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On 8y-Harmonic Maps from Pseudo-Hermitian
Manifolds to Kahler Manifolds*
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Abstract This paper considers maps from pseudo-Hermitian manifolds to Kéhler man-
ifolds and introduces partial energy functionals for these maps. First, the authors obtain
a foliated Lichnerowicz type result on general pseudo-Hermitian manifolds, which general-
izes a related result on Sasakian manifolds by Shen—Shen-Zhang (2013). Next, the authors
investigate critical maps of the partial energy functionals, which are referred to as 9 -
harmonic maps and dy-harmonic maps. The authors give a foliated result for both ;- and
Op-harmonic maps, generalizing a foliated result of Petit (2002) for harmonic maps. Then
the authors are able to generalize Siu’s holomorphicity result for harmonic maps by Siu
(1980) to the case for 9y~ and Jp-harmonic maps.
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1 Introduction

n [19], Siu proved the following theorem.

Theorem A Let f: M — N be a harmonic map between compact Kdahler manifolds. If
(N,g) has strongly negative curvature and rankg(df,) > 4 at some point x € M, then f is

holomorphic or anti-holomorphic.

The above theorem, combined with Eells-Sampson’s existence theorem (cf. [7]), implies
Siu’s celebrated strong rigidity for compact Kéhler manifolds with strongly negative curvature.
Subsequently, there have been some research efforts to generalize Siu’s theorem to the case
of non-Kéahler Hermitian manifolds. In [11], Jost and Yau used Hermitian harmonic maps to
generalize Siu’s rigidity theorem to the case where the domain manifold is astheno-Kahler. In
[14], Liu and Yang considered the critical points of partial energies for maps from Hermitian

manifolds, and discussed related holomorphicity results for these critical maps.
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A pseudo-Hermitian manifold (M?™+L H,J ) is a strictly pseudoconvex CR manifold
(M, H,J) endowed with a pseudo-Hermitian 1-form 6. It can be regarded as an odd dimen-
sional analogue of a Hermitian manifold. Harmonic maps and their generalizations have also
been used to study pseudo-Hermitian manifolds. In [15], Petit established some rigidity result-
s for harmonic maps from pseudo-Hermitian manifolds. First, he proved that any harmonic
map from a compact Sasakian manifold to a Riemannian manifold with non-positive section-
al curvature is trivial on the Reeb field of the pseudo-Hermitian structure. A map with this
property is said to be foliated. Next he proved that under a similar rank condition as above,
the harmonic map from a compact Sasakian manifold to a Kahler manifold with strongly neg-
ative curvature is CR-holomorphic or CR-antiholomorphic. In [2], among other results, the
authors generalized Petit’s results to the case of pseudoharmonic maps. Besides, Li and Son
[12] defined the following Oj-energy functional for maps from a pseudo-Hermitian manifold to
a Kéhler manifold:

B, (D) =5 [ BufPay.
The Jp-energy functional Eg, (f) can be defined similarly. A critical point of Ej () was called
pseudo-Hermitian harmonic. Then they proved a “Siu-type holomorphicity” result for a pseudo-
Hermitian harmonic map under a rank condition on a dense subset of M.
In this paper, we consider maps from a pseudo-Hermitian manifold M to a Kéahler manifold

(N, J,§), and introduce the following partial energy functionals:

B, (1) = %/M {lgbﬂ2 + %ldf(i)IQ}dve (1.1)
and
Fo,() =5 [ {Ibs? + {14 b (12)

where { denotes the Reeb vector field of (M, 0). Note that the usual energy E(f) = Eg, .(f) +
Eog,¢(f).- A critical point of E5, .(f) (resp. Eg,¢(f)) will be referred to as a dy-harmonic map
(resp. dp-harmonic map). Clearly Eg, ((f) =0 (resp. Eg, ¢(f) = 0) if and only if f is a foliated
CR map (resp. foliated anti-CR map).

For a map f: (M2™+L H, J,0) — (N, J,§), we set

Ky(f) = Eo, (f) — Ep, (f) = Eo,(f) — Eg,(f)-

The authors in [18] proved that if M is a compact Sasakian manifold, then K3(f) is invariant
under a foliated deformation. First, we want to generalize their result to the case that the

domain manifold is a general pseudo-Hermitian manifold.

Theorem 1.1 Let (M?™+L H, J,0) be a compact pseudo-Hermitian manifold, and (N, j, J)
be a Kdhler manifold. Then Ky(f) is a smooth foliated homotopy invariant, that is, Ky(f;) is
constant for any family {fi} of foliated maps.
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This is a foliated Lichnerowicz type result, which implies that the Ep, £ Ep, - and E-
critical points through foliated maps coincide. Furthermore, in a given foliated homotopy class,
the Ep, -, B, ¢- and E-minima coincide.

Next, we try to generalize Petit’s foliated rigidity theorem and get the following result.

Theorem 1.2 Let (M*™*t1 H, J,0) be a compact Sasakian manifold with m > 2, and
(N, j,@ be a Kahler manifold with strongly semi-negative curvature. If f : M — N is a
Oy -harmonic map or a Oy-harmonic map, then f is foliated. Furthermore, f must be Op-

plurtharmonic (that is, f% = 5": =0), and

Rpara (717 = [TIONIT £ = f1 1) = 0.

Subsequently, by a similar argument as in [2, 10, 19], we obtain the following CR rigidity

result for dp-harmonic maps.

Theorem 1.3 Let (M*™tL H, J,0) be a compact Sasakian manifold with m > 2, and
(N, j, g) be a Kdhler manifold with strongly negative curvature. Suppose that f : M — N is a
Oy -harmonic map, and rankr(df,) > 3 at some point p € M. Then f is a foliated CR map or
foliated anti-CR map.

2 Preliminaries

Let M?™+ be a (2m + 1)-dimensional smooth orientable manifold. A CR structure on
M?m+1 s a complex rank-m subbundle H' of T'(M) ® C with the following properties

HY g = {0}, H"'=HO,

[D(H), T(H)] € T(H"). (2.1)

The complex subbundle H'? corresponds to a real rank-2m subbundle H := R{H'* & H"'}
of T(M), which carries a complex structure .J;, defined by

TV +7V) =iV -V)

for any V € H*Y. The synthetic object (M, HY?) or (M, H, Jy) is called a CR manifold.
Let E be a real line bundle of T*M, whose fiber at each point x € M is given by

E,={weT;M :kerw D H,}.

Since both TM and H are orientable vector bundles on M, the real line bundle F is orientable,
E has globally defined nowhere vanishing sections. Any such a section 6 € I'(E\{0}) is referred
to as a pseudo-Hermitian 1-form on M.

Given a pseudo-Hermitian 1-form 6 on M, we have the Levi form Ly corresponding to 6,
which is defined by

Lo(X,Y) =do(X, J,Y) (2.2)
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for any X,Y € H. The second condition in (2.1) implies that Ly is Jp-invariant, and thus
symmetric. If Ly is positive definite on H for some 6, then (M, H™?) is said to be strictly
pseudoconvex. From now on, we will always assume that (M, H%9) is a strictly pseudoconvex
CR manifold endowed with a pseudo-Hermitian 1-form 6, such that its Levi form Ly is positive
definite. In this case the synthetic object (M, H'0 0) is referred to as a pseudo-Hermitian
manifold.

Let (M?m+1 H10 0) be a pseudo-Hermitian manifold. Clearly @ is a contact form. Thus
there is a unique vector field £ € I'(T'(M)), called the Reeb vector field, such that

0(¢) =1, iedd =0, (2.3)

where i¢ denotes the interior product with respect to {. The collection of all its integral
curves forms an oriented one-dimensional foliation F¢ on M, which is called the Reeb foliation.
The first condition in (2.3) implies that £ is transversal to H. Therefore, T (M) admits a

decomposition
T(M)=H® Vg, (2.4)

where V¢ := span{{} is a trivial line bundle on M. In terms of terminology from foliation theory,
H and V¢ are called the horizontal and vertical distributions, respectively. Let mg : TM — H
and 7y : TM — V¢ be the natural projections associated with the direct sum decomposition

(2.4). In terms of 0, the Levi form Ly can be extended to a Riemannian metric
go = Lo(mr, i) +0 @0, (2.5)

which is called the Webster metric. It is convenient to extend the complex structure J, on H

to an endomorphism J of T'(M) by requiring that
J|H =J and J|V£ =0, (2.6)

where | denotes the fiberwise restriction.

It is known that there exists a unique linear connection V on (M?™+1 H19 9), called the
Tanaka-Webster connection, such that (cf. [5, 20-21])

(1) VxI'(H) CT'(H) and VxJ =0 for any X € I'(T'M);

(2) Vgo=0;

(3) Tw(X,Y) = 2d0(X,Y)¢ and Ty(€, JX) + JTw (£, X) = 0 for any X,V € H, where
Ty (-,-) denotes the torsion of the connection V.

One important partial component of Ty is the pseudo-Hermitian torsion 7 given by
T(X) =Tv (¢ X) (2.7)

for any X € TM. Then (M, H'?,6) is said to be Sasakian if 7 = 0.
For the pseudo-Hermitian manifold (M, H'° ), we choose a local orthonormal frame field

{ea}d™, ={& €1, €ms€mtt1, €2} With respect to gg such that

{em+17 e 762771} = {Jela o 7']em}-
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Such a frame field {e4}4", is referred to as an adapted frame field M. Set
L
Mj V2

Let {67}7, be the dual frame field of {7;}7,. By the properties of the Tanaka-Webster

ej—V—1Jej), ;=15 j=1,---,m. (2.8)

connection V, we have (cf. [5])
VE=0, Vi=0i@n, V= 93 Q7, (2.9)

where {9;} denotes the connection 1-forms with respect to the frame field. Since 7(H'?) ¢ H%!,

one may write

T = Ti’lh' + TZTT];
= ALY @ i+ AL 07 @7 (2.10)
From [21], we know that {6, 6", 0%} satisfies the following structure equations (cf. also [5, §1.4]):
df = 2V/=10' N ',
6" = —05 N 67+ ALO N 67, (2.11)
6} = —0j A 0% + 11
with

I = 2V/=1(0" A7/ — 7' A O7) + R 0% A 6T

+ W0 AOF — W0 A0F, (2.12)

where W;E = A%j, ij = A;’? - are the covariant derivatives of A and R;‘Id are the components

of curvature tensor of the Tanaka-Webster connection.

Lemma 2.1 (cf. [2]) Let (M*™*1 H, J,0) be a pseudo-Hermitian manifold with Tanaka-
Webster connection V. Let X and p be a vector field and 1-form on M, respectively. Then

2m 2m

divX =Y go(Ve, X ea)  and  p=—> (Ve p)(ea),
A=0 A=0
where {ea}4", = {& e1, - ,eam} is an orthonormal frame field on M. Here div(-) and 4(-)

denote the divergence and codifferential, respectively.

Definition 2.1 A map f: (M,H,J) — (N,J) from a CR manifold to a complex manifold
is called a CR map (resp. anti-CR map) if df (HY9) c TYO(N) (resp. df(H%') c THO(N)),
equivalently, dfy o J = Jodfy (resp. dfgoJ =—Jodfy), where dfy = df|g. In particular,
if N =C, then f is called a CR function (resp. anti-CR function).

A map f: (M,H,J,6) — N from a pseudo-Hermitian manifold to a smooth manifold is
said to be foliated if df(§) = 0. Here the target manifold is regarded as a trivial foliation by

points. In [2, 8], the following type of generalized holomorphic maps was investigated.
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Definition 2.2 (cf. [8]) A smooth map f : (M, H,J,0) — (N, J) from a pseudo-Hermitian

manifold to a complex manifold is called (J, j)-holomorphic (resp. anti-(J, j)-holomorphic) if
it satisfies df o J = Jodf (resp. df o J = —J o df).
Remark 2.1 Clearly f : (M, H,J,0) — (N, j) is a (J, j)—holomorphic map if and only if

it is a foliated CR map. Note that (J, J)-holomorphic map is also called CR-holomorphic map
in [15].

Let f : (M2t H J 6) — (N,J,§) be a map from a pseudo-Hermitian manifold to a
Kahler manifold. We have the partial differentials

Opf: H®' - TN, 0pf: HY* - T"°N

defined by
Of =7"(dfgor),  f =x"0(df|r0),
where 710 : TCN — T1ON is the natural projection morphism. Let {eg,e1,--- ,€am} be the
adapted frame field on M as given above. Similarly, let {€3,---,€2,} be a local orthonormal
frame field on (IV, j, g) with €,11 = ja, cee L Eop = Jén. Set
1 ~
Na = —=(eq —V—1Jey), a=1,---,n. 2.13
7 \/5( % ) (2.13)
Let {6%}"_, be the dual frame field of {7j,}"_,. In terms of the frame fields, we can write
Oof = 20 @Tjar  Opf = [0V @ T (2.14)
Then
Ouf? =D S7 0T V0P =D f T (2.15)
], 7,
or

D f|? = §{<df<ej>,df<ej>> +(df(Je;),df (Jej))
—2(df(Jej), Jdf(e;))}

- iiudﬂem,dﬂm» ~ (Fdf(ea),df (Tea))} (216)
0017 = JUAF(e3), A7) + (A (Te), df (Tey)
F2AJ(Tes), Taf(e;))}
- iiudﬂem, Af(ea)) + (Jaf(ea), df (Tea))}. (217)
Then we can introduce the following two energy functionals:

B, (1) = [ {19 + 110 O fau (2.18)
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and

1
Eoe(f) = [ {10uf + 317 Jaon (219)
M
where ¢ is the Reeb vector field of (M, 0). Clearly £ (f) =0 (resp. Eg,¢(f) =0) if and only
if f is a foliated CR map (resp. foliated anti-CR, map).

Definition 2.3 A critical point of Eg, (f) (resp. Ea,¢(f)) is called a Oy-harmonic map

(resp. Op-harmonic map).

Remark 2.2 In [12], Li and Son introduced the d;-energy functional B, (f) of f. Compared
with their definition, we include the term 1|df(¢)[* in (2.18).

For a map f: (M,H9,0) — (N, J,§), we define its second fundamental form by
B(X,Y) = Vydf(X) - df(Vy X)

for any X,Y € I'(T'M), where V and V denote the Tanaka-Webster connection of M and the
Levi-Civita connection of N, respectively. The notion of the above second fundamental form

has appeared in literature in various special cases (cf. [4, 6, 15-16], etc.).

Lemma 2.2 (cf. [3]) Let f: (M,V)—(N,V) be a map between manifolds with the linear

connections. Then
Vxdf(Y) = Vydf(X) = df([X,Y]) = Te(df(X),df(V))

for any X,Y € T(TM), where Ts denotes the torsion of V. Equivalently, we have
BX,Y) = B(Y,X) =df(Tv(X,Y)) - Tg(df(X),df(Y)).

Now we want to derive the variation formulas of the energy functionals defined by (2.18)
and (2.19).

Lemma 2.3 Let (M?™+1 H,J,0) be a pseudo-Hermitian manifold and (N, j, g) be a Kdhler
manifold. Suppose that {fi}y<< is a family of maps from M to N with fo = f and v =
(%:)],_, €T(f7'TN). Then

dE5 (f 1 T

837,;“) =3 /M<v,trg9 B —2mJdf(§))
and

dEp, ¢(fr)

1 ~
dt ‘t:o -2 /M<U’tr99 B+2mJdf(§)).

Proof Set F': M x (—e,e) = N by F(z,t) = fi(z) for any x € M and t € (—¢,¢). Then

dEEb,g(ft)
dt

t=0
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2m
_ E/M ;{2<%%dF(eA),dF(eA)> — (JV 2 dF(ea),dF(Jes))

{JdP(er). ¥ g dF(Jea))}vy + / (V 5 dF(€), dF (€))dvg
M
2m 1 _ .
= AZ_;/M 1 2(Vesv.df(ea)) = (JVe,v,df(Jea))
— (Jdf(ea), Vye,sv)}dvg + %/ (Vev, df(€))dug
M
1 2m _ B N
=3 ;/M{Wmv,df(m» + (Ve,v, Jdf(Jea)) }dvg
- %/ {ea(v,df(ea)) = (v,df (Ve ea)) = (v, (Ve,df)(ea))
20/ 7 ’ “ e

+ealv, Jdf(Jea)) — (v, JAf I (Ve ea)) — (v, (Ve, JAdf T)(ea))}. (2.20)

Define a 1-form p by p(X) = (v,df (X)) + (v, .J odf o J(X)) for any X € TM. By Lemma 2.1,

we deduce that

2m
5p = Z(veAp)(eA)' (221)
A=0
It follows from (2.20)—(2.21) that
dFE5 2m ~ ~
ol L (0 Gadnen B Todf o ). (22)
- M A=0
Next,
2m . . 2m N N .
Y [Vea(Todfod)(ea) =Y Ve (Jodfodea) = Jodf o J(Ve,en)
A=1 A=1
2m
=Y J[Ve,df(Jea) = df(Ve,Jea)]
A=1

I
b
ok
<~
=
<
o)
>
o)
=

Then we get the variation formula for B, .(f) from (2.22). The variation formula for Eg, ¢(f)

may be derived in a similar way. Hence we complete the proof of this lemma.
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Define the tension field Tgb_f( f) of f with respect to the functional Eg, ¢ by

75, ¢(f) = trg, B — 2mJdf(9).

Then, according to Lemma 2.3, f is dp-harmonic if and only if 75,¢(f) = 0.
Note that 75, ((f) = 0 (or 7,¢(f) = 0) is a system of elliptic differential equations that
differ from the harmonic map equation by a linear first-order term. By a similar argument as

in [17], we have the following theorem.

Theorem 2.1 (Unique continuation)  Let f : (M2™+1 H, J,0) — (N2".J,5) be a Op-
harmonic map or Op-harmonic map. If [ is constant on a non-empty open subset U of M, then

f is constant on M.

Let us recall some definitions of generalized harmonic maps from pseudo-Hermitian mani-
folds.

Definition 2.4 Let (M2™+L H, J,0) be a pseudo-Hermitian manifold and (N?",J,§) be a
Kahler manifold. Suppose that f : M — N is a smooth map. We say f is

(i) pseudo-harmonic, if try,(mrf) =0 (cf. [1]);

(ii) pseudo-Hermitian harmonic, if it is a critical point of E (-) (cf. [12]);

(ili) Op-pluriharmonic, if B(X,Y) + B(JX,JY) =0 for all X,Y € H (cf. [4]).

Remark 2.3 Clearly, we have the following results:

(a) If f is Op-pluriharmonic, then it must be pseudoharmonic (cf. [3]);

(b) if f is a CR map, then f is pseudo-Hermitian harmonic;

(c) if fis a CR map (resp. anti-CR map), then f is dy-harmonic (resp. d-harmonic) if
and only if (&, &) =0 (cf. (5.3));

(d) if f is foliated, then notions of Jj-harmonic, d,-harmonic, pseudoharmonic, pseudo-

Hermitian harmonic and harmonic maps coincide.
Besides, as proved in [2], if f is dp-pluriharmonic, then it is foliated; if f is =+(.J, f)—

holomorphic, then it is 9y-pluriharmonic.

3 Lichnerowicz Type Results

In this section, we generalize the Lichnerowicz type result in [18] to the case that the domain
manifold is a general pseudo-Hermitian manifold.

Let f: (M2 H, J, 6) — (N, J,w") be a smooth map from a pseudo-Hermitian manifold
to a Kihler manifold, where w? is the Kihler form of N, given by w™ (X,Y) = g(JX,Y) for
all X, Y € TN. Set

ky(f) = |0uf> — |0uf|? (3.1)

and

Ky(f) = Eo,.(f) — E5, ¢(f). (3.2)
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Lemma 3.1 Under the above notations, we have
ky(f) = (do, frw™).

Proof Let {{,e1, - ,em,Jer, -+, Jen} be an adapted frame on M. Using (2.2) and
(2.16)—(2.17), we deduce that

(d6, f*w N Z{ frw? el,ej)dﬁ(ei,ej)—l—(f*wN)(Jei,Jej)dH(Jei,Jej)}

i<J

+ Z(f*wN)(ei, Je;)dl(e;, Jej)

4]

= Z(fdf(ei), df(Je:))
= ku(f).

The following lemma is useful.

Lemma 3.2 (Homotopy Lemma) (cf. [6, 13]) Let f; : M — N be a family of smooth
maps between smooth manifolds, parameterized by real number t, and let w be a closed two-form
on N. Then

0 * ft
S (fw) = d(f7i(5)w),
where the notation i(X) denotes the interior product with respect to the vector X .

Lemma 3.3 Let f; : (M2™L H,J,0) — (N, J,w™) be a family of smooth maps from a

compact pseudo-Hermitian manifold to a Kdhler manifold. Then
&Kb (ft) = 2m/ (v, dfe(€))dve,

where vy = %.

Proof In terms of Lemmas 3.1-3.2, we have
%Kb(ft) /M<% Fw,do ) dug
= [ {alra( ) ) ao)as
/<ft (8ft)w 5d9>dv9

Recall that (cf. [5])
V&Y = VxY — (dO(X,Y) + A(X,Y))E+0(Y)T(X) + 0(X)JY +0(Y)JX
for any X,Y € I'(TM), where V¢ denotes the Levi-Civita connection of gg. Let {ea}¥", =

{&,e1,++ ,eam} be an adapted frame field in M. For X € HM, we compute

2m

(6d6)(X) = = > (V! db)(ea, X)

A=0
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m
(%
== {eadb(ea, X) —dO(V! ea, X) —db(ea, V7, X)}

== {eadb(ea, X) —dO(V,,ea, X) —db(ea, Ve, X)}

2m

==Y (Ve,dO)(ea, X)

A=1
= 0’

where the last equality is due to Vd# = 0. Next,

2

3

(6d0)(&) = Y " db(ea, V&)

NgERnlng

db(ea,m(ea) + Jea)

[l
RS
51

since
d9(ei, T(ei)) + dH(Jei, Tjei)
=df(e;, 7(e;)) — db(e;, m(ei))
=0.
Therefore,

%Kb(ft) / <ft ( ft) N,5d9>dve
= [ ) 00y
M
_ / N (vr, d£4(€))5d6(€)dvg
—Qm/ (ve, dfe(§))dwg.

Corollary 3.1 Let f; : (M?™ 1 H,J 0) — (N, j,wN) be a family of smooth maps from
a compact pseudo-Hermitian manifold to a Kdihler manifold, such that dfi(§) = 0 for every t.
We refer to such {fi} as a family of foliated maps. Then Ky(f:) is a constant.

Thus, if f; : M — N is a family of foliated maps, then

d

d d
N Eg, ¢(ft) = Eab e(fi) = &E(ft)v

l\DI»—A

where E(f) = Ej, ((f) + Eg,¢(f) is the usual energy functional of f. Then, the following

theorems are evident.
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Theorem 3.1 (i) The Egb-f_’ Ey,.c- and E-critical points through foliated maps coincide.
Moreover, in a given foliated homotopy class, the Ep, £ Ey, ¢- and E-minima coincide.

(i) If f is £(J, J)-holomorphic, then it is an absolute minimum of E in its foliated class.

Proof (i) For any f, fo in the same foliated homotopy class, the following equality holds:

By, ((f) — B, ((fo) = Ea,.¢(f) — Ea,.¢(fo)-

Consequently, if Eg, ((fo) < Ej, ((f) for all f, then Ep, ¢(fo) < Ep,¢(f) for all f. Similarly,
from the equality

E(f) = E(fo) = 2Eg, (f) — 2E5, ¢(fo),

we conclude that Ep . and E-minima coincide.
(ii) A (J,.J)-holomorphic map (resp. anti-(.J, J)-holomorphic map) satisfies E5 (f) =0
(resp. Ep,¢(f) =0) and is therefore an absolute minimum of E in its foliated class.
Theorem 3.2 Let f; : (M2t H, J 0) — (N,J,wN) be a family of foliated maps from a

pseudo-Hermitian manifold to a Kdhler manifold with 0 < t < 1. Suppose that fo is (J,J)-

holomorphic and f1 is anti-(J, J)-holomorphic, then fo and fi are constant. In particular, any

+(J, J)-holomorphic map in a trivial foliated homotopy class is constant.

Proof Since Eg (fo) = Ea,(f1) =0, 0 < Eg, ¢(fo) = —Eg, ((f1) < 0, which leads to
Ea, (fo) = E5, ((f1) = 0. Thus, E(fo) = E(f1) =0.

4 Commutation Relations

In this section, we derive the commutation relations for maps from a pseudo-Hermitian
manifold to a Kahler manifold. While the case of a map from a pseudo-Hermitian manifold to
a general Riemannian manifold has been addressed in [2], we present it here using our notation
for the sake of clarity and convenience.

Let f : (M2t H, J ) — (N2",J,§) be a smooth map, where (M2™+! H J 6) is a
pseudo-Hermitian manifold and (N2, .J,§) is a Kihler manifold. Let {67} be a local adapted
coframe on M, and let {&®} be a local orthonormal coframe on N as aforementioned. Unless

otherwise stated, we adhere to the following index conventions:

AB,C,D=0,1,--- ,m,1,--- ,m;
ik, s=1,--- ,m;
I,JK,L,P=1,---,n,1,---,7m;

o, By,y,0=1,---n,
and employ the summation convention on repeated indices. The structure equations for Levi-

Civita connection V on (N, J) can be expressed by

do® = - AGP, & + @ =0,
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~a . ~aa o~ oo
dwg = —wj Nwg +Q3,

where Qg = §375@7 A@%. Since N is Kihler, the only possibly non-zero components of ﬁIL K

are
Rfs RS .. Ris RS
Set
Ry = §(R(x., i), i) = GriRb.
Let

df = fho* @y,
B = fhpt* @ 0% @, (4.1)
VB = fhpct* @0° @0° @1,

where 6ﬁ is the covariant derivative of 8 with respect to (V, %) Here, § denotes the second

fundamental form of f. Thus we have
Fro% = 707 + £200 + f0. (4.2)
Differentiating (4.2), we have
Frd@® = fde + fede7 + f5do
+dfeng +dfj3/\97+df§‘/\0.
By structure equations on M and N, we have
— TGN D = =TGN+ S0 + f76)
= J2O0F O]+ O ATI) + FEOF NBL O ATT) + (20" Th 67 A 6F)
+df;*A9j+df§A97+dng9.

After rearranging the above formula, we get

Dfg AOP + 2/ 1fgh, 05 AT — frARGT NG — f2AFG NG =0, (4.3)
where
Dff = dff — {0 + 1158 = fis0”, (4.4)
Dfe = dfg - [0k + L5 = f250", (4.5)
Df§ = dfg + fowg = f5po”. (4.6)

Here, for simplicity, we write f*(w§) as w§ on the right hand side of the above formulas. Then
(4.3) gives

O

_ (4.7)
«@ o _ papk «@ o _ ra Ak
ij — Jjo — fEAjv ng_ 50 — kAj
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Since we have adopted a unitary frame here and in the following, we have h iE= 0jk-

Differentiating (4.4), we have
— A0} + fABG — Aff NG, + dfy AGS = fEpd® +dfes A 05
Using structure equations again, we have
0= f(=0] A0, +TI) — £ (-85 A&} +Q3)
+ IO NG +ONTI) 4 [0 N0+ 0 ATT) + 2/ =Th g 07 A O
+Aff NG — df NGBS+ dfes AOP.
It follows that
Dffp AP + 2V =Tfioh 07 A" — fALOT A0 — [ ATOT A0 = — [T, + £,
where
Dffi = dffi = £5i0% — 305 + 1785 = fist”,
Dfs = dfs — f305 — J30h + 1005 = /50",
Dfsp=dfi — floaé' + fﬁo‘:’g jOBoB
From (4.8), we have
Fon =I5 — I IT RS + £ RS R + 2V =11 A — 2V =11 Ay,
= I I R+ I FL T R + 2\/_ Lffhg Al — 2V =1f hg AL,

ijk
o= 1% = I RS o + S ST RS o + 7R+ 2V =1 hy,
i70 = fio; fﬂfvf ﬁ'yo+f'6fgngBvE+flahlkA~*_ ;A;€7

&= Fiv: = SIS R + £ 13 FFRG 6 — SN Ay, — fiAL.
Similarly, differentiating (4.5), we have

« B « j 7 a Al png a Al nj _ atrl B
Dfey NP + 2V =Tf2 h o) NG~ ALT NG — f AL A O = — fPTIL 4 £O05,

where
ka_d;—ff — Fi b+ 555 = 15,50,
o apl ! B"'a_ B
ng: f9 flk9 +fk B_nga’

« i 5~o¢ « B
fo—d 70 flo‘9 +f = Fop?"

From (4.13), we have

= Foy = P T R + £ 1L ST Ry + 2V =1 i AL = 2/ =17 by A
o5 = g IR e+ £ F T RS+ VL A — 2V A
%E - zkj fﬁf’yfk Rz + fﬂfwfﬂ Gyz + aRl w T 2\/_f0 ik

fo = fioy = 1 1T Be + £ £ 5] e = 7 h”“A- ~ A7,

o B T Do B T pa Ik a Ak
ij0 10] f fvfo 575+fffgij57E+flh Aﬁk lk}Aj

(4.9)
(4.10)
(4.11)

(4.12)

(4.13)

(4.14)
(4.15)
(4.16)

(4.17)
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Differentiating (4.6) using the same argument yields

Dfgs NOP +2V/=Tf5hz67 NOF — f5,AL0% N0 — f2Al0" N6 = £]03, (4.18)
where
Df§i, = dfgi, — 8500 + for@§ = f6ip0”, (4.19)
DS = dfe — fobl+ o5 = fo 07, (4.20)
Dfoo = dfoo + fOOwB = fOOBGB' (4.21)

From (4.18), we have

f(%‘k = f(?k; fo f’yfk ﬁ'yo + féﬂfgfng,ﬁ,
= oy~ O] S R SR R+ 2V T

. - (4.22)
Foon = ISko = Jo 13 T RGve + Fo 1 1T Rim + FSAL,
oo = Joro = Jo S0 FE R + o 1S Biyo + S5 AL
Last, from (4.7), we have
zgk ]zk + 24 hz]f()kﬂ
%E - ;;k +2v—lh; Ok’
fion = I+ £ Al-+f ,
S . i (4.23)
0jk ]Ok+flk +fl ]k’
fO;k J0k+flkAl +fla 7.k
a l a7l
0jk ]Ok + flkA + /i A",E'
5 Foliated and (J, J)-Holomorphicity Results
A divergence of a vector field X on (M, H,0) is defined by
Lx¥ = div(X)T,
where ¥ = 0 A (d0)™ is the volume form. One has (cf. Lemma 2.1)
div(X) =try, (Y € TM — VyX). (5.1)
Also note that div is a real operator:
div(X) = div(X). (5.2)

If u is a function on (M, H, ), then its sub-Laplacian A, is defined by, under an adapted
frame,
Apu = diV(VHu) = u; + uz,
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where V7 is the horizontal component of the gradient of u. Note that the usual Laplacian of
u is
Au = uz + uz; + ugo.
Using an adapted frame, we can express Tgb)g( f) as follows:
75,6 (f) = (f55 + f5; + foo — 2mV=11)a + (f5 + f5; + foo + 2mv/ =15z
Besides, it follows from the third equation of (4.7) that
FE A 2 I — 2L = 262+ .
Therefore, defining (Lf)* := 2 f;o‘j + f§o, we may express 75, (f) as
75, ¢(f) = (Lf)*Na + (Lf)* e (5.3)
By applying the commutation relations in §4, we have the following lemma.

Lemma 5.1

SAFOF = 21785 + 175 + 1Sl + T + FETER + 23/ Tm(f5 s — .75
+ 205 1 1] £§ Bz + 26513 13 7 B
— 20§15 13 ST Rapoz — 2517 13 I Respo
T 2ST A S FDA S 20057 + f AT AL
+2(f8 f + 5 )A’“ + 205 f + fo [ AL (54)

Proof First,

1 _ _ _
SAIFOP = (£ 855 + (£ £5)5; + (5 £§ oo
2 ST+ ST+ Fend) + SRS + £
+f€00)+f€(f@;+f%j+f(%o)- (5.5)

From (4.17) and (4.23), we have

f%j - JOJ + fO‘Al + flaA.l] J
= [0+ P SIS R — 15 10 £ Riye

JJO
+ PR A G+ R AR + f AL+ frAL

From (4.12) and (4.23), we have
o a gl @A
fOﬁ - JOJ A+ ITA
JJO + fﬂfwfo Rﬂ'rﬂ foO faRﬁ'yd
+ £ h”“ATk)j + [ AL+ faAl + faAl (5.7)
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Note that
TS 17 I B = F5 530 B + 155 8 R = 17 13 ] i)
=2fy f?f]fo wsyvs — o' fjffo fj Eﬁ'ﬁ - fo fffo ffﬁaﬁwﬁ (5.8)
and, by (4.7),
FERREA 5 + oAb 4 fr AL+ frAL )
+ SRR Ay + [ AY + R AL+ frAL)
= 2fS fr AL+ 2f S frAL 25 o AR 25 f AL (5.9)

Therefore, substituting (5.6)—(5.9) into (5.5), we get

SAFOP = 21757 + 175 + 10l + TS+ £ + Fioo) + I8 (g + FZ, + Fioo)
+ 2087 17 1§ Ry + 2£3 £ 13 £ Raxpoo — 215 15 13 f7 Rapnz
— 2f 7 13 2 Rz + 2[5 £2 + f5 FAL + 2(f5 £ + f5 )AL
+ 20§ LG+ TG FEAY + 2008 15 + 5 T AL
Taking into account the identity
(LIS = 550 + Fiso + fooo — 2mv/ =115,

we obtain (5.4).
Remark 5.1 One can check that
g(R(df(n;), df(£))df (n;),df(€))
= GRS} s + [7 T, Jo Ty + S8700) (5 T + f2718), J 1y + £ o)
= fo fjffj"yfo apye + fjgfo fO f;REﬁ'vE
— 1§ 1213 17 Bapoz — I3 1] 13 £ Rapoo.
If N has non-positive sectional curvature, then
J(R(Z,X)Z,X) >0
for any complex vector Z and any real vector X on N. Thus, if this is the case, the curvature
terms on the right-hand side of (5.4) combine to yield a non-negative quantity.

Lemma 5.2 Let (M?™+1 H,J 0) be a compact pseudo-Hermitian manifold. Let f : M?™+!
— (N2, J, 9) be a smooth map. If the second fundamental form satisfies

BE,X)=0 VX eH,

then f is foliated.
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Proof Since N is a Riemannian manifold, the claim follows directly from [2]. We present
the proof for readers’ convenience.

By the integration by parts and the third formula in (4.7), we have
0= \/_1/M(f;¥fg;_. — 25V, = —w—l/M(f%fé“ — [5;16)dVy
—2m [ |55,
M
Therefore, f§ = 0.
The main difficulty in applying Lemma 5.1 arises from the mixed term
2V =Im(f§ féo — 15 f50)

and the terms related to torsion. To address the mixed term, we need to add an extra term | £§|?
(see below for details). Inspired by [2], we define the following generalized Paneitz operator
acting on maps:

« 1 « « -~
Pfi= ( o+ 5 o+ 2m\/—1Akij—.) 08 @ 7o

=Py

In [12] (cf. also [9]), Li and Son defined the following tensors

Bf =B [0 @0 @7,

and
E = E5t7,
where
Bi}fa = f% - %fﬁ;hg
and

Es = (Bljfa)f;a

Then —0F is given by

By, = (12, = o b )T+ (B f) T

ijJ
a m—1 a7 S = & & m—1 . .z
= |Bz‘jf |2+ T<Pf76bf> _Raﬂvﬁfg fje(fgfg _f;fi ) - Wfooz:fp
Taking integration of 6 ' over M gives
m=l [ prapav, = [ |B-foPay, RaasfTf2(F7 £ — £ £7)aV,
_T M< fv bf> g9 — M| i3f| g o Eﬁ'yﬁf;-f;-(fifj _fjfi) g
m—1 a ra
_W/M Joor S5 dVy.

Note that
F2,— I = —2/"ImfF.
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thus,
| sz, == [ fasgav,
M M
_ / S5 (fT — 2my/ =I5,
M
1 _ _
——5 [ (@I - v, + 2V [ g fFa,
M M
1 1 - _
—5 [ 1P, =5 [ TR, + T [ s,
2 M 2 M M
Therefore,

m—1

Tt [ PrBDav, = [ 1855 PaV, = [ Rl £ ST - 1TV,
-1 -1 -
- [ siav+ B g,
(=0T [ sy, (5.10)

Recall that the curvature tensor é@aya is said to be strongly negative (resp. strongly semi-

negative) if

Rpmys(APBe — CPD)(A°B7 — Co D7)
is positive (resp. non-negative) for any complex numbers A%, B* C* D® whenever there exists
at least one pair of indices (o, 3) such that A#B> — C8D # 0 (cf. [19]). Evidently, strongly
negative curvature (resp. strongly semi-negative curvature) implies negative sectional curvature

(resp. semi-negative sectional curvature). If N has strongly semi-negative curvature, then
B 7 @ @ 1> 3 T BT po _ 7 po
~Rapof 1 (S5 = 1) = 5 Roca (715 = [FEF 12— S1£20) 2 0.
Next, we introduce the 1-form F' = FEGE with
«@ 1 [} o
Fy = (fjj + §f00)fg-
Then

FE,k

( ﬁk + %f(%k)fg-k (ff; + %f(%)fgg

(PR —2mV=TA f2) 7 + %(Lf)afgC,

Integrating dF' on M yields
a7 1 o o o o
/M<Pf, D)V, =~ /M(Lf) FE AV, + 2my/—1 /M Ay 12 fEV,, (5.11)

Theorem 5.1 Let (M*™*1 H, J,0) be a compact Sasakian manifold with m > 2, and
(N2, j, 9) be a Kdihler manifold with strongly semi-negative curvature. If f : M — N is a Op-
harmonic map or a Oy-harmonic map, then f is foliated. Therefore, f must be Oy-pluriharmonic
(that is, f%‘ =[5 = 0) and

Roaa(FF 1] = FRFDVST 1S = £117) = 0. (5.12)
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Proof Suppose that f is dj-harmonic (the case for dj-harmonic map is similar). Then

(Lf)* =0, or equivalently,
f% + f;aj + fo = 2myV/—=1f§ = 0. (5.13)
Since M is Sasakian, we have A;; = 0, and hence, (5.4) simplifies to
1 o o [} o ro o o
§A|df(f)|2 = 22(|f0j|2 + |f03|2) + 2| f50I? + 2mV/=1(f§ f5o — f8" f60)
J
+ 25 5 1] I5 Bapez + 205 13 £ 7 By
= 251513 17 Rapoz — 2517 13 7 R (5.14)
Therefore, by Remark 5.1, integrating (5.14) over M and applying integrating by parts, we have
V=T [ g v+ [ IfsPav, <o (5.15)
M M
On the other hand, since f is d-harmonic, we get from (5.11) that
[ wramav, o (5.16)
M
From (5.10) and the curvature condition, we obtain
- [ 1fPav, — amv=T [ g sFav, <o (517)
M M
Then (5.15) and (5.17) imply that f§ = 0. Substituting it into (5.14), we get

1
SO =23 (1157 + £ > 0.
J

Thus, df(§) = 0 by utilizing the divergence theorem and Lemma 5.2.
Furthermore, by substituting (5.16) and f§ = 0 into (5.10), we obtain

B 1PV, = | Rapof7£2(F FF = £ fF)AV, = 0.

M M J

Note that
D T By fa v fa 1> o B @ By 17 po Y ro
_Raﬂvﬁf{ fj—- (f; fj - fj fi) = §R,6’Ev5(f;- fj—- - f;- f; )(f; fj—- - f; f; )= 0.
Thus, we get (5.12) and Bz f* = 0. Clearly, f = 0 and A;; = 0 imply that f% = f;o‘j =0.
Consequently, from the definition of B f<, we have
« « 1 (0%
i =15 = Fughis = 0-

This completes the proof.

Note that the rank condition in Siu’s theorem mentioned in the introduction can be im-
proved as rankg(df,) > 3 at some point x (cf. [10]). By a similar argument as [2, 19], we get

immediately from (5.12) the following theorem.
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Theorem 5.2 Let (M?™V1 H, J 0) be a compact Sasakian manifold with m > 2 and
(N27, j, 9) be a Kdhler manifold with strongly negative curvature. Suppose that f : M — N

is a Op-harmonic map and df has real rank at least 3 at some point p € M. Then f is either

(J, J)-holomorphic or anti-(J, J)-holomorphic.

Remark 5.2 If f is dy-harmonic (with the other assumptions unchanged), then the con-

clusion remains valid.
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