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A REMARK ON HARMONIC MAPS

XIN YUANLONG
(Insmute of Mathematics, Fudan Umverszty)

It is of 1n’rerest to study harmomo maps from spheres in many d1ﬁ'erent contexts..
In [6] the author proved nonex1stence of nontrivial stable harmonic maps from high
dimentional sphere- to any Rlemanman manifold. It is. natural to ask What the
situation is in the case of two dlmensmna,l spheres If the ta,rget mamfold is a compact
" Riemann surface, then any harmonic map must be either holomorp'hrc or antiholomoz-
phioc as a- consequence of Flles-Wood’s theorem'™. If the target manifold is a Kahler
manifold with certain nonnegative holomorphic bisectional curvature, then it follows
from Siu-Yau’s theorem™® that any stable harmonic map is either holomorphlc or
‘antiholomorphie. :

In this paper we consider the stable harmomc maps from 2—d1mensronal sphere
to any Kéhler manifold. (This is interesting to some physmlsts who consider it to be a
chiral model of the field theory with values-in arbltrary Kihler manifold®). We
obtain an integral inequality from which the well know Sm-Yau s ’uheoxtem“ﬂ can be
~ established.

The method of obtaining this mequahty is rather similar to the .one in ‘the
previous paper'® with certain variations..

Let M and N be Riemannian mamfolds Compac’sness and boundlessness of M -
are assumed. Any smooth map ¢; M—>N indudces a map (f) ‘TM—>TN, where TM and
T'N are the tangent bundles of M and N, respeo’mvely The induced vector bundle
¢ *TN over M inherits a fibre metric and' a Riemannian’connection ¥ from the
metrio of N and the canonical connection. V in N. The energy integral and. the tension
field of a given map ¢ from M to N are respectlvely ‘defined by

ORIOESS SMC gyt O
and | o o } ‘
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where e (¢>) denotes the energy densﬂ:y of qS {e:} an local orthonormal frame in M
and #1 the volume form of M. ‘Here and henceforth we use the summation convention.
‘A smooth map with vanishing tension field is called a harmonic map. ‘The first
variation formula shows that harmonio maps a.re crltleal pomts of the energy mtegral

!
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The index form for a harmonic map is defined by
10, W) =], ~TT7 B, Vb, Wyet ®

for any cross sections V and W in ¢™*TN over M, V*¥ denotmg trace Laplace operator
in the Riemannian vector bundle ¢ TN over M and R¥(., +)- the curvature tensor
of N. A harmonic map with I (V, V) =0 for any V€I (¢~ 1TN ) is said to be stable.

The basic formulas ean be found in the paper [1] wntten by Eells J and
Lemaire, L.’ .

Let M and N be Kahler manifolds and {e,,, Jey} be Hermitian frame of M with
canonical complex structure J. We denote TMe (resp. TN°) for the complex1ﬁcat10n
\/ P

5

of ™ (resp TN) There is a dlrect sum decomposmon TMe—TM ’@TM " &5 =
M (e,,+q,J éx) are bases of M’ and TM", respectwely We still

X (e;, —¢J ek) and’ Sk =

use the notation P TM TN for the complex1ﬁcat10n of ¢..

We define
w81 = Phx+ iy,
butr ”Sk Ex (4)
- o ¢*8k ¢*3k+¢*81‘
and (d’qS):v ¢>’w @'d)a=¢lo fora:ETM"
where '

5= qS,sk ~ 2'(¢*é,,+i¢,Jek+«cJ¢*ek—J¢*Jek)

and
¢’ &= gb” &= ' (qS*e;, + qu*J e — iJ </>*ek +J qS,J ).

The complex vector -bundle ¢>“1TN” over M mhents the metric < > and the
connection ¥ by complex linearity. ' : :

The partial energy densities are defined as .foliows : ‘

¢ ($) =<Blow, T =5 (Butr; bit>+<buTes, $uTes>+2 b, Thay)  (5)

and . . - ‘ o
(B = Blow, Foor> = (but, s>+ BT, buTe>—2pTs, T.0). (6)

Therefore
| - D=t @), e @
It is easy t0 see that e (¢) =0 if and only if ¢ is holomorphm and e (qS) 0 if and only
if ¢ is antiholomorphic. S :
For convenience, let us express the condition of the harmomolty in complex form,
By direct computation it is easy to check that
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4 @b sumt (Fud)u= A= iD)7 () |
and : o : 8)
s 4 (Vo 6n—4<vs,¢")s»— <1+zJ>n-<¢)

On the other hand, since

- 6*v = 6 6 6Jekﬁ.ley‘ + 6v,,‘e;,+\7_,¢kJe;‘
= __ <V5k+ekﬁsy¢+¢k ex—E&k sls—i:k) + 6‘hz;;ﬂ)u:(sk-Hk)--‘7e;;—e;;(51s-"ak)

= (ﬁ Vaksk) - (?5):65}; - 6‘TEtz,,OTrc) == 2 (vikﬁsk . vvixsx) —R¥ (¢*Ek) -¢*6k)

and

— (R (butw, V) i, Vou—<RY (T e, V)T ew, Vox
== B @t b, V) (buowt-bitn), Vo

g B (butu— i, V) (buts— ), Vo

| = (B (s, Vi Do B (i, V)betr, Vo,
Thus we-obtain the complex form of the 2" variation formula ' -

I, 7)==2 AR eV, Vowt (B oty Vges, Vo)1, ©
Now we prove the following theorem

Theorem 1. Let ¢, 825N be a stable harmonio map ffrom 2—sphere to any Kahler
manifold. The following inequality is valid

j B(puTe—T e, duTe-+Tbe)w1<0, (10).

where B(X, Y) stands for <RN(X JX)Y, TY Sy, »
Proof Given a point pES” at which V,s=V,e= V.s V.s 0. Suppose Vee=ae,
Ve~—ae V,e=bs and Vze = —bé. Then atthe pomtp '

 Via=Vi(V,e, e>= <vv 8, & =3 <V.+m -iJeE, 8>
- ‘="§‘<(vle' e"vevle) (e—%Jq), (e+"'Je)>
L1 a1 1,
='4_<(vlo e’,‘vev.le)]e: 6)——-4—_<V;9V-..-— VGVJB)G, J6> = "_2_K:

where K is the gaussian curvaturé. In our case K =-'1, V}a = —%. Similarly, Vb -
1

P

- Letu be a vector field on S? whioh is the gradiént vector field of the restriction of
a linear function in R®. In other words, u€O= {grad f|g; fislinear in R%}. Choosing
N2 '

v="3 (u—iJu), then we have

v=<v, gye, Vao=—a/2 fs, V.V.0=—2 and Vs =0,
noticing the facts, Veu= —fe and VeVeu-+ VeV seth= — .
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Now using the condition for harmonicity, we have at the- pomt P
~V Vo= -V d<w, s)s- —V:((V,o, &die+<v, V s)gb”s+<fv‘ s}ﬁ )
—< ViVev, ey 8—<v, Vs V,,e'}gb” e— <,,, VAV q.’)”
At the point p -

= <’D: V;V3§>~= <’U, VgaE) = _7 <lv: E>;

RO EAZES ACRR P #re B (jus BB, |
Therefore
-v ﬁsgb” v= —RN (due, Pye) qS"
Substituting the above expression into the 2" variation formula (9), we obtain
the following relation

I(#o, ) =2 <R (Ho, $.0)biF, Fwdund,
Choosing v such that v ( p) =g( p) » the stability of the barmonio map qS S*-> N

means
BB, 401905, Bt =L, R e, 01455 ¢;5>N*1>o'.

From the Bianchi identity and <RY(¢s, ¢ie)pls, ¢Led=0- (it can be veriﬁéd by direct
computation) we obtain R o R
o B Ble, F)dle, Tsdunl=—| (B (Fe, dle)ble, Foranl<0,  (11)
The algebra gives ) o ‘
CBY(¢le, Ple)ple, Fedn.
= —<(BRY(he+Idu]e, Jpe—p.Je) (he— TP Je), (J bue+ b )y
=—B(pJe—J s, PJe+ J bee)." ' (12)
Substituting (12) into (11), we have inequality (iO) ' " Q.E.D.
Corollary 2. Let N be a Kihler mamfold with nonnegative holomorphw bisectional
curvature amd ¢. 8*—>N a stable harmonic map. Then
| B(pJe—T e, poTJe+Jbie) =0, o asy
Furthemmore, of N has positive halomorpMo bwsect@oml curwture, then ¢ is e@therr
holomorphw or antiholomorphice. ‘
Proof For any p€8? at which ¢,Je—Jp,e#0 and b e—l—.f b.e%0 -
B(puJe=J e, pJe+Tpe)=168¢ ($)e" (H)B(X, ¥)>0 . . (14)

o ¢*J e— J¢* ¢*J e+J QS*G ‘ R
where X = VIR and ¥ = Vi @) are unit' vectors.. From (10) and
(14) S -

J’S’ B (¢*'I6;_ J¢*el ¢¥J 4 +J¢*€) *1 f Q. )
Then we have (18). k S o :
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Suppose that ¢ is neither holomorphic nor ant1h010morphlo Let Z, and Z, are
“zero sets of ¢/(¢) and €' (¢), r espectlvely Then Z, and Z, are finite. Denote Z=Z+
Z,. At peSN\Z

- B(¢pJe—J e, ¢,Je+J¢*e) =16¢'(¢)e" (#) B(X, ¥)>0
by the positivity of holomorphic bisectional curvature, which is a contradlctmn in
view of (10). | ‘. Q. E. D.
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