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: 1. Introduction.

Since the pubhcatlon ‘of Zangwill’s’ book “Nonhnear Programmmg -A Unified
Approch’” in 1969, the ‘theory’ of point-to-set maps ‘has come into increasing use during
the last ten or more years in papers on optimization, especlally, ‘on the convergence
~ theory of the iteration a1g0r1thms (Cf. MP Study no. 10, 1979) One of the advantages
of the approach introduced by Zangwill is that one can treat in a unified way the
problems concerning the convergence properties of algorithms. Zangwill showed that
a lot of methods can be viewed as applications of the fixed point method 1€ (),
where I' is a point-to-set map depending upon the glven partlcular algorlthm

- Huard (1975) made a research on Zangwill’s results. He designed two models of
algorithms (Algorithms 4.2 and 5.2 in his paper), and proved that these algorithms,
under some spec1ﬁed conditions, can be viewed as special cases of Zangwﬂl’s model.
Therefore, Zangwﬂl’ s results can be applied to these models. The advantage which
Huard’s models have over the Zangwﬂl’s is that it can be used more easily to decide
whether a given algorlthm belongs or not to these models, and, if it does the converg-
ence property follows as a consequence. :

Denel (1979) introduced a p—deoreasmg family of point-to-set maps and ‘extended
Zangwill’s approach from another point of view. In his paper (1979), Denel introduced
many notions such a8 monotone decreasmg family, uniform regularlty, pseudo upper
(lower) contmulty, etc., and several algonthms He proved that his algorlthms have
' some ¢onvergence propertles if certain conditions are satisfied. Denel claimed that his
algorlthm A} leads to the samne sequence as those produoed by the algorithm 4.2 glven
by Huard (1975) ‘However, ‘we find that When the sequence {ya} (Cf. Denel (1979)) is
given, thé sequence produced by 45 is only a part of those produced by the algorl’ohm
4.2, because the parameter [ 1ntroduced in A’ has mﬂuenoe on the sequence. Therefore,
Huard’s algonthm 4.2 can 1ot be said to be a spécial case of 4. However, as pomted .
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- out by Denel (1979) through two examples, with his algorithm Aj, one can modelize a
lot of well-known methods that can not be modelized with the classical approachs, so
Denel’s approach- is, in & sense, a further development of the classical ones.

Huard (1979) made an. extensmn of Zangw111’s results, but he did not show what
is the use of his result.

In this paper we introduce a p-increasing family of point-to-get maps, then define
two algorithms and show that under certam simple. conditions every accumulation
point of the sequence generated by these algorlthms belongs 0 a well-defined set,
Then we prove that the results of Zangwill (1969) and Huard (1975) are divect conse-
quences of our results We prove also that Huard’s algorlthm (Proposmen D (1979))
is convergent if our conditions just mentioned are satisfied. To show that our approach
is a real extension of the classmal ones; ‘We prove that the convergence of linearized
method of centers with partlal lmearlzatlon, ‘which, as Denel showed could not be
modellzed w1th the classmal approaehs, isa dlrect consequence of our. results

2 Notatmns and Deﬂmtlons o

The followmg notatlons are used throughout thls paper: '
N-{4, 2,8, -} |

; ".VECR” a eompact set
’ .@(E), set of the subsets of E’

.y oV (@),a relatlve ne1ghb0urhood of @, 1. e, V(w) B ﬂ U (x) Where U(a;) is a
euohdean nelghbourhood

E° the interior of E ‘ .

{F (2) | p>0}, an 1nereas1ng famlly of pomt-to-set maps F (a;) E’—>.@(E) » 1oey
tﬁe famlly satlsfymg : o

Fo(@) P (@), sz/P1>0 Ve B

QCR” a glven sot, .QD{w[a:EFo(m)}, o

P= {XEEIwEQorFo(m) ¢} :

} Deﬁmtlon A point- -t0-set map F E—)@(E) 48 sa’bd to be upper contfmuous (u.o.)
at «C H, if for a/ny g@wn sequence {mk € H, EEN }—>ar; and sequence {y,, S E’ k EN }—>ry
,satosfymg WEF (), Vi EN, we hcwe yeEF (w) ' _ ,

. F 1s saud 1o be upper contmuous on. E if 1t 1s upper oontmuous at every pomt of
. Definition. 4 pomt to-set map F: E——>9(E) is sa/bd to be lower contzmwus (L o. )
!at 2€ B, @f foa~ any sequence {©€ B, kEN }—>w and any yE F (a;) tkefre exists sequence
‘{y,,e B, k € N Y=y and, positive fmteger ko such tbat Y€ H (), Vlc>lco .
 Fis sald to be lower oontmuous on F if it is lower continuous at every pomt of
& i
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Definition.  F is said to be continuous on B if 4t is-both wpper and lower continuous
on E. . . . 3 L

3 Assumptmns and a Fundamental Theorem.

“We make the following" assumptlons : el
Hi: If p,—0, &,~>20, 4,€ F,, (%), 4~>Yo, then we have yOE Fo(ao): - :
H2: There exists a function 4(+) continuous on & having the following property:
If for.some p=0 we have '€ F,(a)- a:eF (w), where' a;eP “then " we ha.ve h(w’)>
' h(a:) £ TS SIS S
- Theorem 1.: TUnder the assumptions H1 and H2 tiwa‘e exist, for any gwen woe
E\P, V () and po>0, such that
' - h(@")>h(@o), Ve'€(BE\P)N V(wo), Vw"GF,,,,(w’)
Proof Assume that the conolusion'is false. Then for' any ‘given’ monoi;oiflelf;'7
" decreasing sequence {p;} of nonnegative reals converging.to zero, there exist sequénces
{a}} and {2{} with o €E\P, o} € F,,(«}), Vi€ N, {a}}—>a,, such -that h(a}) <h(zo);
Vi, By assumptions, B is.compact, so.that there exists' N’ N -such that {af, i€ N’}
—>a§. By H1, we have ;€ Fo(@o). Since A is continuous on ', we have h(wo) <h (o)
On the other. hand,; by H2, we have ‘h(ag) >k (a;), since: #6&E P, 'I‘hus we have a
. contradietion, :
Corollary 1. Under H1 and H2, for @€ E\P, there ewist V(xo) and po>0,
such that h(a'")>h (o), V0<p\po, Vo' € (E\P) NV &y, Va'"EF,(2),
‘Proof This is‘a direct consequence 6f Theéorem 1 and the menotomclty of
{F I3 l P> 0} ‘

o i ‘ 4 Algonthms _ IR :
Algorithm Al. Let xOG E be the starting pomt ‘and {p,.} bea g1ven monotonely

decreasing sequence of nonnegative reals convergmg t0+zero,
Step n: :
if 2, € P, then stop;
if F,, (@) =0 }, then {wn+1=wm
or 2, € F,, () Pa+ 1P
if F,, () 0 }th ' { choose Dps1 € Fpn (a;,,),
*and @, € Fy, (@); o Pn+1<—pn, : '
End of step n, '

5. Convergence property.

Theorem 2.: Let {p,} be'a given onvtonely decreasing sequence converging to zero.
Then, under the assumptions H1 and H2, algorithm Al either-constructs: an infinite
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sequence having dll its accumulation poinis in P, or. terminates at w’n, &P in'.a finite
number of steps. ‘

Proof Obviously we can suppose @, E P, VnEN By the definition of {a;,,} and
the agsumption H2, it is ‘evident that {h (@)} is & monotonely inereasing sequence, so
that it has a limit. We have F,, (w,.) #+0,Vn€ N, otherwise there exists an » for which
F,, (»,) =0. By the nionotonicity of F,,, we . have Fo(m,.) (0, this means. a;,.EP and
eontradicts our assumption. . sl P A

Let {a,}y—>a". Without- loss of generahty ‘We assuie ,& F,,n (w,,) VnE N If it
is not so, then there are only two possﬂolhtles :

- (i) -From somse ng onwards.we havé ,EF,, (¢,), Vn& N’. In this.case, by Hl
we must have 4" € Fo(2*), and the Theorem holds; : . :

(ii) There is-an infinite sequence N''C N’, -for which «,E F,, (a;,,) In this case,
we replace: N' Dby N'without: violating the: limit of {@n} . . :

. Now- assume that o* € P. By Oorollary:1, there exist .V (") and: po>0 such. that
}?!(f!’.") >h(a®), YO<p<po, Vo'E(E\P)NV (a*), Va" € F,(2"). Therefore; there exists
70> 0. such ‘that b (@pe1) >h(a"); Vo=ne+1, n €N’ and G-F,,,, (). Since {h(x,)}
is a. monotonely increasing sequence' we have h(@,).=h (@p,2) >h(@"),;, Vr=ne+1,.

- By the continuity of & (#), we have A(z") >h(m*), a contradietion. .So. we must
have 2*EP, T e

i e T

6 Apphcatlons of Theorem 2

In' this: sectlon We, W111 prove that Zangwﬂl’ s theorem and I—Iuard’ s theorem (Prop
4.1, 1975) are special cases of Theorem 2. '

Zangwill Theorem Let ECR be compact PcE be a given solution set, F: E—
.@(E) be a poini-to-set map, and f:- “H=>R be a continuous functfwn. Suppose

(i) F(z) 0, Ve € E\P;. el T e -

(i) F isupper continuous.on B\P;

(iii) f®)>f(), VYEF (), Vo€ B\P,

Let A be the algorithm defined on E:

Starting value: x,E H;

Step n: if x,E P, then stop;

of v, € P, take €1 € F (a,),

Then A either constructs an in ﬁmte sequence having all its accumulatfum pofmts in P
or terminates at an x, € P in a finite number of steps. :

Corollary of Theorem 2. Zangwill’s theorem holds. _

Proof Let, in Theorem 2, F, () be ehzdependent::of p, i. e., F(a) =F (&), Vp=0.
Assumption. (ii) implies that H1 holds, Assumption (m) implies that H2 holds (in
this case, we take h(z) =f (w))
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Huard (1975) proved the following Theorem: (Prop 4, 1)
Let TR, be compact;
h: R"—>R be continuous;
4. E—>P(E) be a poini-to-set map such that
(i) 4 is continuous on F; o
(i) o€ 4(z), Vo€ B
. g: B x E—>R be continuous; ST
My (2, &) ={y€ A@) |9(y, @) > max g(z, .@) —s},
" The function ¢ is supposed such. that Tl
Ve, &) EEXT, VY€ M,(z, &), g(x m) <g(y, a;)==>h(x) <h(y)
The algorithm A is defined by:- ' :
Starting value. a;oE B, {s,,}CT be a given non-increasing sequence converging
to zero. : R : R
~ Step n-: [if a:,,E M, (@, _s,,), then D1 =Ty, Eny1$Cn, . - ,
if 0, & M4 (@n, &), thon @ns € My (@, &), s,.'+1<—su. SRR

Huard Theorem (Prop. 4.1). Under the assumptions given abo've efuefry acou-
mudation point o* of the infinite sequence genefmted by the algorithm A belongs to M 4 (",
0). e : -

Now we are going to prove ﬁhét' fhe_ 'thépre:'rd: dbcj_{re is a special oase of Theorem 2,

Corollary 8. Huard Theorem (Prop. 4.1)holds,

Proof Taking F,(z) =M,(=; 0), P={aCE|Fo(#) =P or € Fo(x)}, we only
need to prove that under all the assumptions given above; fam11y {F; (a;) | p>0} satisfies
all the requirements of Theorem 2, : : AR L :

Tt is easy to prove that F,(z) #0, Vp>0 Va;E H. Namely, A(a:) is mon- empty and
compact, g(y, ) is continuous in y, so for any wGE and p>0 there exists 4o € 4(x)
such that g(yo, )= max g(y, o) — p ‘ R

(i ) It 1s obvlous that {F (zv) |p>0} isa non-decreasmg famﬂy of pomt-to -set
'maps : .
(‘i1 ) H1 holds. Let.p,~0, z,—>o, y»EMA (@00) , Y—>Yo: g(yv, %,)> max g(y, %)

—p,. Then, since 4(x) is (upper) continuous, we have 9o € A(wg) . Now we .are going .
to prove ' : ‘

9@, wo) = max 9(‘.11; o).
Namely, ]_'f g(a:o, yo)< max g(y, wo), t_here exmt e>0 and y1€ A(mo) such that

g(ryo, %) +8<9 (Y1, %o)- Smce A(w) is (1owe1') continuous, there ex1st 9—>Y1, y,,E
»,;A(w,,), V€ N. From this we have - : : ~ S 7

9y, @) =g (?lv; wv) —Py, '
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Since ¢g(y, #) is continucns; we have
9o, %) =9 (ys, o),
a contradiotion.
(ili) H2 holds. This is a direot consequence of the deﬁnltlon of F (cv)

7. Another Algorithm of Huard.

Huard (1979) proved the .following :

Proposition (Prop. 0). Let ECR" be closed, Q=P E. Lot Fy and Fy: (F\Q)—>
P(E) be point-to-set maps such that F13Fo. Suppose that for all wE B \Q ‘we have

(a0) Fo(x) +0, .

(Bo) #’ € (BE\Q) NFy(x)=>F, (w’) CF, (m) and

(%0) if € P; then there exists ¥ (#)such that

@€ (B\QNV(2), «"€ (B\Q) NFo(o)=20EF: (@),

Then every accumulatmn pomt of the sequenoe {a;;,} generated by the followmg
algonthm A3 belongs to P:
Algonthm A3.

2o € B
c . swER@),itagh
. amER@) Ui £acP\Q
, : L=y, if weéQ.
- 'Now we are going to prove-the following |

Theorem 3. Assume that F, is upper contimuous on E\P and PD{mE E|ze

- Fy(2)}. Then the assumption v, in the proposition memtwned above is a consequence of
the other assumptions. S :

Progf If the conclusion is false, then there ex:st {a;,,}——)a: 2,EB\Q, V¥EN, and

E (E\Q) NF, (a:ﬁ,) such that o€ F,(a]), VvEN. Therefore for a fixed » there exists

sequence {y,,,} with 11m y,,,—a: and ¢, € F, (m’), v y Tt is easy 1o see that there exists

sequence {y,,, } with 11.m Y, =@ and y,, € F (), Since o, € (B\Q) N1 Fo(a),), we have,
. by (Bo);, Yn,, € F1(a,). Since Fy(x) is upper contmuous we have € Fy (), a contra-
diction. So we must have € F (v),
Remark 1. In the proposition mentioned. above, 1\t\has been implicitly suppesed
that PO {z€E Iwe Fo()}. Namely, if there exists @, such that @, F, (:vo), 2 E P,
'then taking =4’ =" =a,, we have, by (7o), o€ Fa(wo (@0) . Therefore we have woe ‘
- 'Fo(@)., a contradiction. : :
Remark 2. " Since. in Algorithm A8, we have two sets P .and @, Theorem 2 cain
not be applied to this case. Theorem 8 only shows that, under our assumption, every
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acoumulation point of the sequence {a,} generated by A8, according to Huard’s (Prop:
0), belongs to P, B ' TRt AR '

| 8. Algonthm A2

Now we 1ntroduce the following assumptions: SED
H3:. {4,(z) |p=>0}is a ‘non-increasing (in p) family of pomt-to -set maps; .
 H4: if p, 0, 2,20, Y€ 4,,(,), Y;~>Yo, then Yo € do(@0) 3 b :
Hb5: if @€ B, 4o(20) aé(b then there exist V (#s): and po>0 such .that. A (a;) %{D
V0<p\Po, V2 EV (@0).. : : ,
Notations:
M- {weEIAo(fv) -»,
M2= {wEE[E} 2€ Ao(2): Fola, 2) = ¢},
M8={sCE|F2E d(2): 2E Fo(m z)},
M=M1yM2UMS,
. P=M1yM2UQ, QDOM38,. TR R S
Algorlthm A2. Let € E, Let {p,} and’ {p,,} be two glven non- decreasmg
sequences of non-negatwe reals eonvergmg 40 zero.
Stepn:  if 2,€ P, stop;
Phase 1: - if 45, (,) =0, then Zui1==%s, Pat1<Pns Pr1<70m
S i A, () #0, then 2.€ 4, (#0)s. I
- Phage 2: _if F; (2, 2a) =0 or 2,€ F,;, (@, z,,) ~then - . .
By 41.= Ty, . Pt 1< Py Pn+1<—'Pm A R
if F,, (@, 20) =P and @, € Fy, (n, 2), then
Tas1€ F oy (@ny 20) 5 PritPry Pasa€Pii =0 o R
Theorem 4. Let {F,(, z)|p=>0} be a-non-decreasing (:m p) fam'bly of po'mt -10-set
maps (F,(w, 2) is & map.of (@, 2))and satisfy H1 and, H2: let: 4,(w) be a non-increasing
(im p) family of point-to-sei maps: and satisfy.H4 and H5. Algorithm A2 either stops at
a step k with @€ M or generaies a sequence {wi} with all-its accumulation poinis in M,
Proof - It is.obvious that we can: suppose &M, Nn€ N, In this case, we have
€Y  do(w,) #0, VREN, '
(2) o Fo(@, 2) £0; V2EA(2,), VREN, v
. From this we oonclude that if 4,, (@) : #Q) then . Fo (a:,,, z) #PVz€E A,,, (w,,), and there-
- fore, Iy (@ 2) 9. S e fok
.- Obviously; {A (wn)} is'a monotonely inoreasing sequence. Let {a;,,} >t N'CN.
If 4* € M, then 4,(a*) +@. By H5 and (2) there exists 7o such that 4,,(z:) #0, 2.€
4, (@), Fop(@n, %) #9, V=00, nEN'. As in-the proof of Theorem 2, We can assume -
TaC F oy (%ny 2), YREN'. Namely, if it is not so, then there are two possnblh’mes
(i) From some n onwards, we have #,EF (:v,., %), VnEN’, Since H is compact,
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- by H4, there exists N''cN’.such that {z,}y—>2* €45(a”); then by H1, we have z*€
Fo(a, 2¥). Thus we have 2"€ M8 M, and the theorem holds, o
(ii) There is an infinite Sequence N''C N’ such that 2, & F,, (,, %), VREN".In
this case, we replace N’ by N" without vlolahng the limit of {@u}w.

- Since E is compaot, we can assume {z,}y~>7. By H4, we have %€ 4y(2"). Since
o*€ M, by COorollary 1, there exist V(a", 2) and po>0 such that & (&) >h.(m*),
V@, ¥) €V (2", 2), Vo' EF, (2, ), V0<p<po: Thus thereexists n, such that’ (@,41)
>h(@"), ¥ @11 € By (. 2,), Vnzno+1, n€ N, Since Ak ()} is'a non-decreasing
sequence, we have A(,)=(®y,+2)>h(a*), ¥ n>no+1, n€ N, Since & (a) is continuous,
we have k(2") >4 (2"), a contradiction. Therefore we must have a*€ M, -/ i -

9. Applications of Theorem 4. -
Huard (1975) proved the following theorem (Prop. 5.1):

~ Theorem. Lot A R" be closed and B—R" be convexr compact such that AN B+0.
Let TR, be compact, f: R>R continuous, 4: B—>P(B) upper continuous on B, 4(z)
#0, Va € AN B, g: Bx B—>R continuous - L e

M (2, 2, &) ={y€ [a, 21|g(y, 2)> max g(w, o) —e}, « -
Suppose that : e RS
(%) M (@, 2, e)NANB+P, Vo€ ANB, Vz€ A(@), Y e=0, and that
Vo€ ANB, V2€B, V€T, VyeM(s, 2, &), g(z, «) <9(y, m)=f(2) <f(v).
Then the following algorithm either terminates at.q Jinite step k-with o€ M or generates
an infinite sequence having all its accumulation points in M, whers
 M=ANBNM(w, 2, 0),
Algorithm Ad4. z,€ANBis arbitrarily given. .-
- Step'k; We have ;€ AN B, and choose: 2,€ 4(az), es€T . = . .
. L e CANBNM (an, %, &), if o EM (@, 2, &), - .
: - Tyry =y, if o €M (ax, 2, &), )
Now we are going to prove the following e S :
Theorem 5. . Huard’s theorem above (Prop. 5.1) is a special case of Theorem 4,
Proof Set e T ’
E=ANB, 4,(z) =4(z), Fy(z, 2)=ANBNM(a, z, p).
~Let {p,} be a non-increasing sequence of non-negative reals converging to zero. Then
we want to prove that, under the assumptions given in the above Theorem, all the
- conditions of Theorem 4 are satisfied, and that ‘Algorithm A4 is a’special case of
‘ Algorithm A2 - - .- . - . . R TR VNN A DA
( i) It.is obvious that F, (z, 2)is a’'non-decreasing family (in p),
(i) From: (x) we have F,(@, 2) #0, Vp=0, Thus we have Mi=M2=0 .
- (i) Obviously' [, 2] is a continuous map ofi(z, 2), so the part (ii) in the proof
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of Corollary 3 is also offective in this case. Therefore H1 holds.-
(iv) H2 follows immediately from the definition of M (z, 2, ). RS
Trom the fact that F,(z, 2) +0 and A(z) #0; VYo€ ANB, we see immediately
that Algorithm A4 is a special case of Algorithm A2, T
Denel (1979) has cited: two ‘examples to show that: .his " algorithms have more
applications than those given by Huard (1975). Now we show that Theorem 4 is also
applicable to these examples As the arguments are quite gimilar, we only discuss the
first one in detail. s _
Example Linearized method of centers with pasrtlal 11nearlzat1on (Huard(1978)),
The problem t0 be solved is : o =

. max f(@)- ;
g. t. g,(w)>0, =1, s+, m,
) v @€ B, R
‘where the functions are, coucave, gontinﬁgusly differentiable and B is a compact
ppl‘yhedron.’ : QAR S o ra s T .
" Denote-

A= {w]g,(w)>0 i= 1 m}, .
‘We suppose that A° B+0, R '
For a given g>0, denote
d. (z, ) =min {f'(z, z)y—f (@), 6 (2, ), €1, (a;)} where
72, 8) =f @)+ V@) (=2, . |
6@, o) =g:@) +Vg(@)- «(z—w), i=1, »
L@ -fel, - m}lg.(w)<e}, o
4, F(@) —min (&) —f @, 6@, i=L e mh
By “linearized method of centres with- pa,rhal hnearlzatlon we mean the follow-
ing two-phase algonthm - :
(1) Fora g1ven w,, find 2, such that
d., (z,,; @,) = max d; (2, w,,),

(2) For given , and 2,, find @,41 such that ;-

0 (@0ry f(w,» max d(, f@))

t G [wv.zv]

For ﬁxed p>0 we define
4,(x) = {ZEBId’ (z, &) >d, (% a;), VtEB}
4o(@) = {2€ B|d, (5 2) >4, f(@)), Vt€ B},
Fy(o, )=WE s z:\ld(fy,f(w))> max d(, f @)= pr,

| Fole, 9= WE b, A1, F@)> mx G, F@)).

Now we are going to prove that families {A (a;) \p>0} and {F,(=, 2)|p=0}
satisfy all the conditions in Theorem 4: '
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( 1) {4, (a;) |p=> 0} is non-moreasmg in.p. In fact; for any concave funotlon (@)
Wehave T i ‘ ' : »
= ' ¢(t) <p (fv) +Vp (w) (t m)
and therefore

46, £(a)) ~min O -1@), 0@, im L)
<min {f'(3,.9) —f (2), 9: @, a;) b= 1 ., m}
- <min{f'¢t, 2)~f (@), g, G, %), i€1, (w)}
=d, (3 ),
From. this we have 4, (z) ¢4 (@), -

(i) {4,(2)|p=0} satisfies H4. B T I .

Proof Let 2,7, 2,7 and d, (z,,, z,) = max d.(4,.2,), Now we are going 1o prove
that z=4,(z), or '

d (z, w) >max d(t f(a:))

Tt is known, that d. (z, w) is an upper sem1oont1nuous funetion of (z ) and that max

{d @, f(@)) |#€ B} is a continuous function of # (Of. Denel (1979), p. 64). From this

we have Fe e Doeh ot sty o

Im i, &)<d(, 7).

8o we have only to show L Tln g
lde (2, 2,)>d (8, f(a:)) VtGB

By definition of z,, for all tG B we "have o
e (2, 2,) >d(t, @,) e
=min {Vf (w») <), ACH) +Vy. (2,) « (t wu) $=1, -, m},
Smoe 1{ f (#,)} is a non- (ieoreasmg family, we have '
' F@,)<f (%), therefore the above expression -
. =min {f () —f (), g; (t) =1, " m} d(t f (ﬁ))
This is what we want to prove.
(i) F (a: 2) ig obvmusly non-decreasmg in'p
(iv) H1 is a direct consequence of Theorem A15 in Huard .(1975). -
(v) H2 follows directly from’the definition .of Fo(o, 2),
(vi) Evidently 4,(z) +0, 4 l, (@) aé(/) Vo€ dn B, so we have H5, :
(1)—(vi) indicates that oondltmns H1—H5 in. Theorem 4 all hold Therefore all
the accumulation pomts of the sequence {w,,} generdted by the algorlthm belong to
T {a;EAﬂB]mGFo(a: 2), zEAo(w)} »
- Now we are going to prove that, J_'F € T then @ is an optunal  solution of the given
problem (following the way of Huard (1975) p 325) SEE '
Since € Fo(z; 2), we have . o
d (, f(w))>d(7} f(a:)), VtE[a: z] or
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min {0, g;(®), i=1, «--, m}= min {f () —f(2), ¢:(t), 4=1, -, m},
Vi€ [, 2].
. From this we have, Vi€ [z, 2]
, min {f#) +f (@), 6@, =1, «, m}<0,
Therefore, we have

min {f(#) —f (o), gz(i), i=1I, (w)} min {f @) —f @, yc(t), i=1, «, m}

<0 if ¢ is sufficiently near to o, @
Now we are going to prove that - _
min {Vf(®)+(z—2a), Vg (@) (z—2) +g:(2), i€ L1, (2)}<0, ®

If, on the contrary, (2) is false, then there exists b=0(z, 2) >0 such that
| Vf (@) (2=2) b, 9:(a) +Vgi(@) + 2—2)>b, Vi€ L (@) - 4
Let t=2+4+A(z—2), O<A<1. Since f(?), '¢:(#), t=1, «+,'m are all.continuously
differentiable, then, by mean-value theorem, there exist 06, @;<<1, svich: that
F @) —f (@) =AVf(a+Or(z—2)) « (z—2),
9:(®) =9:(@) +AVg;(e+0A(z—2)) « 2—2), ViEIL (2),
Thus, if A is small enough, we have
HOES (#)>0, g:(#)>0, Vi€ I,(x), which contradicts (1),
Since z€ 4o (), by (2), we have
‘min {f(t) —f(2), :(®), i=1, -, m}
<min {f'(2, 2) —f (), g/(z, »), i€ I, (2)}<0, VIE B,
From the inequality, it follows immediately that
FEO<f(z), Vi€ A°NB,
Since A4 is convex, f() is continuous, we have
F@<f(z), Vi€EANB,
This is what we want to prove.
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