, e_{2m}\}$ be an adapted frame field in M . For $X \in HM$, we compute

$$(\delta d\theta)(X) = - \sum_{A=0}^{2m} (\nabla_{e_A}^\theta d\theta)(e_A, X)$$

$$\begin{aligned}
&= - \sum_{A=0}^{2m} \{e_A d\theta(e_A, X) - d\theta(\nabla_{e_A}^\theta e_A, X) - d\theta(e_A, \nabla_{e_A}^\theta X)\} \\
&= - \sum_{A=1}^{2m} \{e_A d\theta(e_A, X) - d\theta(\nabla_{e_A} e_A, X) - d\theta(e_A, \nabla_{e_A} X)\} \\
&= - \sum_{A=1}^{2m} (\nabla_{e_A} d\theta)(e_A, X) \\
&= 0,
\end{aligned}$$

where the last equality is due to $\nabla d\theta = 0$. Next,

$$\begin{aligned}
(\delta d\theta)(\xi) &= \sum_{A=1}^{2m} d\theta(e_A, \nabla_{e_A}^\theta \xi) \\
&= \sum_{A=1}^{2m} d\theta(e_A, \tau(e_A) + Je_A) \\
&= 2m,
\end{aligned}$$

since

$$\begin{aligned}
&d\theta(e_i, \tau(e_i)) + d\theta(Je_i, \tau Je_i) \\
&= d\theta(e_i, \tau(e_i)) - d\theta(e_i, \tau(e_i)) \\
&= 0.
\end{aligned}$$

Therefore,

$$\begin{aligned}
\frac{d}{dt} K_b(f_t) &= \int_M \left\langle f_t^* i\left(\frac{\partial f_t}{\partial t}\right) \omega^N, \delta d\theta \right\rangle dv_\theta \\
&= \int_M \langle f_t^* [\omega^N(v_t, \cdot)], \delta d\theta \rangle dv_\theta \\
&= \int_M \omega^N(v_t, df_t(\xi)) \delta d\theta(\xi) dv_\theta \\
&= 2m \int_M \omega^N(v_t, df_t(\xi)) dv_\theta.
\end{aligned}$$

Corollary 3.1 *Let $f_t : (M^{2m+1}, H, J, \theta) \rightarrow (N, \tilde{J}, \omega^N)$ be a family of smooth maps from a compact pseudo-Hermitian manifold to a Kähler manifold, such that $df_t(\xi) = 0$ for every t . We refer to such $\{f_t\}$ as a family of foliated maps. Then $K_b(f_t)$ is a constant.*

Thus, if $f_t : M \rightarrow N$ is a family of foliated maps, then

$$\frac{d}{dt} E_{\bar{\partial}_b, \xi}(f_t) = \frac{d}{dt} E_{\partial_b, \xi}(f_t) = \frac{1}{2} \frac{d}{dt} E(f_t),$$

where $E(f) = E_{\bar{\partial}_b, \xi}(f) + E_{\partial_b, \xi}(f)$ is the usual energy functional of f . Then, the following theorems are evident.

Theorem 3.1 (i) *The $E_{\bar{\partial}_b, \xi}$ -, $E_{\partial_b, \xi}$ - and E -critical points through foliated maps coincide. Moreover, in a given foliated homotopy class, the $E_{\bar{\partial}_b, \xi}$ -, $E_{\partial_b, \xi}$ - and E -minima coincide.*

(ii) *If f is $\pm(J, \tilde{J})$ -holomorphic, then it is an absolute minimum of E in its foliated class.*

Proof (i) For any f, f_0 in the same foliated homotopy class, the following equality holds:

$$E_{\bar{\partial}_b, \xi}(f) - E_{\bar{\partial}_b, \xi}(f_0) = E_{\partial_b, \xi}(f) - E_{\partial_b, \xi}(f_0).$$

Consequently, if $E_{\bar{\partial}_b, \xi}(f_0) \leq E_{\bar{\partial}_b, \xi}(f)$ for all f , then $E_{\partial_b, \xi}(f_0) \leq E_{\partial_b, \xi}(f)$ for all f . Similarly, from the equality

$$E(f) - E(f_0) = 2E_{\bar{\partial}_b, \xi}(f) - 2E_{\bar{\partial}_b, \xi}(f_0),$$

we conclude that $E_{\bar{\partial}_b, \xi}$ and E -minima coincide.

(ii) A (J, \tilde{J}) -holomorphic map (resp. anti- (J, \tilde{J}) -holomorphic map) satisfies $E_{\bar{\partial}_b, \xi}(f) = 0$ (resp. $E_{\partial_b, \xi}(f) = 0$) and is therefore an absolute minimum of E in its foliated class.

Theorem 3.2 *Let $f_t : (M^{2m+1}, H, J, \theta) \rightarrow (N, \tilde{J}, \omega^N)$ be a family of foliated maps from a pseudo-Hermitian manifold to a Kähler manifold with $0 \leq t \leq 1$. Suppose that f_0 is (J, \tilde{J}) -holomorphic and f_1 is anti- (J, \tilde{J}) -holomorphic, then f_0 and f_1 are constant. In particular, any $\pm(J, \tilde{J})$ -holomorphic map in a trivial foliated homotopy class is constant.*

Proof Since $E_{\bar{\partial}_b, \xi}(f_0) = E_{\partial_b, \xi}(f_1) = 0$, $0 \leq E_{\partial_b, \xi}(f_0) = -E_{\bar{\partial}_b, \xi}(f_1) \leq 0$, which leads to $E_{\partial_b, \xi}(f_0) = E_{\bar{\partial}_b, \xi}(f_1) = 0$. Thus, $E(f_0) = E(f_1) = 0$.

4 Commutation Relations

In this section, we derive the commutation relations for maps from a pseudo-Hermitian manifold to a Kähler manifold. While the case of a map from a pseudo-Hermitian manifold to a general Riemannian manifold has been addressed in [2], we present it here using our notation for the sake of clarity and convenience.

Let $f : (M^{2m+1}, H, J, \theta) \rightarrow (N^{2n}, \tilde{J}, \tilde{g})$ be a smooth map, where (M^{2m+1}, H, J, θ) is a pseudo-Hermitian manifold and $(N^{2n}, \tilde{J}, \tilde{g})$ is a Kähler manifold. Let $\{\theta^i\}$ be a local adapted coframe on M , and let $\{\tilde{\omega}^\alpha\}$ be a local orthonormal coframe on N as aforementioned. Unless otherwise stated, we adhere to the following index conventions:

$$\begin{aligned} A, B, C, D &= 0, 1, \dots, m, \bar{1}, \dots, \bar{m}; \\ i, j, k, l, s &= 1, \dots, m; \\ I, J, K, L, P &= 1, \dots, n, \bar{1}, \dots, \bar{n}; \\ \alpha, \beta, \gamma, \sigma &= 1, \dots, n, \end{aligned}$$

and employ the summation convention on repeated indices. The structure equations for Levi-Civita connection $\tilde{\nabla}$ on (N, \tilde{J}) can be expressed by

$$d\tilde{\omega}^\alpha = -\tilde{\omega}^\alpha_\beta \wedge \tilde{\omega}^\beta, \quad \tilde{\omega}^\alpha_\beta + \tilde{\omega}^\beta_\alpha = 0,$$

$$d\tilde{\omega}_\beta^\alpha = -\tilde{\omega}_\gamma^\alpha \wedge \tilde{\omega}_\beta^\gamma + \tilde{\Omega}_\beta^\alpha,$$

where $\tilde{\Omega}_\beta^\alpha = \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha \tilde{\omega}^\gamma \wedge \tilde{\omega}^{\bar{\sigma}}$. Since N is Kähler, the only possibly non-zero components of \tilde{R}_{IJK}^L are

$$\tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha, \quad \tilde{R}_{\bar{\beta}\gamma\bar{\sigma}}^\alpha, \quad \tilde{R}_{\beta\bar{\gamma}\sigma}^\alpha, \quad \tilde{R}_{\bar{\beta}\bar{\gamma}\sigma}^\alpha.$$

Set

$$\tilde{R}_{IJKL} = \tilde{g}(\tilde{R}(\tilde{\eta}_K, \tilde{\eta}_L)\tilde{\eta}_J, \tilde{\eta}_I) = \tilde{g}_{PI}\tilde{R}_{JKL}^P.$$

Let

$$\begin{aligned} df &= f_A^I \theta^A \otimes \tilde{\eta}_I, \\ \beta &= f_{AB}^I \theta^A \otimes \theta^B \otimes \tilde{\eta}_I, \\ \tilde{\nabla} \beta &= f_{ABC}^I \theta^A \otimes \theta^B \otimes \theta^C \otimes \tilde{\eta}_I, \end{aligned} \tag{4.1}$$

where $\tilde{\nabla} \beta$ is the covariant derivative of β with respect to $(\nabla, \tilde{\nabla})$. Here, β denotes the second fundamental form of f . Thus we have

$$f^* \tilde{\omega}^\alpha = f_j^\alpha \theta^j + f_{\bar{j}}^\alpha \theta^{\bar{j}} + f_0^\alpha \theta. \tag{4.2}$$

Differentiating (4.2), we have

$$\begin{aligned} f^* d\tilde{\omega}^\alpha &= f_j^\alpha d\theta^j + f_{\bar{j}}^\alpha d\theta^{\bar{j}} + f_0^\alpha d\theta \\ &\quad + df_j^\alpha \wedge \theta^j + df_{\bar{j}}^\alpha \wedge \theta^{\bar{j}} + df_0^\alpha \wedge \theta. \end{aligned}$$

By structure equations on M and N , we have

$$\begin{aligned} -f^* \tilde{\omega}_\beta^\alpha \wedge f^* \tilde{\omega}^\beta &= -f^* \tilde{\omega}_\beta^\alpha \wedge (f_j^\beta \theta^j + f_{\bar{j}}^\beta \theta^{\bar{j}} + f_0^\beta \theta) \\ &= f_j^\alpha (\theta^k \wedge \theta_k^j + \theta \wedge \tau^j) + f_{\bar{j}}^\alpha (\theta^{\bar{k}} \wedge \theta_{\bar{k}}^{\bar{j}} + \theta \wedge \tau^{\bar{j}}) + f_0^\alpha (2\sqrt{-1}h_{j\bar{k}} \theta^j \wedge \theta^{\bar{k}}) \\ &\quad + df_j^\alpha \wedge \theta^j + df_{\bar{j}}^\alpha \wedge \theta^{\bar{j}} + df_0^\alpha \wedge \theta. \end{aligned}$$

After rearranging the above formula, we get

$$Df_B^\alpha \wedge \theta^B + 2\sqrt{-1}f_0^\alpha h_{k\bar{l}} \theta^k \wedge \theta^{\bar{l}} - f_k^\alpha A_{\bar{l}}^k \theta^{\bar{l}} \wedge \theta - f_{\bar{k}}^\alpha A_l^{\bar{k}} \theta^l \wedge \theta = 0, \tag{4.3}$$

where

$$Df_k^\alpha \equiv df_k^\alpha - f_l^\alpha \theta_k^l + f_k^\beta \tilde{\omega}_\beta^\alpha = f_{kB}^\alpha \theta^B, \tag{4.4}$$

$$Df_{\bar{k}}^\alpha \equiv df_{\bar{k}}^\alpha - f_{\bar{l}}^\alpha \theta_{\bar{k}}^{\bar{l}} + f_{\bar{k}}^\beta \tilde{\omega}_\beta^\alpha = f_{\bar{k}B}^\alpha \theta^B, \tag{4.5}$$

$$Df_0^\alpha \equiv df_0^\alpha + f_0^\beta \tilde{\omega}_\beta^\alpha = f_{0B}^\alpha \theta^B. \tag{4.6}$$

Here, for simplicity, we write $f^*(\tilde{\omega}_\beta^\alpha)$ as $\tilde{\omega}_\beta^\alpha$ on the right hand side of the above formulas. Then (4.3) gives

$$\begin{aligned} f_{jk}^\alpha &= f_{kj}^\alpha, \quad f_{\bar{j}\bar{k}}^\alpha = f_{\bar{k}\bar{j}}^\alpha, \quad f_{j\bar{k}}^\alpha - f_{\bar{k}j}^\alpha = 2\sqrt{-1}f_0^\alpha h_{j\bar{k}}, \\ f_{0j}^\alpha - f_{j0}^\alpha &= f_{\bar{k}}^\alpha A_j^{\bar{k}}, \quad f_{0\bar{j}}^\alpha - f_{\bar{j}0}^\alpha = f_k^\alpha A_{\bar{j}}^k. \end{aligned} \tag{4.7}$$

Since we have adopted a unitary frame here and in the following, we have $h_{j\bar{k}} = \delta_{jk}$.

Differentiating (4.4), we have

$$-f_l^\alpha d\theta_k^l + f_k^\beta d\tilde{\omega}_\beta^\alpha - df_l^\alpha \wedge \theta_k^l + df_k^\beta \wedge \tilde{\omega}_\beta^\alpha = f_{kB}^\alpha d\theta^B + df_{kB}^\alpha \wedge \theta^B.$$

Using structure equations again, we have

$$\begin{aligned} 0 &= f_j^\alpha (-\theta_l^j \wedge \theta_k^l + \Pi_k^j) - f_k^\beta (-\tilde{\omega}_\gamma^\alpha \wedge \tilde{\omega}_\beta^\gamma + \tilde{\Omega}_\beta^\alpha) \\ &\quad + f_{kj}^\alpha (\theta^l \wedge \theta_l^j + \theta \wedge \tau^j) + f_{kj}^\alpha (\theta^{\bar{l}} \wedge \theta_{\bar{l}}^j + \theta \wedge \tau^{\bar{j}}) + 2\sqrt{-1}h_{j\bar{k}}f_{k0}^\alpha \theta^j \wedge \theta^{\bar{k}} \\ &\quad + df_l^\alpha \wedge \theta_k^l - df_k^\beta \wedge \tilde{\omega}_\beta^\alpha + df_{kB}^\alpha \wedge \theta^B. \end{aligned}$$

It follows that

$$Df_{kB}^\alpha \wedge \theta^B + 2\sqrt{-1}f_{k0}^\alpha h_{j\bar{l}}\theta^j \wedge \theta^{\bar{l}} - f_{kl}^\alpha A_{\bar{j}}^l \theta^{\bar{j}} \wedge \theta - f_{kl}^\alpha A_j^{\bar{l}} \theta^j \wedge \theta = -f_l^\alpha \Pi_k^l + f_k^\beta \tilde{\Omega}_\beta^\alpha, \quad (4.8)$$

where

$$Df_{jk}^\alpha \equiv df_{jk}^\alpha - f_{jl}^\alpha \theta_k^l - f_{lk}^\alpha \theta_j^l + f_{jk}^\beta \tilde{\omega}_\beta^\alpha = f_{jkB}^\alpha \theta^B, \quad (4.9)$$

$$Df_{j\bar{k}}^\alpha \equiv df_{j\bar{k}}^\alpha - f_{j\bar{l}}^\alpha \theta_{\bar{k}}^l - f_{\bar{l}k}^\alpha \theta_j^l + f_{j\bar{k}}^\beta \tilde{\omega}_\beta^\alpha = f_{j\bar{k}B}^\alpha \theta^B, \quad (4.10)$$

$$Df_{j0}^\alpha \equiv df_{j0}^\alpha - f_{j0}^\alpha \theta_j^l + f_{j0}^\beta \tilde{\omega}_\beta^\alpha = f_{j0B}^\alpha \theta^B. \quad (4.11)$$

From (4.8), we have

$$\begin{aligned} f_{ijk}^\alpha &= f_{ikj}^\alpha - f_i^\beta f_j^\gamma f_k^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_k^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + 2\sqrt{-1}f_j^\alpha A_{ik} - 2\sqrt{-1}f_k^\alpha A_{ij}, \\ f_{i\bar{j}k}^\alpha &= f_{i\bar{k}j}^\alpha - f_i^\beta f_{\bar{j}}^\gamma f_{\bar{k}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_{\bar{k}}^\gamma f_{\bar{j}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + 2\sqrt{-1}f_l^\alpha h_{i\bar{j}} A_{\bar{k}}^l - 2\sqrt{-1}f_l^\alpha h_{i\bar{k}} A_{\bar{j}}^l, \\ f_{i\bar{j}\bar{k}}^\alpha &= f_{i\bar{k}j}^\alpha - f_i^\beta f_j^\gamma f_{\bar{k}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_{\bar{k}}^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_l^\alpha R_{i\bar{j}\bar{k}}^l + 2\sqrt{-1}f_{i0}^\alpha h_{\bar{j}\bar{k}}, \quad (4.12) \\ f_{i0j}^\alpha &= f_{i0j}^\alpha - f_i^\beta f_j^\gamma f_0^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_0^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_l^\alpha h^{\bar{l}k} A_{ij,\bar{k}} - f_{i\bar{k}}^\alpha A_{\bar{j}}^k, \\ f_{i\bar{j}0}^\alpha &= f_{i\bar{0}j}^\alpha - f_i^\beta f_{\bar{j}}^\gamma f_0^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_0^\gamma f_{\bar{j}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha - f_l^\alpha h^{\bar{l}k} A_{\bar{j}\bar{k},i} - f_{i\bar{k}}^\alpha A_{\bar{j}}^k. \end{aligned}$$

Similarly, differentiating (4.5), we have

$$Df_{\bar{k}B}^\alpha \wedge \theta^B + 2\sqrt{-1}f_{\bar{k}0}^\alpha h_{j\bar{l}}\theta^j \wedge \theta^{\bar{l}} - f_{\bar{k}l}^\alpha A_{\bar{j}}^l \theta^{\bar{j}} \wedge \theta = -f_{\bar{l}}^\alpha \Pi_{\bar{k}}^{\bar{l}} + f_{\bar{k}}^\beta \tilde{\Omega}_\beta^\alpha, \quad (4.13)$$

where

$$Df_{\bar{j}k}^\alpha \equiv df_{\bar{j}k}^\alpha - f_{\bar{j}\bar{l}}^\alpha \theta_{\bar{k}}^l - f_{\bar{l}k}^\alpha \theta_{\bar{j}}^l + f_{\bar{j}k}^\beta \tilde{\omega}_\beta^\alpha = f_{\bar{j}kB}^\alpha \theta^B, \quad (4.14)$$

$$Df_{\bar{j}k}^\alpha \equiv df_{\bar{j}k}^\alpha - f_{\bar{j}\bar{l}}^\alpha \theta_{\bar{k}}^l - f_{\bar{l}k}^\alpha \theta_{\bar{j}}^l + f_{\bar{j}k}^\beta \tilde{\omega}_\beta^\alpha = f_{\bar{j}kB}^\alpha \theta^B, \quad (4.15)$$

$$Df_{\bar{j}0}^\alpha \equiv df_{\bar{j}0}^\alpha - f_{\bar{j}0}^\alpha \theta_{\bar{j}}^l + f_{\bar{j}0}^\beta \tilde{\omega}_\beta^\alpha = f_{\bar{j}0B}^\alpha \theta^B. \quad (4.16)$$

From (4.13), we have

$$\begin{aligned} f_{ijk}^\alpha &= f_{ikj}^\alpha - f_i^\beta f_j^\gamma f_k^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_k^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + 2\sqrt{-1}f_l^\alpha h_{i\bar{k}} A_{\bar{j}}^l - 2\sqrt{-1}f_{\bar{l}}^\alpha h_{i\bar{j}} A_{\bar{k}}^l, \\ f_{i\bar{j}k}^\alpha &= f_{i\bar{k}j}^\alpha - f_i^\beta f_{\bar{j}}^\gamma f_{\bar{k}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_{\bar{k}}^\gamma f_{\bar{j}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + 2\sqrt{-1}f_{\bar{k}}^\alpha A_{i\bar{j}} - 2\sqrt{-1}f_{\bar{j}}^\alpha A_{i\bar{k}}, \\ f_{i\bar{j}\bar{k}}^\alpha &= f_{i\bar{k}j}^\alpha - f_i^\beta f_j^\gamma f_{\bar{k}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_{\bar{k}}^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_l^\alpha R_{i\bar{j}\bar{k}}^l + 2\sqrt{-1}f_{i0}^\alpha h_{\bar{j}\bar{k}}, \quad (4.17) \\ f_{i0j}^\alpha &= f_{i0j}^\alpha - f_i^\beta f_j^\gamma f_0^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_0^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha - f_l^\alpha h^{\bar{l}k} A_{jk,\bar{i}} - f_{i\bar{k}}^\alpha A_{\bar{j}}^k, \\ f_{i\bar{j}0}^\alpha &= f_{i\bar{0}j}^\alpha - f_i^\beta f_{\bar{j}}^\gamma f_0^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_i^\beta f_0^\gamma f_{\bar{j}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_l^\alpha h^{\bar{l}k} A_{\bar{j}\bar{k},i} - f_{i\bar{k}}^\alpha A_{\bar{j}}^k. \end{aligned}$$

Differentiating (4.6) using the same argument yields

$$Df_{0B}^\alpha \wedge \theta^B + 2\sqrt{-1}f_{00}^\alpha h_{j\bar{k}}\theta^j \wedge \theta^{\bar{k}} - f_{0j}^\alpha A_{\bar{k}}^j \theta^{\bar{k}} \wedge \theta - f_{0\bar{j}}^\alpha A_k^{\bar{j}} \theta^k \wedge \theta = f_0^\beta \tilde{\Omega}_\beta^\alpha, \quad (4.18)$$

where

$$Df_{0k}^\alpha \equiv df_{0k}^\alpha - f_{0j}^\alpha \theta_k^j + f_{0k}^\beta \tilde{\omega}_\beta^\alpha = f_{0kB}^\alpha \theta^B, \quad (4.19)$$

$$Df_{0\bar{k}}^\alpha \equiv df_{0\bar{k}}^\alpha - f_{0\bar{j}}^\alpha \theta_{\bar{k}}^{\bar{j}} + f_{0\bar{k}}^\beta \tilde{\omega}_\beta^\alpha = f_{0\bar{k}B}^\alpha \theta^B, \quad (4.20)$$

$$Df_{00}^\alpha \equiv df_{00}^\alpha + f_{00}^\beta \tilde{\omega}_\beta^\alpha = f_{00B}^\alpha \theta^B. \quad (4.21)$$

From (4.18), we have

$$\begin{aligned} f_{0jk}^\alpha &= f_{0kj}^\alpha - f_0^\beta f_j^\gamma f_k^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_0^\beta f_k^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha, \\ f_{0j\bar{k}}^\alpha &= f_{0\bar{k}j}^\alpha - f_0^\beta f_j^\gamma f_{\bar{k}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_0^\beta f_{\bar{k}}^\gamma f_j^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + 2\sqrt{-1}f_{00}^\alpha h_{j\bar{k}}, \\ f_{00k}^\alpha &= f_{0k0}^\alpha - f_0^\beta f_0^\gamma f_k^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_0^\beta f_k^\gamma f_0^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_{0\bar{j}}^\alpha A_k^{\bar{j}}, \\ f_{00\bar{k}}^\alpha &= f_{0\bar{k}0}^\alpha - f_0^\beta f_0^\gamma f_{\bar{k}}^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_0^\beta f_{\bar{k}}^\gamma f_0^{\bar{\sigma}} \tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha + f_{0j}^\alpha A_k^j. \end{aligned} \quad (4.22)$$

Last, from (4.7), we have

$$\begin{aligned} f_{i\bar{j}k}^\alpha &= f_{\bar{j}ik}^\alpha + 2\sqrt{-1}h_{i\bar{j}}f_{0k}^\alpha, \\ f_{i\bar{j}\bar{k}}^\alpha &= f_{\bar{j}\bar{i}k}^\alpha + 2\sqrt{-1}h_{i\bar{j}}f_{0\bar{k}}^\alpha, \\ f_{0jk}^\alpha &= f_{j0k}^\alpha + f_{\bar{l}k}^\alpha A_{\bar{j}}^{\bar{l}} + f_{\bar{l}}^\alpha A_{j,k}^{\bar{l}}, \\ f_{0j\bar{k}}^\alpha &= f_{j0\bar{k}}^\alpha + f_{\bar{l}\bar{k}}^\alpha A_{\bar{j}}^{\bar{l}} + f_{\bar{l}}^\alpha A_{j,\bar{k}}^{\bar{l}}, \\ f_{0\bar{j}k}^\alpha &= f_{\bar{j}0k}^\alpha + f_{l\bar{k}}^\alpha A_j^l + f_l^\alpha A_{j,k}^l, \\ f_{0\bar{j}\bar{k}}^\alpha &= f_{\bar{j}0\bar{k}}^\alpha + f_{l\bar{k}}^\alpha A_{\bar{j}}^l + f_l^\alpha A_{j,\bar{k}}^l. \end{aligned} \quad (4.23)$$

5 Foliated and (J, \tilde{J}) -Holomorphicity Results

A divergence of a vector field X on (M, H, θ) is defined by

$$L_X \Psi = \text{div}(X)\Psi,$$

where $\Psi = \theta \wedge (d\theta)^m$ is the volume form. One has (cf. Lemma 2.1)

$$\text{div}(X) = \text{tr}_{g_\theta}(Y \in TM \rightarrow \nabla_Y X). \quad (5.1)$$

Also note that div is a real operator:

$$\overline{\text{div}(X)} = \text{div}(\overline{X}). \quad (5.2)$$

If u is a function on (M, H, θ) , then its sub-Laplacian Δ_b is defined by, under an adapted frame,

$$\Delta_b u := \text{div}(\nabla^H u) = u_{i\bar{i}} + u_{\bar{i}i},$$

where $\nabla^H u$ is the horizontal component of the gradient of u . Note that the usual Laplacian of u is

$$\Delta u = u_{i\bar{i}} + u_{\bar{i}i} + u_{00}.$$

Using an adapted frame, we can express $\tau_{\bar{\partial}_b, \xi}(f)$ as follows:

$$\tau_{\bar{\partial}_b, \xi}(f) = (f_{j\bar{j}}^\alpha + f_{\bar{j}j}^\alpha + f_{00}^\alpha - 2m\sqrt{-1}f_0^\alpha)\tilde{\eta}_\alpha + (f_{j\bar{j}}^{\bar{\alpha}} + f_{\bar{j}j}^{\bar{\alpha}} + f_{00}^{\bar{\alpha}} + 2m\sqrt{-1}f_0^{\bar{\alpha}})\tilde{\eta}_{\bar{\alpha}}.$$

Besides, it follows from the third equation of (4.7) that

$$f_{j\bar{j}}^\alpha + f_{\bar{j}j}^\alpha + f_{00}^\alpha - 2m\sqrt{-1}f_0^\alpha = 2f_{j\bar{j}}^\alpha + f_{00}^\alpha.$$

Therefore, defining $(Lf)^\alpha := 2f_{j\bar{j}}^\alpha + f_{00}^\alpha$, we may express $\tau_{\bar{\partial}_b, \xi}(f)$ as

$$\tau_{\bar{\partial}_b, \xi}(f) = (Lf)^\alpha \tilde{\eta}_\alpha + \overline{(Lf)^\alpha} \tilde{\eta}_{\bar{\alpha}}. \quad (5.3)$$

By applying the commutation relations in §4, we have the following lemma.

Lemma 5.1

$$\begin{aligned} \frac{1}{2}\Delta|df(\xi)|^2 &= 2(|f_{0j}^\alpha|^2 + |f_{0\bar{j}}^\alpha|^2 + |f_{00}^\alpha|^2) + f_0^{\bar{\alpha}}(Lf)_0^\alpha + f_0^\alpha(\overline{Lf})_0^{\bar{\alpha}} + 2\sqrt{-1}m(f_0^{\bar{\alpha}}f_{00}^\alpha - f_0^\alpha f_{00}^{\bar{\alpha}}) \\ &\quad + 2f_0^{\bar{\alpha}}f_j^\beta f_0^{\bar{\sigma}}\tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} + 2f_j^{\bar{\alpha}}f_0^\beta f_0^{\gamma}\tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} \\ &\quad - 2f_0^{\bar{\alpha}}f_j^\beta f_0^\gamma f_j^{\bar{\sigma}}\tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} - 2f_0^{\bar{\alpha}}f_j^\beta f_0^\gamma f_j^{\bar{\sigma}}\tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} \\ &\quad + 2(f_0^{\bar{\alpha}}f_l^\alpha + f_0^\alpha f_l^{\bar{\alpha}})A_{j,\bar{j}}^{\bar{l}} + 2(f_0^{\bar{\alpha}}f_l^\alpha + f_0^\alpha f_l^{\bar{\alpha}})A_{\bar{j},j}^l \\ &\quad + 2(f_0^{\bar{\alpha}}f_{j\bar{k}}^\alpha + f_0^\alpha f_{j\bar{k}}^{\bar{\alpha}})A_j^{\bar{k}} + 2(f_0^{\bar{\alpha}}f_{lj}^\alpha + f_0^\alpha f_{lj}^{\bar{\alpha}})A_{j,\bar{j}}^l. \end{aligned} \quad (5.4)$$

Proof First,

$$\begin{aligned} \frac{1}{2}\Delta|df(\xi)|^2 &= (f_0^\alpha f_0^{\bar{\alpha}})_{j\bar{j}} + (f_0^\alpha f_0^{\bar{\alpha}})_{\bar{j}j} + (f_0^\alpha f_0^{\bar{\alpha}})_{00} \\ &= 2(f_{0j}^\alpha f_{0\bar{j}}^{\bar{\alpha}} + f_{0\bar{j}}^\alpha f_{0j}^{\bar{\alpha}} + f_{00}^\alpha f_{00}^{\bar{\alpha}}) + f_0^{\bar{\alpha}}(f_{0\bar{j}j}^\alpha + f_{0j\bar{j}}^\alpha \\ &\quad + f_{000}^\alpha) + f_0^\alpha(f_{0j\bar{j}}^{\bar{\alpha}} + f_{0\bar{j}j}^{\bar{\alpha}} + f_{000}^{\bar{\alpha}}). \end{aligned} \quad (5.5)$$

From (4.17) and (4.23), we have

$$\begin{aligned} f_{0\bar{j}j}^\alpha &= f_{\bar{j}0j}^\alpha + f_{lj}^\alpha A_{j,\bar{j}}^{\bar{l}} + f_l^\alpha A_{\bar{j},j}^l \\ &= f_{j\bar{j}0}^\alpha + f_j^\beta f_0^\gamma f_0^{\bar{\sigma}}\tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha - f_j^\beta f_0^\gamma f_j^{\bar{\sigma}}\tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha \\ &\quad + f_l^\alpha h^{\bar{l}k} A_{jk,\bar{j}} + f_{j\bar{k}}^\alpha A_j^{\bar{k}} + f_{lj}^\alpha A_{j,\bar{j}}^{\bar{l}} + f_l^\alpha A_{\bar{j},j}^l. \end{aligned} \quad (5.6)$$

From (4.12) and (4.23), we have

$$\begin{aligned} f_{0j\bar{j}}^{\bar{\alpha}} &= f_{j0\bar{j}}^{\bar{\alpha}} + f_{\bar{l}j}^\alpha A_j^{\bar{l}} + f_l^\alpha A_{j,\bar{j}}^{\bar{l}} \\ &= f_{j\bar{j}0}^\alpha + f_j^\beta f_0^\gamma f_0^{\bar{\sigma}}\tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha - f_j^\beta f_0^\gamma f_j^{\bar{\sigma}}\tilde{R}_{\beta\gamma\bar{\sigma}}^\alpha \\ &\quad + f_l^\alpha h^{\bar{l}k} A_{\bar{j}k,j} + f_{jk}^\alpha A_j^k + f_{\bar{l}j}^\alpha A_j^{\bar{l}} + f_l^\alpha A_{j,\bar{j}}^{\bar{l}}. \end{aligned} \quad (5.7)$$

Note that

$$\begin{aligned} & f_0^{\overline{\alpha}}(f_j^{\beta}f_j^{\gamma}f_0^{\overline{\sigma}}\widetilde{R}_{\beta\gamma\overline{\sigma}} - f_j^{\beta}f_j^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\beta\gamma\overline{\sigma}} + f_j^{\beta}f_j^{\gamma}f_0^{\overline{\sigma}}\widetilde{R}_{\beta\gamma\overline{\sigma}} - f_j^{\beta}f_j^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\beta\gamma\overline{\sigma}}) \\ &= 2f_0^{\overline{\alpha}}f_j^{\beta}f_j^{\gamma}f_0^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} - f_0^{\overline{\alpha}}f_j^{\beta}f_j^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} - f_0^{\overline{\alpha}}f_j^{\beta}f_j^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} \end{aligned} \quad (5.8)$$

and, by (4.7),

$$\begin{aligned} & f_0^{\overline{\alpha}}(f_l^{\alpha}h^{\overline{l}k}A_{jk,\overline{j}} + f_{jk}^{\alpha}A_j^{\overline{k}} + f_{lj}^{\alpha}A_{\overline{j}}^l + f_l^{\alpha}A_{\overline{j},j}^l) \\ &+ f_0^{\overline{\alpha}}(f_l^{\alpha}h^{\overline{l}k}A_{\overline{j}k,j} + f_{jk}^{\alpha}A_j^k + f_{lj}^{\alpha}A_j^{\overline{l}} + f_l^{\alpha}A_{\overline{j},\overline{j}}^l) \\ &= 2f_0^{\overline{\alpha}}f_l^{\alpha}A_{\overline{j},\overline{j}}^l + 2f_0^{\overline{\alpha}}f_l^{\alpha}A_{\overline{j},j}^l + 2f_0^{\overline{\alpha}}f_{jk}^{\alpha}A_j^{\overline{k}} + 2f_0^{\overline{\alpha}}f_{lj}^{\alpha}A_{\overline{j}}^l. \end{aligned} \quad (5.9)$$

Therefore, substituting (5.6)–(5.9) into (5.5), we get

$$\begin{aligned} \frac{1}{2}\Delta|df(\xi)|^2 &= 2(|f_{0j}^{\alpha}|^2 + |f_{0\overline{j}}^{\alpha}|^2 + |f_{00}^{\alpha}|^2) + f_0^{\overline{\alpha}}(f_{\overline{j}j0}^{\alpha} + f_{j\overline{j}0}^{\alpha} + f_{000}^{\alpha}) + f_0^{\alpha}(f_{\overline{j}j0}^{\overline{\alpha}} + f_{j\overline{j}0}^{\overline{\alpha}} + f_{000}^{\overline{\alpha}}) \\ &+ 2f_0^{\overline{\alpha}}f_j^{\beta}f_j^{\gamma}f_0^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} + 2f_j^{\overline{\alpha}}f_0^{\beta}f_0^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} - 2f_0^{\overline{\alpha}}f_j^{\beta}f_0^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} \\ &- 2f_0^{\overline{\alpha}}f_j^{\beta}f_0^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} + 2(f_0^{\overline{\alpha}}f_l^{\alpha} + f_0^{\alpha}f_l^{\overline{\alpha}})A_{\overline{j},\overline{j}}^l + 2(f_0^{\overline{\alpha}}f_l^{\alpha} + f_0^{\alpha}f_l^{\overline{\alpha}})A_{\overline{j},j}^l \\ &+ 2(f_0^{\overline{\alpha}}f_{jk}^{\alpha} + f_0^{\alpha}f_{jk}^{\overline{\alpha}})A_j^{\overline{k}} + 2(f_0^{\overline{\alpha}}f_{lj}^{\alpha} + f_0^{\alpha}f_{lj}^{\overline{\alpha}})A_{\overline{j}}^l. \end{aligned}$$

Taking into account the identity

$$(Lf)_0^{\alpha} = f_{\overline{j}j0}^{\alpha} + f_{j\overline{j}0}^{\alpha} + f_{000}^{\alpha} - 2m\sqrt{-1}f_{00}^{\alpha},$$

we obtain (5.4).

Remark 5.1 One can check that

$$\begin{aligned} & \widetilde{g}(\widetilde{R}(df(\eta_j), df(\xi))\overline{df(\eta_j)}, df(\xi)) \\ &= \widetilde{g}(\widetilde{R}(f_j^{\beta}\widetilde{\eta}_{\beta} + f_j^{\overline{\alpha}}\widetilde{\eta}_{\overline{\alpha}}, f_0^{\gamma}\widetilde{\eta}_{\gamma} + f_0^{\overline{\sigma}}\widetilde{\eta}_{\overline{\sigma}})(f_j^{\overline{\alpha}}\widetilde{\eta}_{\overline{\alpha}} + f_j^{\beta}\widetilde{\eta}_{\beta}), f_0^{\gamma}\widetilde{\eta}_{\gamma} + f_0^{\overline{\sigma}}\widetilde{\eta}_{\overline{\sigma}}) \\ &= f_0^{\overline{\alpha}}f_j^{\beta}f_j^{\gamma}f_0^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} + f_j^{\overline{\alpha}}f_0^{\beta}f_0^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} \\ &\quad - f_0^{\overline{\alpha}}f_j^{\beta}f_0^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}} - f_0^{\overline{\alpha}}f_j^{\beta}f_0^{\gamma}f_j^{\overline{\sigma}}\widetilde{R}_{\overline{\alpha}\beta\gamma\overline{\sigma}}. \end{aligned}$$

If N has non-positive sectional curvature, then

$$\widetilde{g}(\widetilde{R}(Z, X)\overline{Z}, X) \geq 0$$

for any complex vector Z and any real vector X on N . Thus, if this is the case, the curvature terms on the right-hand side of (5.4) combine to yield a non-negative quantity.

Lemma 5.2 *Let (M^{2m+1}, H, J, θ) be a compact pseudo-Hermitian manifold. Let $f : M^{2m+1} \rightarrow (N^{2n}, \widetilde{J}, \widetilde{g})$ be a smooth map. If the second fundamental form satisfies*

$$\beta(\xi, X) = 0 \quad \forall X \in H,$$

then f is foliated.

Proof Since N is a Riemannian manifold, the claim follows directly from [2]. We present the proof for readers' convenience.

By the integration by parts and the third formula in (4.7), we have

$$\begin{aligned} 0 &= \sqrt{-1} \int_M (f_j^\alpha f_{0\bar{j}}^{\bar{\alpha}} - f_{\bar{j}}^{\bar{\alpha}} f_{0j}^{\alpha}) dV_g = -\sqrt{-1} \int_M (f_{j\bar{j}}^{\alpha} f_0^{\bar{\alpha}} - f_{\bar{j}j}^{\bar{\alpha}} f_0^{\alpha}) dV_g \\ &= 2m \int_M |f_0^\alpha|^2 dV_g. \end{aligned}$$

Therefore, $f_0^\alpha = 0$.

The main difficulty in applying Lemma 5.1 arises from the mixed term

$$2\sqrt{-1}m(f_0^{\bar{\alpha}} f_{00}^{\alpha} - f_0^\alpha f_{00}^{\bar{\alpha}})$$

and the terms related to torsion. To address the mixed term, we need to add an extra term $|f_{00}^\alpha|^2$ (see below for details). Inspired by [2], we define the following generalized Paneitz operator acting on maps:

$$Pf := \underbrace{\left(f_{j\bar{j}k}^{\alpha} + \frac{1}{2} f_{00k}^{\alpha} + 2m\sqrt{-1}A_{kj}f_j^\alpha \right)}_{:=(Pf)_k} \theta^k \otimes \tilde{\eta}_\alpha.$$

In [12] (cf. also [9]), Li and Son defined the following tensors

$$Bf = B_{i\bar{j}} f^\alpha \theta^i \otimes \theta^{\bar{j}} \otimes \tilde{\eta}_\alpha$$

and

$$E = E_{\bar{j}} \theta^{\bar{j}},$$

where

$$B_{i\bar{j}} f^\alpha := f_{i\bar{j}}^\alpha - \frac{1}{m} f_{k\bar{k}}^\alpha h_{i\bar{j}}$$

and

$$E_{\bar{j}} := (B_{i\bar{j}} f^\alpha) f_i^{\bar{\alpha}}.$$

Then $-\delta E$ is given by

$$\begin{aligned} E_{\bar{j},j} &= \left(f_{i\bar{j}j}^\alpha - \frac{1}{m} f_{k\bar{k}j}^\alpha h_{i\bar{j}} \right) f_i^{\bar{\alpha}} + (B_{i\bar{j}} f^\alpha) f_{i\bar{j}}^{\bar{\alpha}} \\ &= |B_{i\bar{j}} f^\alpha|^2 + \frac{m-1}{m} \langle Pf, \bar{\partial}_b \bar{f} \rangle - \tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} f_i^{\bar{\sigma}} f_{\bar{j}}^\beta (f_i^\gamma f_j^{\bar{\alpha}} - f_j^\gamma f_i^{\bar{\alpha}}) - \frac{m-1}{2m} f_{00k}^\alpha f_k^{\bar{\alpha}}. \end{aligned}$$

Taking integration of δE over M gives

$$\begin{aligned} -\frac{m-1}{m} \int_M \langle Pf, \bar{\partial}_b \bar{f} \rangle dV_g &= \int_M |B_{i\bar{j}} f^\alpha|^2 dV_g - \int_M \tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} f_i^{\bar{\sigma}} f_{\bar{j}}^\beta (f_i^\gamma f_j^{\bar{\alpha}} - f_j^\gamma f_i^{\bar{\alpha}}) dV_g \\ &\quad - \frac{m-1}{2m} \int_M f_{00k}^\alpha f_k^{\bar{\alpha}} dV_g. \end{aligned}$$

Note that

$$f_{\bar{k}k}^{\bar{\alpha}} - f_{k\bar{k}}^{\bar{\alpha}} = -2\sqrt{-1}m f_0^{\bar{\alpha}},$$

thus,

$$\begin{aligned}
\int_M f_{00k}^\alpha f_k^{\bar{\alpha}} dV_g &= - \int_M f_{00}^\alpha f_{\bar{k}k}^{\bar{\alpha}} dV_g \\
&= - \int_M f_{00}^\alpha (f_{\bar{k}k}^{\bar{\alpha}} - 2m\sqrt{-1}f_0^{\bar{\alpha}}) dV_g \\
&= -\frac{1}{2} \int_M f_{00}^\alpha (\overline{(Lf)^\alpha} - f_{00}^{\bar{\alpha}}) dV_g + 2m\sqrt{-1} \int_M f_{00}^\alpha f_0^{\bar{\alpha}} dV_g \\
&= \frac{1}{2} \int_M |f_{00}^\alpha|^2 dV_g - \frac{1}{2} \int_M f_{00}^\alpha \overline{(Lf)^\alpha} dV_g + 2m\sqrt{-1} \int_M f_{00}^\alpha f_0^{\bar{\alpha}} dV_g.
\end{aligned}$$

Therefore,

$$\begin{aligned}
-\frac{m-1}{m} \int_M \langle Pf, \bar{\partial}_b \bar{f} \rangle dV_g &= \int_M |B_{i\bar{j}} f^\alpha|^2 dV_g - \int_M \tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} f_i^{\bar{\sigma}} f_{\bar{j}}^\beta (f_i^\gamma f_j^{\bar{\alpha}} - f_j^\gamma f_i^{\bar{\alpha}}) dV_g \\
&\quad - \frac{m-1}{4m} \int_M |f_{00}^\alpha|^2 dV_g + \frac{m-1}{4m} \int_M f_{00}^\alpha \overline{(Lf)^\alpha} dV_g \\
&\quad - (m-1)\sqrt{-1} \int_M f_{00}^\alpha f_0^{\bar{\alpha}} dV_g. \tag{5.10}
\end{aligned}$$

Recall that the curvature tensor $\tilde{R}_{\beta\bar{\alpha}\gamma\bar{\sigma}}$ is said to be strongly negative (resp. strongly semi-negative) if

$$\tilde{R}_{\beta\bar{\alpha}\gamma\bar{\sigma}} (A^\beta \overline{B^\alpha} - C^\beta \overline{D^\alpha}) \overline{(A^\sigma \overline{B^\gamma} - C^\sigma \overline{D^\gamma})}$$

is positive (resp. non-negative) for any complex numbers $A^\alpha, B^\alpha, C^\alpha, D^\alpha$ whenever there exists at least one pair of indices (α, β) such that $A^\beta \overline{B^\alpha} - C^\beta \overline{D^\alpha} \neq 0$ (cf. [19]). Evidently, strongly negative curvature (resp. strongly semi-negative curvature) implies negative sectional curvature (resp. semi-negative sectional curvature). If N has strongly semi-negative curvature, then

$$-\tilde{R}_{\bar{\alpha}\beta\gamma\bar{\sigma}} f_i^{\bar{\sigma}} f_{\bar{j}}^\beta (f_i^\gamma f_j^{\bar{\alpha}} - f_j^\gamma f_i^{\bar{\alpha}}) = \frac{1}{2} \tilde{R}_{\beta\bar{\alpha}\gamma\bar{\sigma}} (f_i^{\bar{\alpha}} f_{\bar{j}}^\beta - f_{\bar{j}}^{\bar{\alpha}} f_i^\beta) \overline{(f_i^\gamma f_j^{\bar{\sigma}} - f_{\bar{j}}^\gamma f_i^{\bar{\sigma}})} \geq 0.$$

Next, we introduce the 1-form $F = F_{\bar{k}} \theta^{\bar{k}}$ with

$$F_{\bar{k}} := \left(f_{\bar{j}j}^\alpha + \frac{1}{2} f_{00}^\alpha \right) f_k^{\bar{\alpha}}.$$

Then

$$\begin{aligned}
F_{\bar{k},k} &= \left(f_{\bar{j}jk}^\alpha + \frac{1}{2} f_{00k}^\alpha \right) f_k^{\bar{\alpha}} + \left(f_{\bar{j}j}^\alpha + \frac{1}{2} f_{00}^\alpha \right) f_{\bar{k}k}^{\bar{\alpha}} \\
&= ((Pf)_k^\alpha - 2m\sqrt{-1}A_{kj} f_j^\alpha) f_k^{\bar{\alpha}} + \frac{1}{2} (Lf)^\alpha f_{\bar{k}k}^{\bar{\alpha}}.
\end{aligned}$$

Integrating δF on M yields

$$\int_M \langle Pf, \bar{\partial}_b \bar{f} \rangle dV_g = -\frac{1}{2} \int_M (Lf)^\alpha f_{\bar{k}k}^{\bar{\alpha}} dV_g + 2m\sqrt{-1} \int_M A_{kj} f_j^\alpha f_{\bar{k}k}^{\bar{\alpha}} dV_g. \tag{5.11}$$

Theorem 5.1 *Let (M^{2m+1}, H, J, θ) be a compact Sasakian manifold with $m \geq 2$, and $(N^{2n}, \tilde{J}, \tilde{g})$ be a Kähler manifold with strongly semi-negative curvature. If $f : M \rightarrow N$ is a $\bar{\partial}_b$ -harmonic map or a ∂_b -harmonic map, then f is foliated. Therefore, f must be $\bar{\partial}_b$ -pluriharmonic (that is, $f_{ij}^\alpha = f_{\bar{j}i}^\alpha = 0$) and*

$$\tilde{R}_{\beta\bar{\alpha}\gamma\bar{\sigma}} (f_i^{\bar{\alpha}} f_{\bar{j}}^\beta - f_{\bar{j}}^{\bar{\alpha}} f_i^\beta) \overline{(f_i^\gamma f_j^{\bar{\sigma}} - f_{\bar{j}}^\gamma f_i^{\bar{\sigma}})} = 0. \tag{5.12}$$

Proof Suppose that f is $\bar{\partial}_b$ -harmonic (the case for ∂_b -harmonic map is similar). Then $(Lf)^\alpha = 0$, or equivalently,

$$f_{j\bar{j}}^\alpha + f_{\bar{j}j}^\alpha + f_{00}^\alpha - 2m\sqrt{-1}f_0^\alpha = 0. \quad (5.13)$$

Since M is Sasakian, we have $A_{ij} = 0$, and hence, (5.4) simplifies to

$$\begin{aligned} \frac{1}{2}\Delta|df(\xi)|^2 &= 2\sum_j(|f_{0j}^\alpha|^2 + |f_{0\bar{j}}^\alpha|^2) + 2|f_{00}^\alpha|^2 + 2m\sqrt{-1}(f_0^\alpha f_{00}^\alpha - f_0^\alpha f_{00}^\alpha) \\ &\quad + 2f_0^\alpha f_{\bar{j}}^\beta f_j^\gamma f_0^\sigma \tilde{R}_{\bar{\alpha}\beta\gamma\sigma} + 2f_{\bar{j}}^\alpha f_0^\beta f_0^\gamma f_j^\sigma \tilde{R}_{\bar{\alpha}\beta\gamma\sigma} \\ &\quad - 2f_0^\alpha f_{\bar{j}}^\beta f_0^\gamma f_j^\sigma \tilde{R}_{\bar{\alpha}\beta\gamma\sigma} - 2f_0^\alpha f_j^\beta f_0^\gamma f_{\bar{j}}^\sigma \tilde{R}_{\bar{\alpha}\beta\gamma\sigma}. \end{aligned} \quad (5.14)$$

Therefore, by Remark 5.1, integrating (5.14) over M and applying integrating by parts, we have

$$4m\sqrt{-1}\int_M f_0^\alpha f_{00}^\alpha dV_g + 2\int_M |f_{00}^\alpha|^2 dV_g \leq 0. \quad (5.15)$$

On the other hand, since f is $\bar{\partial}_b$ -harmonic, we get from (5.11) that

$$\int_M \langle Pf, \bar{\partial}_b \bar{f} \rangle dV_g = 0. \quad (5.16)$$

From (5.10) and the curvature condition, we obtain

$$-\int_M |f_{00}^\alpha|^2 dV_g - 4m\sqrt{-1}\int_M f_{00}^\alpha f_0^\alpha dV_g \leq 0. \quad (5.17)$$

Then (5.15) and (5.17) imply that $f_{00}^\alpha = 0$. Substituting it into (5.14), we get

$$\frac{1}{2}\Delta|df(\xi)|^2 \geq 2\sum_j(|f_{0j}^\alpha|^2 + |f_{0\bar{j}}^\alpha|^2) \geq 0.$$

Thus, $df(\xi) = 0$ by utilizing the divergence theorem and Lemma 5.2.

Furthermore, by substituting (5.16) and $f_0^\alpha = 0$ into (5.10), we obtain

$$\int_M |B_{i\bar{j}} f^\alpha|^2 dV_g - \int_M \tilde{R}_{\bar{\alpha}\beta\gamma\sigma} f_i^\sigma f_{\bar{j}}^\beta (f_i^\gamma f_j^\alpha - f_j^\gamma f_i^\alpha) dV_g = 0.$$

Note that

$$-\tilde{R}_{\bar{\alpha}\beta\gamma\sigma} f_i^\sigma f_{\bar{j}}^\beta (f_i^\gamma f_j^\alpha - f_j^\gamma f_i^\alpha) = \frac{1}{2} \tilde{R}_{\beta\bar{\alpha}\gamma\sigma} (f_i^\alpha f_{\bar{j}}^\beta - f_{\bar{j}}^\alpha f_i^\beta) (\overline{f_i^\gamma f_j^\alpha} - \overline{f_j^\gamma f_i^\alpha}) \geq 0.$$

Thus, we get (5.12) and $B_{i\bar{j}} f^\alpha = 0$. Clearly, $f_0^\alpha = 0$ and $A_{ij} = 0$ imply that $f_{j\bar{j}}^\alpha = f_{\bar{j}j}^\alpha = 0$.

Consequently, from the definition of $B_{i\bar{j}} f^\alpha$, we have

$$f_{\bar{j}i}^\alpha = f_{i\bar{j}}^\alpha = \frac{1}{m} f_{kk}^\alpha h_{i\bar{j}} = 0.$$

This completes the proof.

Note that the rank condition in Siu's theorem mentioned in the introduction can be improved as $\text{rank}_{\mathbb{R}}(df_x) \geq 3$ at some point x (cf. [10]). By a similar argument as [2, 19], we get immediately from (5.12) the following theorem.

Theorem 5.2 Let (M^{2m+1}, H, J, θ) be a compact Sasakian manifold with $m \geq 2$ and $(N^{2n}, \tilde{J}, \tilde{g})$ be a Kähler manifold with strongly negative curvature. Suppose that $f : M \rightarrow N$ is a $\bar{\partial}_b$ -harmonic map and df has real rank at least 3 at some point $p \in M$. Then f is either (J, \tilde{J}) -holomorphic or anti- (J, \tilde{J}) -holomorphic.

Remark 5.2 If f is ∂_b -harmonic (with the other assumptions unchanged), then the conclusion remains valid.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

- [1] Barletta, E., Dragomir, S. and Urakawa, H., Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, *Indiana Univ. Math. J.*, **50**(2), 2001, 719–746.
- [2] Chong, T., Dong, Y. X., Ren, Y. B. and Yang, G. L., On harmonic and pseudoharmonic maps from pseudo-Hermitian manifolds, *Nagoya Math. J.*, **234**, 2019, 170–210.
- [3] Dong, Y. X., On (H, \tilde{H}) -harmonic maps between pseudo-Hermitian manifolds, 2016, arXiv:1610.01032.
- [4] Dragomir, S. and Kamishima, Y., Pseudoharmonic maps and vector fields on CR manifolds, *J. Math. Soc. Japan*, **62**(1), 2010, 269–303.
- [5] Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR Manifolds, volume 246, Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 2006.
- [6] Eells, J. and Lemaire, L., Selected Topics in Harmonic Maps, Vol. 50, CBMS Regional Conference Series in Mathematics, Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1983.
- [7] Eells, Jr. J., and Sampson, J. H., Harmonic mappings of Riemannian manifolds, *Amer. J. Math.*, **86**, 1964, 109–160.
- [8] Gherghe, C., Ianus, S. and Pastore, A. M., CR-manifolds, harmonic maps and stability, *J. Geom.*, **71**(1–2), 2001, 42–53.
- [9] Graham, C. R. and Lee, J. M., Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, *Duke Math. J.*, **57**(3), 1988, 679–720.
- [10] Jost, J., Nonlinear Methods in Riemannian and Kählerian Geometry, second edition, Vol. 10, DMV Seminar, Birkhäuser Verlag, Basel, 1991.
- [11] Jost, J. and Yau, S.-T., A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, *Acta Math.*, **170**(2), 1993, 221–254.
- [12] Li, S.-Y. and Son, D. N., CR-analogue of the Siu- $\bar{\partial}\bar{\partial}$ -formula and applications to the rigidity problem for pseudo-Hermitian harmonic maps, *Proc. Amer. Math. Soc.*, **147**(12), 2019, 5141–5151.
- [13] Lichnerowicz, A., Applications harmoniques et variétés kähleriennes, *Symposia Mathematica*, Vol. III, Academic Press, London, New York, 1970, 341–402.
- [14] Liu, K. F. and Yang, X. K., Hermitian harmonic maps and non-degenerate curvatures, *Math. Res. Lett.*, **21**(4), 2014, 831–862.
- [15] Petit, R., Harmonic maps and strictly pseudoconvex CR manifolds, *Comm. Anal. Geom.*, **10**(3), 2002, 575–610.
- [16] Petit, R., Mok-Siu-Yeung type formulas on contact locally sub-symmetric spaces, *Ann. Global Anal. Geom.*, **35**(1), 2009, 1–37.
- [17] Sampson, J. H., Some properties and applications of harmonic mappings, *Ann. Sci. École Norm. Sup.* (4), **11**(2), 1978, 211–228.
- [18] Shen, B., Shen, Y. B. and Zhang, X., Holomorphic maps from Sasakian manifolds into Kähler manifolds, *Chin. Ann. Math. Ser. B*, **34**(4), 2013, 575–586.

- [19] Siu, Y. T., The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, *Ann. of Math.* (2), **112**(1), 1980, 73–111.
- [20] Tanaka, N., A differential geometric study on strongly pseudo-convex manifolds, Vol. 9, Lectures in Mathematics, Department of Mathematics, Kyoto University, Kinokuniya Book Store Co., Ltd., Tokyo, 1975.
- [21] Webster, S. M., Pseudo-Hermitian structures on a real hypersurface, *J. Differential Geometry*, **13**(1), 1978, 25–41.