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§ 1. Introduction
- Let us consider the linear differential system
9o _ 4(t)a, | (@.1)

where A(#) is nXn matrix which is continuous and bounded on the real axis. If the
fundamental matrix X (#) of (1.1) is'decomposed as follows ‘ '
X (#) = X1(8) + Xa(8), X71(s) =Z1(s) +2a(s),
X () X74(s) = X1() Z1(s) + Xa(£) Za(s),
and there are two positive constants ¢ and B such that
1 X @) Zi ) | <Bexp(—ali—s)), 1=,
| Xa(#)Za(s) | <B exp(a(t—s)), s=1,
then we say that (1.1) admits an exponential dichotomy.. i :
In this paper we shall establish the condltlon of a.dm:drbmg exponentla,l dlchotomles
for almost perlod;o hnear system. . .

§ 2 The structure of quas1 perlodlc hnear system

In 2] or [3] , under sultable ass‘umptlons the a.uthor esta.bhshed the reduclblhty
theorem for the quasi periodio linear system . : : :

' %£=A(wt)w A(wt) A(cult wgt ., @,,.t)\f SR (2 1)

In general, we can transform (2.1) into a trlangula.r gystem by performmg a
quasi periodie unitary transformation.. <. - . s
Theorem 2. 1. There is a quasi pemodw umtary tfransforrmamon
- y=Q(wt)z, . Q(wt) =Q(wrt; wi, -+, wut)
which reduces (2.1) into a triangular lincar system - T

I
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Where C(wt) is a quasi periodic and triangular matric.

Proogf By the approximate theorem of almost periodic funotions, there are matrices
A, (fPt) =A, (ot, 08, -+, w3’t) tending to A(wt) uniformly, where the elements
of 4,(w™t) are frigonornetric polynomails with frequenscies w{”, w§?, -+, @%’. At the
same time we oan assume that the frequencies wﬁ”, w&" wee, @3 submit to the

irrationality conditions
—(m+1)

|2k | >E @) (L), (2.2)

where K («®) >0, and ki, ks, +*+, km are integers but not all zero, since the points

submitted to the conditions (2.2) are denge everywhere in the m~dimensional Eucli-
dian space. |

‘We have proved in [3] that the Theorem 2.1 holds for A (wt) € O™V, g0 that the
linear system

do
7

=4, (w""t)a; (2.3)
can be reduced into a triangular a.nd quasi periodio linear system

Y _0,w"%)

by performing a quasi periodio uuiary transformation
y=Q. (@), @(0”) =@, ({8, W%, -, 1),
where

( i) O, (co"’t) Q (0" 4, (08 @} (a)("t) +——— Q,- (0®8) @} (w™1), QF (w"’t) is the

transposed and conJugate matrix of Q, (0™%).
- (ii) The imaginary part of each diagonal element of C,(w*)%) is constant.

CONREOTIS 2 Qw")|<4i, when | 4, (@%) | < M. Therefore

Q. (0"%) and C, (w"’t+5'(w"’t) Q. (%) (4, (co"’t) + 47 (0™t)) QF (w"’t) are equicon.
tinuous and uniformly bounded. Since the triangular matrix O,(w™%)has the property
(i) as stated above, the equicontinuity and uniformly boundedness of C,(w®%)+
Cr(w™t) implies that O, (co"’t) has the same property. Now we assume that @, (0t)—>
Q(wt) and O, (0®f)—>C (wt)umformly on any finite interval.

‘Theorem (Kronecker). If wy, wa, ==+, wn are independent with respect to integers,
then for any >0, and any "point u®= (w3, ul, ---, up) there are integer wector k= (ky,
ks, +++, kw) and a real number t, such that o

Jowto—u®—2wk| <8.
Proof (of., Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Nu-
mbers (Oxford 1983). )

By the quasi perlodlolty of Q, (w"’t) and the relation
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Q,(w"’t) 0 (w(r)t)Qr(w(r)t) Q,(a)(')t) A (w(')t)

we have ﬁ = Q@D P =0, (@D Q, (w(’)t) -Q (0 ™8) 4, (™).
=

Since

au Q. (u) is continuous and perlodlc with Tespect to the components w4, us,
, Uy, of w with period 2w, 11; 1mphes that 3u Q, (u) is: -unlformly continuous. i. e.,

for any >0, there is a posﬂuve number 8(8) >0 suoh that - v

“ Bu Q- (w') ‘“a—w— Qr (u") " <s, WheneYel,‘ | —u'"| <8 (e).

By the Kronecker’s Theorem we see that for any point «° and any positive number
d(8) >0, there are f; and lc such that '

]Iw(')to ud 2az:lcﬂ<6(s)
B emer|<| 3 oy @

+ [0 (0®40) @ (o) — Qr (w(')fo)A (w("fo)ﬂ 8” w®|+3M,
Then we have llg Q (w)af” n <3M, for the number & and the point u° are arbitrary. .

Therefore we have -

Qr (u°4-2wk) — —

~ We denote w® by »® (1), and take the veotors co(” 2), " (8), +, @™ (m) such
that : o .
(a) ’w(') @D, o® (2) AR o® (m) a.re mdependent of eaoh other W1th Tespeot to real
number, and [[w"’(y) [I—l j=2, m; _ _
. (b) The eomponents of co"’(j) (m}{’, WP, v s w§2) submit to the irra.tionality
conditions. j=2, 8, ---, m; I -
(o) [det(co"’(l), co")(2), s, @ (m)) |=a">0, where a* is independent of r,
r=1,2,3, , R

By the same argument above-mentioned, we have‘ that %_3__ Q (WP, s=1, 2,

8§ s

*++, m, are bounded uniformly, which implies that Qr (u) are bounded uniformly.

Therefore Q. () are equicontinuous and uniformly bounde_d, and Q;(w) tends to Q(u)
uniformly as a consequence of the periodicity: of Q,.(u) with period 2m. It follows that
Q(w) is periodio, or Q(wt) is quasi periodio. Similarly, we have the quasi periodioity
for C(wt). By the relation ‘ - ‘ ‘

L Q. (08) =0, (@) (") RAGOEICEOR

we have Q(wt) E 0’(1) ‘Let us transform (2. 1) by y= Q(wt)w Then we have

| Yoy, @9
and the theorm is proved ‘oompletely.
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Theorem 2. 2. Suppose thai the characteristic ea;ponents of (2 1) are dzﬁerent
Srom zero. Then (2 1) ‘admits an emponentfml dichotomy.
Proof We'shall only prove that the theorem holds for (2.4). $uppose that

Gi(t)
i O(awt) = ( Se )
0 “a

The “iirﬁit; o . Pm ———J c,(s) ds c,, g 1 2
-> 300 v
exists unlformly We may assume that ..
Re (01) < <Re (Ck) 06<0<06<Re (ck+1) <Re (G,,)' !
~ Therefore we have a constant K >0 such that- I

| oxp (J s | <Koxp (a0, 3, 31,3,

} exp (J’ c;(s)ds I<Kexp(a(t s)) s=t, j=k4+1, .-
If (2.4) is of diagonal form, then  the' theorem holds In .the ‘cage of the trla,ngular
form for (2. 4) we shall transform (2 4) by A »
o e=diag(n ke s
where 7 is a sufficiently small posm-ve number. Then we have ' =~
D(t)z ST VIR DY ey i (2 5)
where the dragonal elements of D(t) are exactly ci(t), cz(t), *+%y Cn (t), __and the abso-
1ute values of those elements above the dla,gonal line of D(t) are small Smce the ex-

ponential dlchotomy is preserved under small perturba,tmn the theorem holds for
@. 5), hence for (2 4) '

'§38. Almost periodic linear system
. Definition 8. 1. . We éonsider the almost poriodic linsar systorn
=A@, - Lo 4(8:1)

where A(t) is nXn almost perfbodfw matriz. If ©(t) is the nontrévial solution of (3.1),
‘we deﬁne the wpper and lower characteristio emponent X, Aof @(t) as follows :

L) =T 3 Togla()], *7(-)~Im T togla(®],
A ~lim Laogla(i],  2(=)~lim L log|a(d) 1,

o d=max{A(+), A(=)}, A=min{A(+), A(=)}. St

We say that (3 1) has no zero chamctemstw ewponent in the ewtensive sense eﬁ‘ there s a
fnndamental matriz X (t) = (21(3), a:z(t), see, 2:(2)) of (3 1) such that
A(os(t)), Mas()) >0, j=1,.2, s B
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On the contrary we say that (3.1) has the zero characteristic ewponent in ‘the ewtensive
sense. L ‘ '
Vi Definition 8. 2. If w(t)-is'a nontfrwwl solution of (8.1) with A= (t)) Az ()
=7u(d? (%)), then we call A(w(t)) the strong characteristic emponent.of ©(t).
Definition 8. 8. If(3.8) ‘has a fundamental matric X (t) = (a:l(t), 2a (%),
@, (t)) with the strong chamctsmstw exponents A (w; (t)), j= 1 2, -+, n, then we say that
(8.1) has the strong characteristic exponents. S Do sl i
Theorem 8.:1. Suppose that (3.1) has no-zero. characteristic’ ewponent in the ex-
tensive sense. Then (8.1) .admits an exsponential dichotomy. - R
Before proving Theorem 3.1 we make some prepara,tmn ag follows: : - -
(A) To approximate almost system by quasi periodio spstem. 7
By the approxunate theorem of almost perlodlo functions we may. use the trigono-
metrio polynomlal matrices A(w‘""t) A(wi”"t w§V8, ++, wlnt) t0 approximate to the
almost periodic matnx A(t) Furthermore We may assume that the frequencies w(’"’
W§™, eee, wgz”,g,, of the quam perlodlo matrlces A,,. (w‘"”t) subm1t to the uratlonahty

conditions A .
“)—(s(m)+1) '

-t ol | S (@) ( k), 3.2
where K (™) >0 k1, ka, +++, km are integers but not all zero.
By Theorem 2.1 there is a-quasi perlodlo unitary transforma,tlon
= Qn(@™1) 7, Qn(@™%) =Qn(w{™, w"”’t vy ),
which transforms the quasi periodio linear system - - . o0 o

do - | _
ar =4, (™) . - | b 8.3)

into the triangular linear system

W _g, @3, O <w<m>t> <

oo %\
dﬁ )

ERRIO)

By the argument of § 2, the sequences {Qm (0™%), O “ (w""’t)} are equicontinuous
and uniformly bounded, so that we may assume that Qn (co(”’)t)—>Q () and O p(@™8)—>
c (t) uniformly on any finite interval. .

(B) The fundamental matrix of (3 1) ‘ ‘

Suppose that (3.1) has no zero.characteristio exponent in, the extenswe sense
with each negative upper characterlstle exponent <- —a<0, and each pOS1t1ve lower
characteristic exponent; >a>0. Let. us, take the fundamenta,l matrlx X @)= (wi(t),
@y (%), -, 2, (2)) of (3. 1) such that

(@) = —y<—a<0, j=1, 2, =y K, oo
L (@) =Bi>a>0, j=k+1, e, my 0 L (3.4)
<< << —o<0<a< By < <P, 1w s
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There is an orthogonal matrix .
P#)=X (t)R(t) :
where E(%#) is an upper triangular matrix. Next we transform .(3.1) by y= P*(t)as
where P*(%) is the transposed matrix of P(t), then we ha.ve :

1(#) .- ,
O'o(t)y, Oo(#) = ; , : CRYY
@ RO S
and the fundamental matrix T '
Y@=, 4@, =, va(®)) =P X ) =R™(2).
of (8.1)* is the upper triangular matrix. On the other hand, (8.1) hag the fandamen-
tal matrix of the form. :

so(fama)  * N
Yot) - noo , Y0(0) =,
| ' | O equ (s)ds) : '
sothst Y@ =Fe®)0b= (G, Y, -, ¥2®))0s,

where O’o is a constant upper trlangular matnx Tt is not difficult o prove that“
M@ (1) =Myi(1)), M5 @) <—a<0, j=1, 2, k,
A(@()) =A@ (B); MeIE))>a>0, j= 70+1,
Proposition. By above notation, there are e

(i) X(equ:c‘}(s)”ds))< a<0 _7 =1, 2 Sk

o
(ii) Aexp (Lc‘,’-(s)ds)>>a>0 j= Ic+1
Proof We shall prove the part (i) only. Similarly, we have the part (ii). First

—(expg o (s)ds)) =7 exp(w: ()< —a.
If Proposition does not hold, we may suppose that
(exp('[ ,(s)ds))< '—“: j=1) 2; ) "'—1)
and x h(exp(J' e (s) ols.>>a 1<r<k.
It implies that A(¢? (t)) = —a, which oontradlcts 1:0 the formula (8.5), and the proof
of Proposﬂuon is complete e
Gorolla.ry Suppose that 2 (t), 7 (t), coe; zg(t) are the raw vectors of X “1(¢). Then
we have I ‘ ‘ ' ”
A% (1)) >0, j=1,2, -, k3 and X'(z,(t)) <0, j=k+1, -, n
Suppose that o
X1(8) = (@:(?), @3(8), =, 2(2), 0, -+, 0), Xa(t) =X (¥) — X41(2),
X7H(s) =2Z1(s) +Za(s) X(t) X‘i(S) X1(t)21(8) +Xa(8)Za(s).
For any >0, we have '

(8.5)
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 XaZi(0) =0(F exp((a+8) iR Gar+e)s), 1, 530
—o(z oxp( (A(,= s)t-{—(i\(z,—s)s)) Z, s<o
Xo(8)Za(s) =o( ) exp((h(m5+s)t+(7\.(z,+e)s) ), £, 50,

( 2 exp((A(a;,—s)t+(A(z, s)s)), t", s<0,
Then there is a constant a0>0 such that , L
at+2s<an<|Mwp) |, |12(@) |, |M)], 2@, §=1, 2, -+,
| X1(®) Z1(s) | <M (s)exp(=an(i—5)), t>5>0;
: <M*(H)exp(—ap(t—5)), s<t<0; (8.6)
| X2 (8)Za(s) | <M*(B)exp(an(t—3)); s=>1=0;
' , : <M(s)exp(ao(t s)), . t<<8<x0, -
C') The fundamental matrix of (8.8): T GRE R A CFI
Let us congider the fundamental mairix '

alfom)
0

AOE

exp(j c(’")(s)ds
: —(ys"»(t) o8 ><t>, sl <'"’<t>> :
of (3. 3)* Then the matrix = ‘
Xn®) = (o (3), wé’”’ (t), wS.”“’ @)= Qm (w‘””t)Y m(t)
is the fundamental matrix.of (8.8). Since (3.3) is the quasi ‘periodio linear system,
it is easy to prove that :

AP () =M (@) —aoxs( j o) ds), §=1, 2,
Here we suppose: that , Trome o R ‘ :
M@ (8)) <M (t)), andlh(w“"’ (t)) l>a>0 e
(We shall prove that the last inequality holds for m large enough in Lemma 3.4
below). Then we have the positive number %, () such that
| X1 () Zm1 (8) | <Ekm(c)exp(—a(t—3)), t>s,
| X2 () Zima (8) [ <bm(@)exp(a(i—8)), s>,
where X, (%) = X (t-) + X a2 (8); X2 (8) =Zim1 (8) ¥ Za(s) 'and’ .
Xon(®) Xt (8) =X s (1) Za () + X ma (8) Zima (S)
Lemme 8.1. - The sequence kn(a) in @. ) is bounded zﬁ' the sequence Fomi () 'os
bounded, where kn;(a) is the least numbefr to scztfbsfy the followfmg fmequalfoty '

(8.7

| exp( J' o (g)ds)] <o (@)oxD( —a(t—5)), £5>s, whon (1) is in XD,

and
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IeXP <Jt o™ (s) ds.) | Sk (&) eip (a(@F=s)); s=>t, wkeh o§™ () 48 in. X pua(t).

Proof If ky;(a) is bounded it is evident that we can take kn,(a) to be bounded Con-
versely, if kn (a) <K, 05 where K, is a constant mdependent of m, m=1,2, .-+, we shall
take R (R i o
m,<a> —sup{lexp (j e§m><s>ds+a<t -9) ] |t>s}

<sup{ﬂXm(t)Zm(S)eXP(a(t 8))H|i>8}<k (“) .
When_m('"’)(t) is in Xm(); -

Fas() =sup] oxp( [ o <s>ds a(t—9) )‘s>.t b
L - <SUP{| X s (£) Z g (s) exp( —a(3+5)) H |s>t} <kn(a),
when §™ (8) is in X pa (%), s0 that kn;(a) is bounded.: L
Lemma 8. 2. ‘Supposs that #(t), any nontrivial solution of (3.1), has A(w(£)) <L
—a<0. (or A(@(?)) >a>0.) Then there is a bounded sequence k,(a) such that '
| Xn () X2(6) | <lim(@)oxp(—a(s—s)), #5.
(or| X (2) X5 (5) | <<kom (@) exp(a(i—s)), 1<s.)
Proof Let X (%) is the fundamental ma,trlx of (3 1) Then X (t) X ~1(s) can be ex-
pressed by the formula o e

X ()X = Xa() X319 +j () X510 (AGP) — a(r)) X (1) X0
Suppose that "X(t) X‘i(s) ][ <M(s) exp( (a+ &) (t s)), t>s>0 '
Then we have :
I m(t) X5 (8) ” <M (8) eXp( (a+ 6) (= S))

90 MO [[1Xa ) X oxp(~ (at2) 4-0)) ndr,

where | A(r) —An(r) ﬂ <Ygm, g,,——>0 'when s ﬁxed ‘and m is large enough hence
[ Xn(® X0l () [<2M (s)exp(—a(t—s)); t>s*. . §§
For s, m and a fixed, we choosé the-least positive number. &, (s, a) such that
[ Xn(®) X5 (8) | <Em(s, @) exp(—a(t—s)); s,
i e., kn(s, )M (s), and. Ic,,.(O a) <M (O) Slm:larly, When i ﬁxed we have M*(t)
such that
' IIX(t) X"‘(S) H<2M*(t)exp( (a+8) (- 8)) 0>t>8
| Xn(®) X1 (8) | <2M*(Dexp(—alt—s)), — 0=i>s. -
For , m and « fixed, we have the least positive number k},;(#, ) such that
- X @ X | <Eay(t, dexp(—ali=s)), 135, -
i. e. lcm,(t a) <2M*(t), and k7, (0, a) <2M*(0)., ‘ o
In order to prove that lc,,,(a) is bounded by Lemma 3. 1 we shall show the
boundedness of Fomi (@) only Let us denote by Fms(s, a) and & ,(t ) the least posﬂ;lve
* C. F., ‘“Additional proof of-...” in p. 144. e
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numbers such that . N A TR A 3

lexp (J o“”’ (r)dfr ‘<k,,,,(s a)exp(—a(t s)) for all >3

and = ‘exp(J. cg’"’ (fr)da' l<k i@, a)exp( a(t s)),for all s<<t.

It is ev1dent that - ' Bt L
s : ,,,,(a)—sume,(s a)—supkm,(t a)

'SHPPOSe that g (a) Fony (30, @) for somé s, and 80<0<t. Then ‘wo ha.Ve S

lexp (". e (fr)drr)‘ ‘exp (j cf,”') (r)dfr)exp (J‘ c§’”’ (fr)dfr)
hence ./ , e () <Kem ,(0 ) ki (0, @) <4M*(0) M (0).
- If so>0 by the almost- perlodlelty of ¢§™ (%), we ha.ve the real. number 79<0 such
that . - comer D felen) e o 10
(1) [c‘”"(t+7o)—c‘"")(t)|<s for a.llt '
(u) sl-—so+ro<0 :
It follows that when t'—t+ro>0 one has

‘(exp ([l <fr>dr)( [expj <csm><r>+s>da~>|
50 that ks (a) <kl ,(0 a—l—s)k,,,,(O oa—l—s) We note that ao>a+28 in (8.6), which

implies that =~ - , i
| P4 (t)X’i(S) |l<2M (S)GXP( (a+8) (t 8)), t>s>0

' _ <2M*(t)exp( (a+8) (¢~ s)), s<t<0
hence lc,,,,(O oa+ s)laf,,, (0 a+ s) <4M (O) M (0), and kmj (a) is bounded
~ Lemma 8.8. The sequence Fom (oa) 'm(3 7) is bounded _

Proof Suppose tha.t X (t) is the fundamental matrlx of (3 1) above—mentmned
and take the posﬂuve number ¢>7»(a:,(t)), j= 1 2 n, Where wi(t) is the column
vector of X (t) There 1s a transformatlon B
| z a;exp( frt), " o
which transforms (3 1) and (3 3) 1nto S o

U@ ~rBy, R

~ (4n(® = 1Bz, O

respectively. Then (3 1) e g,nd (3 3)** ha.ve the fundamental matrices X (%)

exp(—rt) and Xn(3)exp(—rt) with negative upper characteristio exponents. By

Lemma 3.2, there exists a bounded sequenence 7, such that
HXm(t)X'l(S)eXp(*a"(t—S))ll<70' oxp(—ro(1—9)), =,

where 10>>0. Therefore £m(a) <km, j=1, 2, , k. Similarly, we have k() <k,

j=k+1, -+, n. By Lemma 3.4, Ic,,.(a) is bounded and the proof of Lemma 3.3 is

complete. . :
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.Corollary, IfA(Xu())<—a<o<A(Xmn (t), and kn(a) and; k,(c) are the
lesat positive numbers such that v
| X (8) Zma (5) | <hn (a)eXP(-a(t =), t=>s,
| Kna(8) Za (8) | <bw(e)exp(o(G—3)), 531,
then kn(a), kn(o) <Ko, where Ko is a constant independent of m, m— 1,2,8,
Lemma 3. 4. Suppose that (3.1) has nio zero characteristic exponent in the exteon-

3.8)

sive sense, and there is @ fundamental matriz of (8.1) satisfying the inequality (3.6).
Then there is: the fundamental matric X, (t) of (3 3) sat@sfymg B.7) with kn(a)
bounded, and the rank o f X (2) s lc wken m 48 suﬁiowntly large.

Proof We may suppose that X (£) = X1 (£) + X g (£) With MXmi(f))<—a<o
<M Xma(%)), and the rank of X mi-(t‘) 1§ N.(m). Then any monfrivial solution #(¢) of
(3.1) has A(x(#)) < — (¢+8), and we can express #(t) by the formula

% . o0 . .
(%) =X,,.<t>%+(j_w X 1 () Zma (1) 4—L Xma () Zma (1) )(A('r) Am('r))a*'('f)df
(3.9)

where ”A(rr) A,,.(rr)ﬂ he sequence Im tends to 2670 as m tends to mﬁmte Since

J exp(a(t - <a+s>w>da~) 0<exp<-at>>
Lﬂ= o(j exp(——a(t - (a+s)rr)d¢) O(exp(—at)), ‘
we have X,,,(t)a;o—— ,,,i(t)wo N o ST AT R
By Lemma 3.3 and its Corollary, ml(t) and X ma (t) satisfy (3.8) with kn (o)
and %,(c) bounded, and it is easy 1o prove that 1n (3 9) Xt (t)wo does not vanish,

When () is the nontnvml solutlon of (8. 1) Tt means tha,t the rank of X ml(t) =k,
Slmﬂarly we have MX ma (t)) >a, and the rank of X ma (t) >n lc S0’ tha.t N (m) la

3 \‘

when m is large enough.
Proof of Theorem 8.1. We may suppose "i:ha.t X (0)¥>X '(O),‘ wnfe‘h’lirhplies that
X, (#)—>X (), whioh is a fundamental matrix of (3.1). Since
| X () Zus () | <hm(a)oxp (—at—s)) <Ksoxp(—a(t=s)), ts,
| X3 (8) Zima () | <o (o) exp (a6 =5)) S K goxp (a3 —5)), §=>t,
letting m tend to oo, we obtain B
| X2 Zs) | <KoeXP(—a(t —s)), t=s,
[X2(@)Zs(9) | <K06XP(0‘(75 6‘)), >
Theorem 3.1 is proved: completely ' o

§ 4 The hull H (A (t))of A (t)

Deﬁn1t1on 4. 1 We call the set ) f matmces S
HA®)={B® |BE = hrnA(t+h,) umfomzy} "



NO. 2: " Almost Periodic Linear System and Exponential Dichotomies 141

as the hull of A(%). ERA R
Lemma 4. 1. Supposs that 11mA(t+h,) B(@), hmA @(G+h,) = m(t) and llm

An(@) = A(t) uni formly. Then lim B, (t) =B(%) umformly.

 This result is obvious, so that the proof is omitted.
Theorem 4.1. Suppose that (3.1) has no zero characteristic ewponent in the exten-
sive sense. Then for any B() € H (A (%)), the linear system

do

| & _B»)a 4.1)
admits an exponential dichotomy.

Proof Suppose thatb hmA (#+h,) =B() uniformly; and X () is the fundamental

matrix of (8.1) satlsfymg the mequa,hty (3.6). By lemmas above—mentloned (8. 3)

has the fundamental matrix X ,,.(t) sa.tlsfymg the 1nequa11ty (8. 7) with Ic,,.(a) boun-

ded and _
||Xm1(t+h,)Zm1(s+h,)||<Ic,,.(a)exp(——a(t s)), t=s;
“Xm2(t+hr)zmﬂ(s+hr) | <Em(a)exp(a(t— —s)), s>t

We have lim X ,m(t—l—h,) W,,.,(t) 11m Z,,.i(t+h,‘) Um(t), =1, 2,

r->00

where W (£) =Wm (t) +Wm2 (t) is the fundamenta,l maitrix of the lmea.r system .
2 ~Ba(®s, L (49)
and\W (s) ==U,,,1 ©) +U,,,2 (s) Then we ha.ve | S
[ s (8) U i (8) | <o () 0xP(— —a(i—9), £>3,
| W ma(3) Unma(8) | <km(a)exp(a(t—s)), s>t
with Zn(a) bounded By the proof of Theorem 3. 1, the linear system (4.1) admits an
exponenmal dlchotomy Theorem 4.11is proved completely

'§5. The spectral theory of almost B
. periodic linear systems

Suppose that A (%) is the almost periodio matrix in (3 .1), and risa real number.
If the linear system

A — 7\.E)m - G.1)

admits no exponential dichotomy, then we call A the speo’urrum of (3.1).

~ Theorem 5. 1. (Sacker and Sell)™ If (3.1) has the strong characseristic expe-
nent, i. e., there is a fundamental matrizc X (1) = (@.(), za(8), =, z,(t))of (8.1) with
(e (8)) =M(a;(2)) = A (1)), §=1, 2, +-, n, then the spectrum o £ (8.1) coincides with
its characteristic ewponent. In geneml the spectrums of (3.1) consist of several closed
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intervals. . S
.+ This result follows. immediately from Theoren 3.1. The proof is omitted.

§6 The problem Of’Hale |

The differential system |
d—t"‘I'*"H(w: 0; Z, S),
L 40)+F(, 6, 1, )

(6.1)

has been considered by Hale, J. K., where » is an n-vector, § is a k-veotor, each
component of Iisl, A(9), H(=, 6, ¢, 8) and Fl(_a;, 0, %, &) are the periodio or almost
perib_dio fuzicitqﬁs of the components 9‘1,‘ 02,: , &y of , and continuous f&)‘r‘ all varia-
bles, Liiisohitzian for z and 6, where the Lipschitz constant of A(G) is Mo,‘ the”Lipschit‘z
constants of both H («, 6, ¢, &) and F (=, 9, t, &) are p(s) =o(1), s is the small par-
ameter, and there is a constant M such that -
I, 6,3, &)|+17(0, 6, 1, &) |<Ms,

He wished to establish the center integral manifold of that system. _

By Theorem 2.1 or Theorem 3.1, it is not difficult to oonstruct the center inte-
gral manifold (6.1). v

Theorem 6. 1. If A(6) is the periodic matriz of the component 01, Oa, =+, Oy of
0, and each ckczmcteréstiq ewponegnt of the quasi perf&odéo linear system o

%=A_(€o+t)w, for 0o fized, - (6.2)

is different from zero for all 8y, then (6.1) has the conter integral manifold.

Theorem 6. 2. If A(0) is the almost periodic matris o f the componenss 6, 6,,
*=+, Oy 0f 0, and the linear system (6.2) submits to the conditions o f Theorem 8.1, then
(6.1) has the inegral mamifold.

The proof of Theorem 6.2 is similar o the proof of Theorem 6.1. We give the
proof of Theorem 6.1 only. _ '

The proof of Theorem 6.1; Let us write (6.1) in the following form

a9
Tt_I—l—H(w: 6) t:‘8)1

dz

6.1)*
—%=A(90+t)w+G‘(w, 0, t, 8, :

where G(z, 0, ¢, &) = (4(0) = Ao +8))2+F(a, 0, t, 8). Since the quasi periodio
linear system (6.2) has no zero characteristio exponent in the extensive sengse, it ad-
mits an exponential dichotomy. Suppose that X (#), the fundamental matrix of 6.2),
submits to the inequality (1.2) « It i3 well known that the proof of the existence of the
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center integral manifold of (6.1)*'is-e§quivalént.to ‘the proof of the existence: of' the:
solution of the following integral system - - . ‘ R
o(x, 6, D=0+ I(G=t)+ | H®ds, |
LT (B.1)**
1, 6, &)= (j X1(8)Z4(5) -j Xa()Za(9) )FE)s, |
where H (5) =H (f(5), ¢ (5, s, &), F®=F6 g@), 8 8),¢6)=e6 0,0, G =
(4(q(8)) — Ao+ f (&) +F ), FE&=F(f(), ¢(), 8, 6)
Since 0 =00+, we have A(fo+3) = =A@+ (s—1)). R
By the approximate method we shall prove the ex1stence of the solution of
(6.1)** as follows: o
(A) To construet the sequenoes of vector functions fm (t 0, 8) and g(v, 0, t)
(a) Takefo(t 0, 8)=0.
(b) If fu(t, 0, &) has been determmed we take qm+1(1: 9, t) to be the solumon
of the following differential equa,tlon

& —I+H(fnls, 2, s>, 3, 7, ), dmer 5, t) 9. (6:3)

By the 5ssﬁmpt10ns of (6 1), the functlon at the right hand snde of (6. 3) is L1p-4
~ schitzian with respect 10 2, 0 that gm+1(7, 6 t)is determmed umquely Next we take

funst, 0, =([|_Xa0 2= [, T Z:®)) G,

whore Gin(s) = (A (gms1(8)) — A0+ (—1)))fn(8) +Fm(S),
gms1(8) =gms1(S, 0, £, fm(3> =fm(s, 9m+1(s): 8),
Fu(s) =F(fu(s), gn+1(8), 8, 8).
(B) Two properties of fn(@, 0, ).
(a) There is a constant K* such that: . S
Afa, 0, &)|<K*s, m=0, 1, 2 PR (6.4)

Smce | 4((e) — 4@+ (- 0)1<Mo jH(s)ds

<Ma(s+o(e)) |- sl<M*<s+p<s>>exp( % t— sl)

where M* is a constant, we can prove that (6 4) holds . by induction. (The detail is
omltted ) :
" (b) There is a positive number d(s) such thab i
[ Fm(t; 0, &) =Fult, €, 8)] <d(8) 16— 9’“
limd(s) =0, as e>0. - ...
Proof Take a positive number d(g) satisfying the followmg 1nequa11t1es
16K*M*(1+d(s)) (p(s) +¢) <d(e)

o(8) (1+d()) <o, limd(e) =0.
(6.5) holds evidently for fo(@, 0, &). Suppose that (6.5) holds for foa(t, 6, 8). We

(6.5)
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shall prove that it holds for f,, (4, 6, &) too. Since
14Can(z, 6, D)) — Algu(, &, D) [+] 4O+ (s—1)) — A0+ (s— t))l
<HUo([6=0"|+gm(z, 6, ) — qm(w 7, DD,
one hag
l2a(z, 0, ) =ga(z, &', H]< 10— 0'u+p<s><1+d<s>>[ j lgn(s, 6, )

~ a5, 9, D],
. Hq,,.('r, 9, t)— q,,.('r o, < |6- G’Hexp(4 [4— s]) Then we have
Ut 0, 91t @, N <A(|_ex(~att-9) + [} exp(ate—s))).
LUK o () +8) (1-+(e)) 00" oxp(% |1—3] ) <d(e) J0-01].
- (C) To prove the convergence of f,(%, 6, &) and an(, 6, 0.

(a) To prove the convergence of f,, (2, 9, ). Put .
L(m) ‘SuP”fm(t 0, &) —fus(2, 0, 8) l.

It is easy to prove that L(m+1) <—— L(m), so that the vector fanetions f,,, @, 9,

8) converge o the vector functlon fG, 0 s) uniformly on the real axis,
(b) To prove the convergence of g.(7, 6, %).
- Let g(7, 6, t) be the solution of the differential equation

E=I+H(f (x5 6), 7,5, 8), G, 0, 1)=0,
It is easy to prove that ‘ S
(1) limgn(z, 0, ) =g(z, 6, 1),

(ii) f (@, 0, &) and ¢(x, 6, ©) satisfy (6.1)**,.
The detail is omitted. Therefore Theorem 6.1 is proved completely.
Additinal proof of the inequality (§§). 1n §3. : :
The inequality (§§) in §3 is not so clear, we shall g1ve the proof of that as follows
By (##), we may assume that ’ '
[ XBXE) | <M (s)exp(~ (a+28) (t =8)), t=s=0, . -
MX§(E) < — (a+2s),
and take the numbea — a,,<<0, and the least positive constant &, (o, -+ g)such that
—(@+28) <~ (op+s) < — (@+8) 48 —a,>n>0,
| Xm (t)X 1(S) |<Em (a+6)eXP( (w+8) = =5)), t=s.
hen we have - :
|0 () X56) | <M ()oxp(— (a+26) (1—)) + 0 2 lcm(d,,,+s)exp(— (oo t8) »

E—1r) — (a+2¢8) (t=5))dr
S G) +1/2kn(on+2)). exp(— (am+s) (t—s)),



NO.

2 Almost Periodic Linear System and Exponential Dichotomies 145

where| A (1) — Au(r) | <gm, M (s) g,,,<l- 70, When sis fixed and m is large enough,

2

hence kn(an+8) <2M(s), and

[11l
[21
[3l
[4]
[51
[6]
[71

[81
[l

| X () X5(8) | <2M (8) exp(— (a-t6) (1—8)) <2M () exp(—a(t—)).
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