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Abstract In this paper, the authors investigate the geometric rigidity of Riemannian

manifolds under suitable curvature restrictions. The authors first prove a new gap the-

orem for the Ricci curvature of compact locally conformally flat Riemannian manifolds.

Subsequently, the authors consider the Riemannian manifolds with the Cotton tensor C

satisfying divC = 0 and prove some integral curvature pinching theorems.
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1 Introduction

Let (Mn, g) be an n-dimensional Riemannian manifold. The Riemannian curvature tensor

Rm of M can be orthogonally decomposed as Rm = W + V + U , where W is the Weyl

curvature tensor, V and U correspond to the traceless Ricci part and the scalar curvature part,

respectively. A manifold has constant sectional curvature if and only if R̊m vanishes, where

R̊m = Rm−U , or equivalently if and only if both W and V vanish. A manifold with vanishing

V is called Einstein. It is well-known that for n ≥ 4, a manifold is locally conformally flat if

and only if W = 0, and for n = 3, one always has W = 0, and a manifold is locally conformally

flat if and only if C = 0, where C denotes the Cotton tensor (see e.g., [17] for the proof).

Based on the seminal work of Schoen [35] on the Yamabe problem (see [1, 27, 40, 46], etc.),

a compact n(≥ 3)-dimensional locally conformally flat Riemannian manifold is conformal to a

manifold with constant scalar curvature. There are many results on the rigidity and classifi-

cation of locally conformally flat Riemannian manifolds with constant scalar curvature. Tani

[39] showed that the universal cover of a compact oriented locally conformally flat Riemannian

manifold with positive Ricci curvature and constant scalar curvature is isometrically a sphere.
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Goldberg and Okumura [22] proved that for a compact locally conformally flat Riemannian

manifold M of dimension n ≥ 3, if the scalar curvature R is a positive constant and the Ricci

curvature tensor Ric satisfies |Ric|2

R2 < 1
n−1 , then M is of constant curvature. This pinching

theorem was later generalized to the case of complete locally conformally flat Riemannian man-

ifolds by Goldberg [21], Hasanis [24], Pigola, Rigoli and Setti [34], etc. In particular, Hasanis

[24] proved that for a complete locally conformally flat Riemannian manifold M of dimension

n ≥ 3, if the scalar curvature R is a positive constant and the Ricci curvature tensor Ric satisfies
|Ric|2

R2 ≤ 1
n−1 , then either M is of constant curvature or |Ric|2

R2 ≡ 1
n−1 . Cheng [10] proved that

for an n-dimensional compact locally conformally flat Riemannian manifold M with constant

scalar curvature, if the Ricci curvature is nonnegative, then M is isometric to a space form or

a product space S
1 × S

n−1. When n = 3, Cheng, Ishikawa and Shiohama [11] classified com-

plete locally conformally flat three-dimensional Riemannian manifolds with positive constant

scalar curvature and constant squared norm of the Ricci curvature tensor. From the theorems

mentioned above, we know that an n(≥ 4)-dimensional compact locally conformally flat Rie-

mannian manifold with positive constant scalar curvature satisfying |Ric|2

R2 ≤ 1
n−1 is either a

space form or a product space S1 × S
n−1. As it always holds that |Ric|2

R2 ≥ 1
n
, this result can be

viewed as a pinching theorem that if 1
n
≤ |Ric|2

R2 ≤ 1
n−1 , then either |Ric|2

R2 ≡ 1
n
or |Ric|2

R2 ≡ 1
n−1

and all the manifolds satisfying the equalities are determined. There are also other versions of

pinching theorems for locally conformally flat Riemannian manifolds, see e.g., [10, 12].

The first purpose of the present paper is to investigate a new gap phenomenon for compact

locally conformally flat Riemannian manifolds with positive constant scalar curvature and con-

stant squared norm of the Ricci curvature tensor. Motivated by the geometric rigidity theorem

due to Peng and Terng [32] on the Chern conjecture for closed minimal hypersurfaces with

constant scalar curvature in the sphere and the new gap theorem due to Gu, Lei and Xu [23]

on the generalized Chern conjecture for closed hypersurfaces with constant mean curvature and

constant scalar curvature in the sphere, we prove the following new gap theorem.

Theorem 1.1 Let (Mn, g) be an n(≥ 4)-dimensional compact locally conformally flat Rie-

mannian manifold with positive constant scalar curvature R and constant squared norm of the

Ricci curvature tensor |Ric|2. If

1

n− 1
≤ |Ric|2

R2
≤ 1 + ε(n)

n− 1
,

then
|Ric|2

R2 = 1
n−1 and Mn is isometric to a product space S

1 × S
n−1 of round spheres.

Remark 1.1 For the progress on the Chern conjecture, the generalized Chern conjecture

and related problems, see [8–9, 13, 15, 28–29, 32–33, 41–44, 47] and the references therein.

Based on Theorem 1.1 and the pinching result for compact locally conformally flat Rieman-

nian manifolds with positive constant scalar curvature under the condition 1
n
≤ |Ric|2

R2 ≤ 1
n−1 ,

we have the following general version of the gap theorem.

Theorem 1.2 Let (Mn, g) be an n(≥ 4)-dimensional compact locally conformally flat Rie-
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mannian manifold with positive constant scalar curvature R and constant squared norm of the

Ricci curvature tensor |Ric|2. There exists an explicit constant ε(n) > 0 depending only on n

such that if

1

n
≤ |Ric|2

R2
≤ 1 + ε(n)

n− 1
,

then Mn is isometric to a sphere or a product space S
1 × S

n−1 of round spheres.

Next, we consider the manifolds satisfying integral curvature conditions. Hebey and Vaugon

[25] classified compact conformally flat manifolds that satisfy certain integral curvature pinching

conditions. Chang, Gursky and Yang [6] proved a sharp theorem that if a smooth closed four-

manifold M4 with positive Yamabe invariant satisfies
∫
M

|W |2dµ < 16π2χ(M), where χ(M)

is the Euler characteristic of M , then M is diffeomorphic to either S
4 or RP

4. They also

characterized the manifolds for the case of equality. There are many results of this type, under

optimal or non-optimal integral pinching conditions (see [2–4, 7, 16, 18–20, 30, 34, 36–38,

45], etc.). Recently, Catino [5] showed that an n-dimensional closed locally conformally flat

Riemannian manifold with positive constant scalar curvature R satisfies

∫

M

|R̊ic|n−2

n (R −
√
n(n− 1)|R̊ic|)dµ ≤ 0.

He also classified the manifolds that satisfy the equality. We investigate a general case in the

present paper. Recall that the Cotton tensor C and the Weyl tensor W are related by the

equation divW = n−3
n−2C, n ≥ 3, where W is considered as a (1, 3) tensor. Mastrolia, Monticelli

and Rigoli [31] provided some sufficient conditions for Riemannian manifolds to be Einstein by

employing the weak maximum principle at infinity, assuming that the Cotton tensor satisfies

divC = 0. Inspired by the results mentioned above, we prove the following theorem.

Theorem 1.3 Let (Mn, g) be an n(≥ 3)-dimensional closed Riemannian manifold. Suppose

that divC = 0 and the scalar curvature R is a positive constant. Then

∫

M

|R̊ic|α(
√
2R−

√
2n(n− 1)|R̊ic| −

√
(n− 1)(n− 2)|W |)dµ ≤ 0 (1.1)

for any α ≥ 1. Moreover, if g is real analytic, then the equality holds if and only if M is

Einstein or M is S1×S
n−1 with the product metric or with a rotationally symmetric Derdzinski

metric.

As a consequence, we obtain the following result.

Corollary 1.1 Let (Mn, g) be an n(≥ 3)-dimensional closed Riemannian manifold. Sup-

pose that divC = 0, the scalar curvature R is a positive constant. If

|R̊ic|+
√

n− 2

2n
|W | < 1√

n(n− 1)
R,

then M is Einstein.
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Motivated by the Lp Ricci curvature pinching theorems due to Xu and Zhao [45] for complete

locally conformally flat Riemannian manifolds, we prove the following theorem for complete

Riemannian manifolds satisfying divC = 0 under L
n
2 curvature pinching condition.

Theorem 1.4 Let (Mn, g) be an n-dimensional complete Riemannian manifold. Suppose

that divC = 0, the scalar curvature R is constant and the Yamabe constant Y(M, [g]) is positive.

If

(i) R = 0 and n ≥ 5, or R > 0 and n = 5, 6, or R < 0 and n ≥ 7, and

‖R̊ic‖n
2
+

√
n− 2

2n
‖W‖n

2
<

8(n− 2)

n2

√
n− 1

n
Y(M, [g]),

or if

(ii) R > 0 and n ≥ 7, and

‖R̊ic‖n
2
+

√
n− 2

2n
‖W‖n

2
<

4

n− 2

√
n− 1

n
Y(M, [g]),

then M is Einstein.

Remark 1.2 On S
1 × S

n−1 with the product metric, the Weyl curvature tensor W = 0

and the scalar curvature R =
√
n(n− 1)|R̊ic| 6= 0. Through direct computation, we find that

‖R̊ic‖n
2

= 4
n−2

√
n−1
n

Y(M, [g]) on S
1 × S

n−1. Hence in Theorem 1.4, the pinching constant

4
n−2

√
n−1
n

for R > 0 and n ≥ 7 is optimal.

The paper is organized as follows. In Section 2, we set our notations and recall the fun-

damental formulas, including the Simons-type equation. In Section 3, we provide the proof of

the gap phenomenon for locally conformally flat Riemannian manifolds. In Section 4, we derive

integral inequalities and characterize metrics that satisfy equality on more general manifolds

where the Cotton tensor C satisfies divC = 0 and the integral pinching conditions are met. We

also prove that the manifold is Einstein if the L
n
2 -norm of certain curvatures satisfy suitable

pinching conditions.

2 Preliminaries

Let (Mn, g) be an n(≥ 3)-dimensional connected Riemannian manifold. Choose a local

orthonormal frame field {e1, e2, · · · , en} and the dual coframe field {ω1, ω2, · · · , ωn} adapted to

the Riemannian metric of (Mn, g). The connection 1-forms {ωij} of (Mn, g) are characterized

by the structure equations

dωi = −
∑

j

ωij ∧ ωj, ωij + ωji = 0,

dωij = −
∑

k

ωik ∧ ωkj +
1

2

∑

k,l

Rijklωk ∧ ωl,

where Rijkl are the components of the Riemannian curvature tensor Rm of (Mn, g).
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Let Wijkl denote the components of the Weyl curvature tensor W of (Mn, g). We have

Wijkl = Rijkl −
1

n− 2
(Rikδjl +Rjlδik −Rilδjk −Rjkδil)

+
R

(n− 1)(n− 2)
(δikδjl − δilδjk), (2.1)

where Rij =
∑
k,l

Rikjlg
kl and R =

∑
i,j

Rijg
ij are the components of the Ricci curvature tensor

Ric and the scalar curvature R of (Mn, g), respectively.

Let ∇ denote the covariant differentiation on Mn. For simplicity of presentation, let R,i =

∇iR, Rij,k = ∇kRij and Rij,kl = ∇l∇kRij , etc. Denote by Cijk the components of Cotton

tensor C of (Mn, g). We have

Cijk = Rij,k −Rik,j −
1

2(n− 1)
(R,kδij −R,jδik),

∑

l

Wijkl,l = −n− 3

n− 2
Cijk .

The traceless Ricci curvature tensor R̊ic is defined as R̊ic =
∑
i,j

R̊ijωi ⊗ ωj with R̊ij = Rij − R
n
.

From the definition, we have |R̊ic|2 =
∑
i,j

(R̊ij)
2 = |Ric|2 − R2

n
. Moreover, we have the following

Simons-type equation as referenced in [31]:

1

2
∆|R̊ic|2 = |∇R̊ic|2 + 1

n− 1
R|R̊ic|2 + n

n− 2
tr(R̊ic

3
) +

∑

i,j,k

R̊ijCijk,k

+
∑

i,j,k,l

WkijlR̊klR̊ij +
n− 2

2(n− 1)
tr(R̊ic ◦Hess(R)). (2.2)

From [26, Lemmas 2.4 and 3.4], we have the following inequalities

∑

i,j,k,l

WkijlR̊klR̊ij ≤
√

n− 2

2(n− 1)
|W ||R̊ic|2, (2.3)

|tr(R̊ic3)| ≤ n− 2√
n(n− 1)

|R̊ic|3. (2.4)

To analyze the equality case of (2.3), we briefly recall the proof that was given in [26]. For

the given local orthonormal frame, the traceless Ricci part V of Rm is given by

Vijkl =
1

n− 2
(R̊ikδjl + R̊jlδik − R̊ilδjk − R̊jkδil).

Hence ∑

i,j,k,l

WkijlR̊klR̊ij =
(n− 2)2

8
〈W,V ◦ V 〉 = (n− 2)2

8
〈W,T 〉,

where T is the Weyl part of V ◦ V . Therefore,

∑

i,j,k,l

WkijlR̊klR̊ij ≤
(n− 2)2

8
|W ||T |.
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The equality holds if and only if |W ||T | = 0, or |W ||T | 6= 0 and W = c1T for a positive constant

c1. Based on the computation in [26], one has

|T |2 =
32

(n− 2)5

(
− nZ +

n2 − 3n+ 3

n− 1
|R̊ic|4

)
,

where Z =
∑

i,j,k,l

R̊ijR̊jkR̊klR̊li. Choose the local orthonormal frame field {e1, · · · , en} such that

the traceless Ricci tensor R̊ij is diagonalized, i.e., R̊ij = λiδij . Within this orthonormal frame,

we have Z =
∑
i

λ4
i . By the Cauchy-Schwarz inequality, one has

(∑

i

λ2
i

)2

≤
∑

i

λ4
i ·

∑

i

1 = nZ.

Hence,

|T |2 ≤ 32

(n− 1)(n− 2)3
|R̊ic|4,

and the equality holds if and only if R̊ic
2
= c2g for a nonnegative constant c2. Here R̊ic

2
=

∑
i,j,k

R̊ijR̊jkωi ⊗ ωk. This inequality implies (2.3).

From the brief proof above we see that if (2.3) is an equality at a point, then either W = 0,

or W 6= 0 and R̊ic
2
= cg for a nonnegative constant c at that point. Additionally, the equality

in (2.4) holds at a point if and only if at least n− 1 numbers of the eigenvalues of R̊ic are the

same with each other at this point.

Now we consider a locally conformally flat Riemannian manifold (Mn, g) of dimension n(≥
4). Using the Ricci identity, we have

Rij,kl −Rij,lk =
∑

t

RtjRtikl +
∑

t

RitRtjkl. (2.5)

For n ≥ 4, we know that Mn is locally conformally flat if and only if Wijkl = 0 on Mn. We

assume that the scalar curvature R is constant. From the second Bianchi identities and (2.1),

we know that the Ricci curvature tensor is a Codazzi tensor, i.e., the following identities hold

Rij,k = Rik,j . (2.6)

Combining (2.5)–(2.6) with the Ricci identity, we calculate that

∆Rij =
∑

l

Rij,ll =
∑

t,l

RtlRtijl +
∑

t

RitRtj

=
1

n− 2

(
n
∑

t

RitRtj −
∑

t,l

R2
tlδij −

n

n− 1
RRij +

R2

n− 1
δij

)
. (2.7)

Therefore,

1

2
∆|R̊ic|2 = |∇R̊ic|2 + n

n− 2

∑

i,j,k

R̊ijR̊jkR̊ki +
1

n− 1
R|R̊ic|2. (2.8)
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(2.8) can also be derived from (2.2).

For a Riemannian manifold (Mn, g), the Yamabe constant Y(M, [g]) is defined as

Y(M, [g]) = inf
u∈C∞

0
(M)\{0}

∫

M

|∇u|2dµ+
n− 2

4(n− 1)

∫

M

Ru2dµ

(∫

M

|u| 2n
n−2dµ

)n−2

n

,

where dµ is the volume form with respect to the metric g. The Yamabe constant Y(M, [g]) is

invariant under the conformal change of g. As a result, it is also referred to as the Yamabe

invariant.

3 A New Gap Theorem for Locally Conformally Flat Riemannian

Manifolds

Let (Mn, g) be an n(≥ 4)-dimensional locally conformally flat Riemannian manifold. Sup-

pose that λ is an eigenvalue of the Ricci curvature whose multiplicity is 1 at some point x ∈ M .

Then λ is smooth in a neighborhood U of x. Let u be the unit eigenvector corresponding to λ,

i.e.,

R̃ic(u) = λu,

where R̃ic is given by 〈R̃ic(u), v〉 = Ric(u, v) = 〈u, R̃ic(v)〉. Then for any vector field X on U,

∇X(R̃ic(u)) = X(λ)u + λ∇Xu.

On the other hand,

(∇XR̃ic)(u) = ∇X(R̃ic(u))− R̃ic(∇Xu).

Combining the two equations above yields

X(λ)u+ λ∇Xu = (∇X R̃ic)(u) + R̃ic(∇Xu). (3.1)

Let V be the linear subspace of TxM that is orthogonal to u. Then V is an (n−1)-dimensional

R̃ic-invariant subspace. Given that |u| = 1, it follows that ∇Xu ∈ V, and consequently,

R̃ic(∇Xu) ∈ V. Let (·)V denote the projection onto V. From (3.1), we obtain

X(λ) = 〈∇X(R̃ic(u))− λ∇Xu, u〉
= 〈(∇X R̃ic)(u), u〉+ 〈∇Xu, R̃ic(u)〉
= (∇Ric)(u, u,X) (3.2)

and

(λId − R̃ic)(∇Xu) = [(∇X R̃ic)(u)−X(λ)u]V

= (∇X R̃ic)(u)− 〈(∇XR̃ic)(u), u〉u. (3.3)
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From the above analysis, we know that λId− R̃ic is invertible. Therefore, (3.3) can be rewritten

as

∇Xu = (λId − R̃ic)−1[(∇X R̃ic)(u)]V. (3.4)

Furthermore, for the vector field Y on U,

Y (X(λ)) = ∇Y [(∇Ric)(u, u,X)]

= ∇Y (∇Ric)(u, u,X) + 2(∇Ric)(∇Y u, u,X) + (∇Ric)(u, u,∇Y X)

= (∇2Ric)(u, u,X, Y ) + 2(∇Ric)(∇Y u, u,X) + (∇Ric)(u, u,∇Y X).

Choose the local orthonormal frame field {e1, e2, · · · , en} on U. Combining the above identity,

we derive that

ej(ei(λ)) = (∇2Ric)(u, u, ei, ej) + 2(∇Ric)(∇eju, u, ei) + (∇Ric)(u, u,∇ejei).

Similarly, (3.2) yields

∇ejei(λ) = (∇Ric)(u, u,∇ejei).

Taking the trace of the above equation, we obtain

∆λ =
∑

i

[ei(ei(λ)) −∇eiei(λ)]

=
∑

i

[(∇2Ric)(u, u, ei, ei) + 2(∇Ric)(∇eiu, u, ei)]. (3.5)

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the Ricci curvature tensor, with corresponding

eigenvectors u1, u2, · · · , un. At the point x under consideration, {u1, u2, · · · , un} forms an

orthonormal basis of TxM . Without loss of generality, let λ1 = λ and u1 = u denote the first

eigenvalue and its corresponding eigenvector, respectively.

Assume [(∇XR̃ic)(u)]V =
n∑

j=2

ajuj . Then

aj = 〈[(∇X R̃ic)(u)]V, uj〉 = (∇Ric)(u, uj , X).

Hence

[(∇X R̃ic)(u)]V

=




(∇Ric)(u, u2, X) 0 · · · 0
0 (∇Ric)(u, u3, X) · · · 0
...

...
. . .

...
0 0 · · · (∇Ric)(u, un, X)







u2

u3

...
un


 .
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Substituting the above identity into (3.4), we obtain

∇Xu =




(∇Ric)(u, u2, X)

λ1 − λ2
0 · · · 0

0
(∇Ric)(u, u3, X)

λ1 − λ3
· · · 0

...
...

. . .
...

0 0 · · · (∇Ric)(u, un, X)

λ1 − λn







u2

u3

...
un




=

n∑

j=2

(∇Ric)(u, uj , X)

λ1 − λj

uj . (3.6)

Combining (3.5)–(3.6), we get

∆λ1 =

n∑

i=1

(∇2Ric)(u1, u1, ui, ui)

+ 2

n∑

i=1

n∑

j=2

(∇Ric)
( (∇Ric)(u1, uj, ui)

λ1 − λj

uj , u1, ui

)

= ∆R11 + 2
n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

.

From (2.7), we deduce the following identity

∆R11 =
1

n− 2

(
n
∑

t

R2
t1 − |Ric|2 − n

n− 1
RR11 +

R2

n− 1

)

=
1

n− 2

(
nλ2

1 − |Ric|2 − n

n− 1
Rλ1 +

R2

n− 1

)
.

Rearranging the above equation, we obtain

∆λ1 =
1

n− 2

(
nλ2

1 − |Ric|2 − n

n− 1
Rλ1 +

R2

n− 1

)
+ 2

n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

=
1

n− 2

( R2

n− 1
− |Ric|2

)
+

n

n− 2

(
λ2
1 −

1

n− 1
Rλ1

)
+ 2

n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

=
1

n− 2

( R2

n(n− 1)
− |R̊ic|2

)
+

n

n− 2

(
λ2
1 −

1

n− 1
Rλ1

)
+ 2

n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

. (3.7)

Letting λ̊i = λi − R
n
and µi =

λ̊i

|R̊ic|
, we have

∑

i

µi = 0,
∑

i

µ2
i = 1.

We define some new quantities as

φ =
∑

i

µ3
i +

n− 2√
n(n− 1)

, η =

√
n

n− 1
µ1 + 1, σ =

[∑

i≥2

(
µi +

µ1

n− 1

)2] 1

2

.

From Gu, Lei and Xu [23], we derive the following algebraic inequalities.
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Lemma 3.1 (see [23]) (1) As previously defined, φ, η and σ satisfy

√
n(n− 1)

n− 2
φ ≥ η ≥ σ2

2
.

(2) Let n ≥ 4. If φ ≤ 1
6

√
n

n−1 , then

11

6
η ≤

√
n− 1

n
φ, µ2 − µ1 >

2

3

√
n

n− 1
.

Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1 Given that |Ric|2 =constant and R =constant, it follows that

∆|R̊ic|2 = 0 and |∇R̊ic| = |∇Ric|. Consequently, the formula (2.8) implies

0 = |∇Ric|2 + n

n− 2

∑

i

λ̊3
i +

1

n− 1
R|R̊ic|2

= |∇Ric|2 + n

n− 2
|R̊ic|3

∑

i

µ3
i +

1

n− 1
R|R̊ic|2

= |∇Ric|2 + n

n− 2
|R̊ic|3φ−

√
n

n− 1
|R̊ic|3 + 1

n− 1
R|R̊ic|2. (3.8)

Based on the above equation, we obtain the identity concerning |R̊ic|2,

|R̊ic|2 =
1

|R̊ic|

√
n− 1

n

(
|∇Ric |2 + n

n− 2
|R̊ic|3φ+

1

n− 1
R|R̊ic|2

)
.

Assuming |R̊ic|2 ≤ 1+ε
n(n−1)R

2, where ε > 0 is to be determined, we have

|∇Ric|2 + n

n− 2
|R̊ic|3φ = |R̊ic|3

(√ n

n− 1
− 1

n− 1

R

|R̊ic|

)

≤ |R̊ic|3
(√ n

n− 1
− 1

n− 1

1√
1+ε

n(n−1)

)

=

√
n

n− 1
|R̊ic|3

(
1− 1√

1 + ε

)
. (3.9)

Then we obtain the boundedness of φ that

φ ≤ n− 2

n

√
n

n− 1

(
1− 1√

1 + ε

)
.

Choose an appropriate ε0 > 0 such that the following equality is satisfied

n− 2

n

√
n

n− 1

(
1− 1√

1 + ε0

)
=

1

6

√
n

n− 1
.

Through a direct calculation, we obtain ε0 =
(
6n−12
5n−12

)2 − 1. Hence, if

|R̊ic|2 ≤ 1 + ε0

n(n− 1)
R2,
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or equivalently,

|Ric |2 ≤ 1 + ε(n)

n− 1
R2,

where ε(n) = ε0
n
, then φ ≤ 1

6

√
n

n−1 . Under this condition, based on Lemma 3.1, we obtain

µ2 − µ1 > 2
3

√
n

n−1 .

Since µ2 > µ1, it follows that λ1 < λ2 ≤ · · · ≤ λn. This implies that λ1 is of multiplicity 1

at every point and hence is a smooth function on M . By the definitions of λ1 and µ1, we have

λ1 = λ̊1 +
R

n
= (η − 1)

√
n− 1

n
|R̊ic|+ R

n
.

Substituting this into (3.7), one has

∆λ1 = 2

n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

+
1

n− 2

( R2

n(n− 1)
− |R̊ic|2

)
+

n

n− 2

(
λ2
1 −

1

n− 1
Rλ1

)

= 2

n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

+
1

n− 2

( R2

n(n− 1)
− |R̊ic|2

)

+
n

n− 2

(R
n

+ (η − 1)

√
n− 1

n
|R̊ic|

)(
− R

n(n− 1)
+ (η − 1)

√
n− 1

n
|R̊ic|

)

= 2

n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

+ |R̊ic|2 − 1√
n(n− 1)

R|R̊ic|

+
η

n− 2
|R̊ic|

( n− 2√
n(n− 1)

R+ (η − 2)(n− 1)|R̊ic|
)
. (3.10)

For the first terms on the right-hand side, based on the assumption φ ≤ 1
6

√
n

n−1 , by using

Lemma 3.1, we estimate

n∑

i=1

n∑

j=2

R2
1i,j

λ1 − λj

=
1

|R̊ic|

n∑

i=1

n∑

j=2

R2
1i,j

µ1 − µj

≥ − 3

2|R̊ic|

√
n− 1

n

n∑

i=1

n∑

j=2

R2
1i,j

≥ − 1

2|R̊ic|

√
n− 1

n
|∇Ric|2. (3.11)

Combining (3.9)–(3.11), we derive the following estimate for ∆λ1,

∆λ1 ≥ − 1

|R̊ic|

√
n− 1

n
|∇Ric|2 + |R̊ic|2 − 1√

n(n− 1)
R|R̊ic|

+
η

n− 2
|R̊ic|

( n− 2√
n(n− 1)

R+ (η − 2)(n− 1)|R̊ic|
)
.

Based on the identity concerning |R̊ic|2, we can further refine the above estimate

∆λ1 ≥ − 1

|R̊ic|

√
n− 1

n
|∇Ric|2 − 1√

n(n− 1)
R|R̊ic|
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+
1

|R̊ic|

√
n− 1

n

(
|∇Ric|2 + n

n− 2
|R̊ic|3φ+

1

n− 1
R|R̊ic|2

)

+
η

n− 2
|R̊ic|

( n− 2√
n(n− 1)

R+ (η − 2)(n− 1)|R̊ic|
)

=

√
n(n− 1)

n− 2
|R̊ic|2φ+

η

n− 2
|R̊ic|

( n− 2√
n(n− 1)

R + (η − 2)(n− 1)|R̊ic|
)
. (3.12)

From the assumption of Theorem 1.1, we estimate the term within the brackets in the last

line of the above equation

n− 2√
n(n− 1)

R+ (η − 2)(n− 1)|R̊ic|

≥ n− 2√
1 + ε0

|R̊ic| − 2(n− 1)|R̊ic| ≥ −3n

2
|R̊ic|. (3.13)

Based on (3.13), we simplify (3.12) as follows

∆λ1 ≥
√
n(n− 1)

n− 2
|R̊ic|2φ− 3nη

2(n− 2)
|R̊ic|2. (3.14)

Since we previously chose an appropriate ε0 so that Lemma 3.1 is applicable, we obtain the

following estimate

√
n(n− 1)φ ≥ 11

6
nη.

Substituting the above inequality into (3.14), we have

∆λ1 ≥ 2

11

√
n(n− 1)

n− 2
|R̊ic|2φ. (3.15)

Since M is compact, by the maximum principle, we obtain that λ1 is a constant function.

Consequently, (3.15) implies that φ ≡ 0. By Lemma 3.1, it follows that η ≡ 0 and σ ≡ 0. Hence

µ1 = −
√

n− 1

n
, µ2 = · · · = µn =

1√
n(n− 1)

.

From the definition of µi, one has

λ1 = −
√

n− 1

n
|R̊ic|+ R

n
, λ2 = · · · = λn =

1√
n(n− 1)

|R̊ic|+ R

n
.

Therefore, one has ∇Ric ≡ 0. Substituting this into (3.8), we obtain

√
n

n− 1
|R̊ic|3 =

1

n− 1
R|R̊ic|2.

This implies that |Ric|2 = R2

n−1 on M . Consequently, Mn is isometric to the product space

S
1 × S

n−1.
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4 Integral Curvature Pinching Theorems for Manifolds with divC = 0

Let (Mn, g) be an n(≥ 3)-dimensional Riemannian manifold. Since divC = 0 and the scalar

curvature R is a positive constant, the Simons-type equation (2.2) implies that

1

2
∆|R̊ic|2 = |∇R̊ic|2 + 1

n− 1
R|R̊ic|2 +

∑

i,j,k,l

WkijlR̊klR̊ij +
n

n− 2
tr(R̊ic

3
)

≥ |∇R̊ic|2 + 1

n− 1
R|R̊ic|2 −

√
n− 2

2(n− 1)
|W ||R̊ic|2 −

√
n

n− 1
|R̊ic|3, (4.1)

where for the inequality we have used (2.3)–(2.4). We first give the proof of Theorem 1.3.

Proof of Theorem 1.3 Set fτ =

√
|R̊ic|2 + τ2 for τ > 0. By the Kato inequality, one has

|∇R̊ic|2 ≥ |∇fτ |2.

Note that we cannot obtain the stronger inequality |∇R̊ic|2 ≥ n+2
n

|∇fτ |2, as in this case R̊ic is

not necessarily a Codazzi tensor. From the definition of fτ and (4.1), we get

1

2
∆f2

τ ≥ |∇fτ |2 +
1

n− 1
R|R̊ic|2 −

√
n− 2

2(n− 1)
|W ||R̊ic|2 −

√
n

n− 1
|R̊ic|3. (4.2)

Multiplying both sides of (4.2) by fα−2
τ for α ≥ 1 and integrating by parts, we get

0 ≥ −1

2

∫

M

fα−2
τ ∆f2

τ dµ+

∫

M

|∇fτ |2fα−2
τ dµ+

1

n− 1

∫

M

R|R̊ic|2fα−2
τ dµ

−
√

n− 2

2(n− 1)

∫

M

|W ||R̊ic|2fα−2
τ dµ−

√
n

n− 1

∫

M

|R̊ic|3fα−2
τ dµ

= (α− 1)

∫

M

|∇fτ |2fα−2
τ dµ+

1

n− 1

∫

M

R|R̊ic|2fα−2
τ dµ

−
√

n− 2

2(n− 1)

∫

M

W |R̊ic|2fα−2
τ dµ−

√
n

n− 1

∫

M

|R̊ic|3fα−2
τ dµ.

Letting τ → 0, the above inequality implies
∫

M

|R̊ic|α(
√
2R−

√
(n− 1)(n− 2)|W | −

√
2n(n− 1)|R̊ic|)dµ ≤ 0. (4.3)

If the equality in (4.3) holds, the proof shows that either at every point R̊ic = 0, or at some

point R̊ic 6= 0, where R̊ic has an eigenvalue of multiplicity n − 1 and another of multiplicity

1. Now we consider the latter case. Assume R̊ic 6= 0 at the point x ∈ M . Since the equality

in (2.3) also holds at x, we have that either W = 0, or W 6= 0 and R̊ic
2
= cg at x for a

nonnegative constant c. We can choose an orthonormal basis of the tangent space at x such

that R̊ic = diag(λ, · · · , λ,−(n− 1)λ) for some λ 6= 0. It is evident that R̊ic
2
= cg cannot hold

for a nonnegative constant c. So we have W = 0 at x. Due to the smoothness of R̊ic, there

exists a neighborhood Ux of x such that R̊ic 6= 0 and W = 0 on Ux. If we assume that g is real

analytic, then the function |W | is also real analytic. Hence W = 0 on M . Therefore, either M
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is Einstein, or M is locally conformally flat but not Einstein. According to the argument in [5],

we see that for the second case, M is S1 × S
n−1 with the product metric or with a rotationally

symmetric Derdzinski metric. This completes the proof.

Next, we give the proof of Theorem 1.4.

Proof of Theorem 1.4 We choose a cut-off function φr ∈ C∞(M) with the following

properties:

φr(x) =





1, if x ∈ Br(q),

φr(x) ∈ [0, 1], |∇φr| ≤
2

r
, if x ∈ B2r(q) \Br(q),

0, if x ∈ M \B2r(q),

where Br(q) is the geodesic ball in M with radius r centered at q ∈ M . In particular, if M is

compact, and if r ≥ d, where d is the diameter of M , then φr ≡ 1 on M . From (4.2), we get

the inequality that

0 ≥ −fτ∆fτ +
1

n− 1
R|R̊ic|2 −

√
n− 2

2(n− 1)
|W ||R̊ic|2 −

√
n

n− 1
|R̊ic|3. (4.4)

We set f = |R̊ic| and w = |W |. Multiplying both sides of (4.4) by φ2
rf

n
2
−2

τ and integrating by

parts, we get

0 ≥ 2

∫

M

φrf
n
2
−1

τ 〈∇φr,∇fτ 〉dµ+
8(n− 2)

n2

∫

M

φ2
r|∇f

n
4

τ |2dµ

+
R

n− 1

∫

M

φ2
rf

n
2
−2

τ f2dµ−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2
−2

τ f2dµ

−
√

n

n− 1

∫

M

φ2
rf

n
2
−2

τ f3dµ

= (σ + 2)

∫

M

φrf
n
2
−1

τ 〈∇φr ,∇fτ 〉dµ− σ

∫

M

φrf
n
2
−1

τ 〈∇φr ,∇fτ 〉dµ

+
8(n− 2)

n2

∫

M

φ2
r |∇f

n
4

τ |2dµ+
R

n− 1

∫

M

φ2
rf

n
2
−2

τ f2dµ

−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2
−2

τ f2dµ−
√

n

n− 1

∫

M

φ2
rf

n
2
−2

τ f3dµ, (4.5)

where σ is an arbitrary positive constant. To estimate the second term in the first line on the

right-hand side, we apply Young’s inequality as follows:
∫

M

φrf
n
2
−1

τ 〈∇φr ,∇fτ 〉dµ ≤ ρ

2

∫

M

φ2
rf

n
2
−2

τ |∇fτ |2dµ+
1

2ρ

∫

M

f
n
2

τ |∇φr |2dµ

=
8ρ

n2

∫

M

φ2
r |∇f

n
4

τ |2dµ+
1

2ρ

∫

M

f
n
2

τ |∇φr |2dµ,

where ρ is also an arbitrary positive constant. Substituting the above inequality into (4.5), we

get

0 ≥ 2(σ + 2)

n

∫

M

n

2
φrf

n
2
−1

τ 〈∇φr,∇fτ 〉dµ− σ

2ρ

∫

M

f
n
2

τ |∇φr |2dµ
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+
(8(n− 2)

n2
− 8σρ

n2

)∫

M

φ2
r |∇f

n
4

τ |2dµ+
R

n− 1

∫

M

φ2
rf

n
2
−2

τ f2dµ

−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2
−2

τ f2dµ−
√

n

n− 1

∫

M

φ2
rf

n
2
−2

τ f3dµ. (4.6)

By a direct computation, we have

|∇(φrf
n
4

τ )|2 = f
n
2

τ |∇φr|2 +
n

2
φrf

n
2
−1

τ 〈∇φr ,∇fτ 〉+ φ2
r|∇f

n
4

τ |2. (4.7)

Choose ρ > 0 such that 8(n−2)
n2 − 8σρ

n2 = 2(σ+2)
n

, i.e., ρ = 2n−8−nσ
4σ . For ρ > 0, it is necessary

that σ < 2− 8
n
. This inequality implies that n ≥ 5. From (4.6)–(4.7), we obtain

0 ≥ 2(σ + 2)

n

∫

M

(n
2
φrf

n
2
−1

τ 〈∇φr ,∇fτ 〉+ φ2
r |∇f

n
4

τ |2
)
dµ

− σ

2ρ

∫

M

f
n
2

τ |∇φr|2dµ+
R

n− 1

∫

M

φ2
rf

n
2
−2

τ f2dµ

−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2
−2

τ f2dµ−
√

n

n− 1

∫

M

φ2
rf

n
2
−2

τ f3dµ

=
2(σ + 2)

n

∫

M

|∇(φrf
n
4

τ )|2dµ−
(2(σ + 2)

n
+

σ

2ρ

)∫

M

f
n
2

τ |∇φr|2dµ

+
R

n− 1

∫

M

φ2
rf

n
2
−2

τ f2dµ−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2
−2

τ f2dµ

−
√

n

n− 1

∫

M

φ2
rf

n
2
−2

τ f3dµ.

Combining the definition of the Yamabe constant and the positivity condition, we obtain

Y(M, [g])
( ∫

M

u
2n

n−2dµ
)n−2

n ≤
∫

M

|∇u|2dµ+
n− 2

4(n− 1)

∫

M

Ru2dµ

for all u ∈ C∞
0 (M). Hence we get

0 ≥ 2(σ + 2)

n

(
Y(M, [g])‖φ2

rf
n
2 ‖ n

n−2
− (n− 2)R

4(n− 1)

∫

M

φ2
rf

n
2

τ dµ
)

−
(2(σ + 2)

n
+

σ

2ρ

) ∫

M

f
n
2

τ |∇φr |2dµ+
R

n− 1

∫

M

φ2
rf

n
2
−2

τ f2dµ

−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2
−2

τ f2dµ−
√

n

n− 1

∫

M

φ2
rf

n
2
−2

τ f3dµ.

Now letting τ → 0, the above inequality implies

0 ≥ 2(σ + 2)

n
Y(M, [g])‖φ2

rf
n
2 ‖ n

n−2
+
( R

n− 1
− (σ + 2)(n− 2)R

2n(n− 1)

)
‖φ2

rf
n
2 ‖1

−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2 dµ−

√
n

n− 1

∫

M

φ2
rf

n
2
+1dµ

−
(2(σ + 2)

n
+

σ

2ρ

) ∫

M

f
n
2 |∇φr |2dµ. (4.8)
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(i) When R = 0, (4.8) implies

0 ≥ 2(σ + 2)

n
Y(M, [g])‖φ2

rf
n
2 ‖ n

n−2
−
(2(σ + 2)

n
+

σ

2ρ

)∫

M

f
n
2 |∇φr |2dµ

−
√

n− 2

2(n− 1)

∫

M

φ2
rwf

n
2 dµ−

√
n

n− 1

∫

M

φ2
rf

n
2
+1dµ

≥ 2(σ + 2)

n
Y(M, [g])‖φ2

rf
n
2 ‖ n

n−2
−
(2(σ + 2)

n
+

σ

2ρ

)∫

M

f
n
2 |∇φr |2dµ

−
√

n− 2

2(n− 1)
‖w‖n

2
‖φ2

rf
n
2 ‖ n

n−2
−
√

n

n− 1
‖f‖n

2
‖φ2

rf
n
2 ‖ n

n−2

≥
√

n

n− 1

(√n− 1

n

2(σ + 2)

n
Y(M, [g])−

√
n− 2

2n
‖w‖n

2
− ‖f‖n

2

)
‖φ2

rf
n
2 ‖ n

n−2

− 4

r2

(2(σ + 2)

n
+

σ

2ρ

)∫

M

f
n
2 dµ. (4.9)

Put σ = 2 − 8
n
− ε, where ε is a small positive constant. It follows from the assumption

‖f‖n
2
+
√

n−2
2n ‖w‖n

2
< ∞ that

lim
r→+∞

4

r2

(2(σ + 2)

n
+

σ

2ρ

)∫

M

f
n
2 dµ = 0. (4.10)

Combining (4.9)–(4.10), we get

0 ≥
(√n− 1

n

2(4− 8
n
− ε)

n
Y(M, [g])−

√
n− 2

2n
‖w‖n

2
− ‖f‖n

2

)
lim

r→+∞
‖φ2

rf
n
2 ‖ n

n−2

for any small ε > 0. As ε → 0, we have

0 ≥
(8(n− 2)

n2

√
n− 1

n
Y(M, [g])−

√
n− 2

2n
‖w‖n

2
− ‖f‖n

2

)
lim

r→+∞
‖φ2

rf
n
2 ‖ n

n−2
.

If we assume

‖f‖n
2
+

√
n− 2

2n
‖w‖n

2
<

8(n− 2)

n2

√
n− 1

n
Y(M, [g]),

then lim
r→+∞

‖φ2
rf

n
2 ‖ n

n−2
= 0, which implies f ≡ 0. This means that M is a Ricci flat manifold.

(ii) When R > 0 and n ≥ 7, we have 4
n−2 < 2 − 8

n
. We pick σ = 4

n−2 , then R
n−1 −

(σ+2)(n−2)R
2n(n−1) = 0. Then (4.8) implies

0 ≥ 4

n− 2
Y(M, [g])‖φ2

rf
n
2 ‖ n

n−2
−
(2(σ + 2)

n
+

σ

2ρ

) ∫

M

f
n
2 |∇φr|2dµ

−
√

n− 2

2(n− 1)

∫

M

φ2wf
n
2

τ dµ−
√

n

n− 1

∫

M

φ2
rf

n
2
+1dµ. (4.11)

It follows from the assumption ‖f‖n
2
+
√

n−2
2n ‖w‖n

2
< ∞ that

lim
r→+∞

4

r2

(2(σ + 2)

n
+

σ

2ρ

)∫

M

f
n
2 dµ = 0. (4.12)
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Combining (4.11)–(4.12), we get

0 ≥
( 4

n− 2
Y(M, [g])−

√
n− 2

2n
‖w‖n

2
− ‖f‖n

2

)
lim

r→+∞
‖φ2

rf
n
2 ‖ n

n−2
.

If we assume

‖f‖n
2
+

√
n− 2

2n
‖w‖n

2
<

4

n− 2
Y(M, [g]),

then lim
r→+∞

‖φ2
rf

n
2 ‖ n

n−2
= 0, which implies f ≡ 0. This means that M is an Einstein manifold.

When R > 0 and n < 7, we have 4
n−2 > 2− 8

n
. We pick σ = 2− 8

n
− ε for small ε > 0. Then

we also have R
n−1 − (σ+2)(n−2)R

2n(n−1) ≥ 0. By a similar argument, we get that if

‖f‖n
2
+

√
n− 2

2n
‖w‖n

2
<

8(n− 2)

n2

√
n− 1

n
Y(M, [g]),

then f ≡ 0 and M is an Einstein manifold.

(iii) When R < 0 and n ≥ 7, we pick σ = 2− 8
n
−ε for small ε > 0 such that 4

n−2 ≤ 2− 8
n
−ε.

Then R
n−1 − (σ+2)(n−2)R

2n(n−1) ≥ 0. Using a similar argument, we find that if

‖f‖n
2
+

√
n− 2

2n
‖w‖n

2
<

8(n− 2)

n2

√
n− 1

n
Y(M, [g]),

then f ≡ 0 and M is an Einstein manifold.

At last, we consider a special case that the manifold has harmonic curvature, i.e., M satisfies
∑
i

∇iRijkl = 0, or equivalently ∇kRjl = ∇lRjk. According to [14], a metric with harmonic

curvature is real analytic. Furthermore, by the Bianchi identity, the scalar curvature R is

constant. As R̊ic is a Codazzi tensor, one has |∇R̊ic|2 ≥ n+2
n

|∇fτ |2. Then

1

2
∆f2

τ ≥ n+ 2

n
|∇fτ |2 +

R

n− 1
|R̊ic|2 −

√
n− 2

2(n− 1)
|W ||R̊ic|2 −

√
n

n− 1
|R̊ic|3.

With the aid of this improved inequality, the following theorems can be proved by using a

similar argument as in the proofs of Theorems 1.3–1.4.

Theorem 4.1 Let (Mn, g) be an n(≥ 3)-dimensional closed Riemannian manifold with

harmonic curvature. Suppose that the scalar curvature R is positive. Then

∫

M

|R̊ic|α(
√
2R−

√
2n(n− 1)|R̊ic| −

√
(n− 1)(n− 2)|W |)dµ ≤ 0

for all α ≥ n−2
n

, and the equality holds if and only if M is Einstein or M is S1 × S
n−1 with the

product metric or with a rotationally symmetric Derdzinski metric. In particular, if

|R̊ic|+
√

n− 2

2n
|W | ≤ 1√

n(n− 1)
R,

then M is either Einstein or isometric to S
1×S

n−1 with the product metric or with a rotationally

symmetric Derdzinski metric.
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Theorem 4.2 Let (Mn, g) be an n(≥ 3)-dimensional complete Riemannian manifold with

harmonic curvature. Suppose that the Yamabe constant Y(M, [g]) of M is positive. If

(i) R = 0 and n ≥ 3, or R > 0 and n = 3, 4, 5, or R < 0 and n ≥ 6, and

‖R̊ic‖n
2
+

√
n− 2

2n
‖W‖n

2
<

8(n2 − 2n+ 4)

n2

√
n− 1

n
Y(M, [g]),

or if

(ii) R > 0 and n ≥ 6, and

‖R̊ic‖n
2
+

√
n− 2

2n
‖W‖n

2
<

4

n− 2

√
n− 1

n
Y(M, [g]),

then M is Einstein.

Similar to Theorem 1.4, the product manifold S
1 × S

n−1 shows that the pinching inequality

in Theorem 4.2 is optimal for R > 0 and n ≥ 6.

Remark 4.1 Theorem 4.1 for α = n−2
n

and a similar result as Theorem 4.2 for positive

scalar curvature were proved previously by Fu [18]. Fu and his collaborators also proved several

other interesting rigidity theorems (see [18–20], etc.).
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