‘Oonstruet a group H;(m) as a direét sum-
4%, being an 1somorphlsm of 5 H; 3 into H;(m). For brevity, 4}, is written as 4*. Let

‘ be a homomorphism' sﬁoh that -
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A finite simpij?' contiested 4-'dirrien§ioi‘1a1 polyhed:rc)n' is denoted for brevity by

AZ-polyhedron. To such a polyhedron there is an associated cohomology ring consisting

of cohomology groups -and- Pontrjagin square™, A one-one correspondence. between
the homotopy types of this sort of polyhedra and the -properly-'isom'Orphic classes of
cohomology rings has been well established by Whiteh'eadv J. H, C.%, Howeyer, the
proof seems to be very difficult. The purpose of this note is to 1ntroduce Az—homology
o-ring and give'simple proofs of the following two’ Theorems:

Theorem 1, If an A3-homology co-ring H is given, there exists an Az—polyhedron
whose homology co-ring is properly 'asomorphfbc to H,

The polyhedron in Theorem 1 is said to reahze the given A2—h0m010gy co-rmg

Let H and H’ be two Az—homoloory co-rings roalized by K and K’ respeotlvely
‘We have .

Theorem 2. If h: H>H is @ proper. homomorph@sm there 8 a contmuous map
¢: K—>K’ such that & indudes h, ‘ ' o

These two Theorems imply a one-oné oorrespondence between the homotopy types
of Az—polyhedra and the proper 1s0morphlsm olasses of A2—homology oo-rmgs

§1. ~Algebra1ic Prelimi‘naries. -

Let H;(i=2, 8, 4) be abelian groups !'of‘ finite generators; where H, is free. To
each integer m:>2, there is a natural projection pm,o: He>(H)m=Hi/mH($=2, 3,
4). As usual, ,H; denotes a subgroup of H; such that a€ »H; if and only if ma=0,

H;(m) = pm,oHi+4nHy g, - @

A Hc(m)—’Hi—z o

Manuscript received December 18, 1980
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47(0) = pm,o H,, , €)

, A8 | H, =1,
Let a homomorphism G
it H(m)—>H,Q)
be defined by . R . .
1, om0+ 2] -=m,o((71—) z) + (G s y), 9€ H, y€uHis, ()
where (I, m) denotes the greatest common d1v1sor of I and m,
‘Suppose Hy= 2 Z.(cy),; where A is a finite ordered sob and Z, (o-a) is a oyclio

group of order ¢,, which may be zero. An abelian group (see Whltehead, J. H. 0.‘3’),
I'(H,) is so constructed that it consists of the elements of the form

aﬁeaﬁ .
a<4@chA * 22

.where é,,; is a generator of order (c., @) and a,,5€ Z ((o-.,, a,g)) a cychc group -of

order (o.,:04) if a B, while €,,, a generator of order (03, 204) and @, € Z,((c2,
20.)), a eyclio.group of order (o3, 20.) if a€ A. In.case a3, we assume 8a,8=€5,4-

The group I'(Hy) is called the homology module of Hj,

Let f: Ha—>H} be a, homomorphlsm where Hi= Z Zg (o‘,e) A’ bemg also -a finite

ordered set. Then *
f(ga) = 2 ba.ﬁg’ﬁJ

in Whlch Ja and g’a denote generators of H 2 and H A respectlvely, a,nd ba, 5 aTe mtegers

usatlsfymg

O'Gba'g—o mod OJB, \

'Let T(H ’2) be the homology rnodule of :Hb. There is a homomorphlsm

I'(f): I’(Hz)—ﬂ’(H)
deﬁned in correspondence w1th f+ H 2—>H 5y by

I'(f)( 2 aage‘,'ﬂ)__ 2 a;;ﬂf<f)6a3, ¥ ESR SRR o

and "
T(f) ea,fs.': 2 B ~ba,ubﬁ've;i.i+;§ ba.ﬂbﬁ.udmm (5)
I'(f)ea a™ 2 b Be,,e .6‘+7<. ,')ZcA b .')'ba'ae'}’ 5’ _

Where the occurring . eoefﬁclents are well defined accordmg 1o the followmg Lemma or
its similar arguments T e . L . e
Lemma 1. If a,,; is a reduced mod (o-,,, 0'5) mteger then a,, Bba, ub,g,, is a. fwell

defined mod (o), o)) integer. . -

Proof - The integer a,,. may vary by a multlple of (0',,, 0s). The integers’ basu

and b, may be written as ( G )

+Zcr,,) and( s0% +lco‘,,) respectlvely, where
( O3, _u)' ; s

r, s, I, k are integers. Then
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(Ga, 5+5(00, o‘B))( “’»ﬂ) +ch)( G 8’ +IcoJ)

= (a5, 00 (225 Gs), moA(G .

(o-ﬂ; O",)
Since 0',,/ (o-,,, o’,;) and o/ (o-a, 0'3) are relatlvely prlme to each other, ‘there are

mtegers p and q such that

+ =1,
: P (Ger 0a) 1 [CHRNE

Theref‘ore- | AR PR S S R
e oG sy) |
=1(0., O'B)( c Uaaﬁ) = 0'3))( T 0‘,,) ( ('O_B, o-,,)>_0 mod (¢, o‘,,),

bacause ¢,/ (0a, 0,) and s/ (04, o)) are integers. Heneo a,,',gb,, “bﬁ', are determined

mdependently of the different choices of the representatlves of a,, 8 b,,, “ and b,g_
Similar arguments for other cases are ‘omitted. - -
Though I'(f)is a homomorphism, yet I"(f+ g) *I'(f) +T (g) we have
Lemma 2. I'(f) 4sa covariant functor.

This is evident after computation” or geometrio reasoning by keeping in mind
that €s,5(a# ) aotually means Whitehead product and é,,, a map of Hopf invariant
1 (See §2). : :

Give a set of homomorphisms

Vmt H&(”"‘)"’(T(Hz))m: m= 0 2,3,

so that _ : ;

Ypﬂp}dl Hi(‘l) =P°p'.iq“}’q; o o o - ®

et (D(HD) > (T, o

o into (I"(Ha)),, if & represents an element of

in which

means the pro;ec’slon of

(p, )
(I (Hy))q. Evidently it is independent of the choice of o in its. class. A homology

co-ring® containg groups, which are H;(1=2, 8, 4), Hi(m) (m=2, 8, ---) and
homology module (I'(Ha))m; and homomorphlsms among these groups, ‘which-are Ho,g
H(@)—>H®) @=2, 8, 4, =5 ¢=0, 2, 3, ), gt (T(HD)) > (Hn))»(@=0, 2,
8, -, p=2,' 8, +), 4t Hi(m)—>H; ,(m=2, 8, _), and Ym: Ho(m)—> T (Hs))m
(m=0, 2, 8, - -), the latter satlsfymg (6) Hereafter We use Hinvg to denote both pp,e
and p Hipa.

Let homomorphlsms f H ——>H’ (i= 2 3, 4) beg1ven They md_uoe homomorphlsms

fi(m): Hy(m)—>H;(m)

) o Hompmof o @
Film) | Ay (wH i) = B fica mBis P 8)

" 1) Homology co-ring is dual to cohomology ring in [1].

by
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Lemma 3. . fr(.p):u‘ﬂ :u'n.dfr(Q): A L 9
- C frad=Af (D) N (10)
_ G (r=2,8, - "p23--g023--¢),“
This Lemma follows dJreotly from (2) (3) ¢ : and (8) ‘

Let H and H’ be two homology co-rings. A set of homomorph1sms { f, ('m)} (m=
0, 2, 3, ---) between the corresponding homology groups of H and H’ with mteger
coefficients or with integer coefficients reduced mod m (m=0, 2, 8, »..) is called a
(s, 4)~homomorphism of H into H’ if (9) and (10) are all satisfied. The homomor-
phism I'(f3) of I'(H,) into I'(Hj) is induced by Sfo: He—>H according to (4) and
®), thh carries ,,,F(H 2) into F(H %) and produces a homomorphism

' T(fa)m (T(Hﬂ))m'_)(r(ﬂﬂ))m

If f, is an- 1somorphlsm onto, fat ex:lsts and by Lemma 2 . L

: _ f(fﬂ)T(f21) =11'(H=),' I(fs) I (fa) = 11'(112). a :
Both 1" (fa) and I’ (fz%) are 1somorph1sms onto, Hence (I'(f2))m and (I‘ ( fz ) m are
also isomorphisms onto. . . U :

If, besides (6), the fo]lowmg dlagrams '

Hy(m) 2> (I'(H))m
'l'f;cm) B B R ¢ 2
Hy(m) — (T(H D) my
‘m=0, 2, 8, 4, ;
commute, then the (;w, 4) homomorphwm {f: (m)}(m 0,2, 8, «-, =2 8, 4) and

I'(fa) are said to constitute a proper homomorphlsm of the homology co-ring -H into.
another H’, No doubt, proper 1somorph1sm isan eqmvalenoe relation.

8§ 2 Geometnc Interpretatlon of homology Co-ring.

§ 2 1. The three dmensronal skeleton of an, Az—polyhedron is able to be reduced

to . _
’ 8= (Ser (0'1)) V -V ( U33(°'t;)) sz+1VSt23+ZV"'VSt2.+p.

VSSV VSp.+t. ) . T (12)
An Az—polyhedron may be obtained within its homotopy ‘type by attaohmg four
dJmensmnal cells to K 8. Since II5(S3 U e} (01)) is the image of

K IIs(Sz)—ﬂIs(S%Ues(al))

it is necessary to compute the kernel of the homomorphlsm ¢ which is, however,
known (See Chang, 8. C."), to be generated by Whitehead product, [83, 018%] and
the composition element ¢y+h, where 4 denotes the Hopf map, §*>82, and o, is
a map of 5% to 57 of degree o3. Hence Is (S2U6i(oy)) is a oyolic group.of order
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(crl, 203). Ev1dent1y

II;(K?®) = 2 Zz((O';, 20‘1))+ 2 Za.e((o'a, 0‘3))+{bl, .- bmta}

where 0;=0, if Z=t2+1 " ts +pg, and {b1, “ee b,,,,,,,} 1s a free module of p3+t3
generators, Now ¢ - e [
' Hs (Ka) T(HE(K)) + {b1 bp4+t.},
7 heing the direct sum. Tet - .~
et pmmw@m) u o
be a projection. Let f AE—-)A’2 be a cellular map, then f mduces the homomorphlsms
S H2<A )“>H2(A2 )y
ot T(ED-T(E™, ,
where K 3 and K” are the “three skeletons of A3 and Ab? respeotlvely, so that
£\ T (Ha(4D): T (Ha(4D)>T (Ha(4D)
coincides with I"(fa).
The group lls(K?) (c1l5 (K 3)) is determmed by ta, 01, **, Oy, and ps, which
are known if we know Hy(43). Hence ill3(K?) is preferably written as I (H 2(43)).
§2.2. An A3-polyhedron K may be constructed within its homotopy type by
attaching 4-dimensional cells to K'® given by - o x
_,Be;.——.mSL—{- 2 @1,0,+8a, 75 l=1, BT S T SR
Betsr= 2 @tytr,a,48a57s r=1, P4, (13)

- Pe; being the homotopy bouhdary of e, Whlch 1mphes

oe; -—alS,, 1=1,
ae,,+,-—0 =1, /-,p,,
For convenience, S} and el are also used to denote their homology classes with mtegers

as coefficients or Wlth mtegers reduoed mod or; as ooeﬁicnents“” If a= 2 a,S, E H 3,

then rma,_.O -mod a,, =1, -, p3+t3, _Whenoe _

=, e, patts, .(14)-

= T ;0' § s
' (m 0.)
where 'r,—l s, (m, ). The group ,,,Ha is generated by aiS3/ (m; o) A= 1 1)

of order (m, o;) Though 4* is not unique,yet a speoml one may be defined by

oS3 .
4 ( o8 )~ o (15)
- (m, D) (m az) d
because
) ‘ 3
2) Hereafter —— ¢; also denotes a homology class mod-m and §f_ a homology class mod (m, ).
( o) ( )

3) It is eyident tha.t ¢ may vary by a linear expression %u;,.,e,,,,,,, Where u;, are mtegers it (16)

is required to be valid. It tells that 4* is not‘unique. See § 2 of Whitehead, J. H. C. W for its cohomology

version.
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AmA 0‘1 1 =A 1 =9t — o el . 1 )
<(m 0';)) (('m, 0';)) (m O'z) Sb . .l . 1’ ’ ts.. o {19
From (15) it also leads fo ‘ TN '
) / S o e e ' c-‘ B % '
mA; al L - e . m— iy
(Mp' ( m, 01) Mp' ( m, O'z) (P; m) (m, 0‘;) 4. . I
R G AT AT 17
((P, m) (m crz) ) R (-e‘)’

in Whmh I remark that p( @ m) )((—E—T) =0, ‘mod o;. From (17) and
2: m, oy

e )H.) s

it is shown that (8) is valid 1f b= 4 To complete the venﬁcatmn of (3) i is stlll
necessary to consider the oases that i=8 and i= 2
A formula similar to (15) is '

<(m or,) ) ( 3 (a,), ¥ “ Los : : (19)

because it is easy t0 verlfy A A* '—1 and

o * mo,
M”'mAm<(m,la'z)S) A(((p m)(oln o-,)) )
If ¢=38. formula (3) is able to be verified-in the same’ way ‘as the ocase when §=4 by
use’ of (19) in place of (15).. The case 4=2 is simple, because .
H, (Az, ,) .U'p.oH.'a (Az, Z)

This finishes the verification® of (3). .

Lemma 8. Iet g faur-dzmenszonal szmply connected CW-complem K be given by
(12) and.

'B —O’AS?'—}- Z ah.a.'yeﬂ.'r; }\: 1 , Tt e (13)
then a;h.a,q, s are detefrm'med mod. o, fwztkm the homotopg typ 5o f K G o

proof Let g: S5—>S3V 8% be a eomultlphcatlon ‘Map' $® into K by Xea, 6., Cay
being arbitrary integers. After these two', prooesses Ber=a,8%+ 2 @208, becomes

O‘AS;_-F Z @ ,,,,.,eq,.,+o,L 2 Ca,00, - Construct a new CW-complex L Whlch oontams

besides a]l the other cells of K* except ef, a new cell 6,%, that is attached to K3. by
055’3+ 2 (az,a,,ea,.,—i—alca,.,ea,.,) Let. B* be a euclidean four dimensional uni cell

contammg the points {(vy, @, o3, zv4)}, 0<w,<1 (fa 1, 2,8, 4). Let ¢: E*>et and
Y: B*—>elt be the characteristio maps of ef and ¢t respectively; where -identification
topology - is -used.. Then ¢r¢ 1 s a homomorphlsm in - the mterlor -of es. If Bet is

‘7 4) The venﬁcatlon has been carned. out for reduced complexes: But it is trhe for general AZ~polyhedron,
-because the latter: is of the same homotopy | type-as.a reduced. Or we may choose suitable basis for chain
groups of an 4Z-polyhedron, so that (12) and (13) are vahd i
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considered as a point set, then ¢ (BeaN'83) =783 is. able to be oonsuiered asa three
dimensional unlt cell E3 eontammg the points { (a1, @, @s; 0)}, O<a:,<1 (z 1,2,

8). Divide E? mto E, (=1, +, 03) suoh that (@4, s, s, 0) € B} if (I1—1) L <ws<l

1 1<Z<o-,_ Then o | B (B}, B)— (S8, 0) may be supposed to represent 1€ II 3(;5’,)

D1v1de B agaln mto B and B3, snch that a point @(wl, wa, a:s, 0) of B} will belong

to T, or B, if 0<w1<% or —%—<a}1<1. Assume that ¢[ B¢ (H2., Hi)—>(S2,0)

represents 1€ IT5(S3) and |B3.: (EZ 2, ?,2),—’,(K 2 O) represents (Cs,64,y) in
H;(K3, 0), Then '
Y| Bet=1pp™ (Benﬂ (K*—82) +,Beh ﬂ 8%
—1|BetN (K®=83) + (1V S eu,s80,7) °91 0453,
which is single valued. From Lemma 3 in [21, yptis contmuous Define a contm-
uous map
§ K -—>L
so that £| K = el—l Eles= qS—l Ev1dent1y 3 induces 1somorph1sms of the' "homology
groups of K with integer coefficients onto the corresponding groups of L. Hence § is
a homotopy equivalence. However, the homotopy boundaries of the 4-dimensional
cells of K and: L are equal except Be; in K and Bé)tin L. They differ by E’LE Cay B,y
Repeating this procedure at most s times to alternate the hembtopy ‘boundaries of
6i(A=1, +-+, t3) succesively ﬁmshes the proof of this Lemma.

The elements of H,(m) are,u,,,,,ow—{—A* E ( frm ) {83 (r,=1, -, (m, 01)), where

€ H,. From (15) they are. actually represented by
:u’m. ( +2 rim 4)

(m (o2 1)
Here (€ H;) has unique 'representatlve , which is. written as « for brevity. Now

,“'m.0:8<w+2 i 31)

(m, o)

is uniquely determined for each element p,,o (m+2 ('r’ "nf) 34) of H,(m). Define
m, Oy :

V' H4(m)—>(T(H9)),,,, m= 0 2 3
accordmg to Whltehead J. H. 0.® that

(m 0';) el)

Mm.opﬁ(w+2‘. (T‘ mb “) . | (20)

e B Gy ) s (P 1

-m._O modm Hence
m, 0’; .
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711:‘1'17:,‘1»}1'1».0(@".“; (:;: ) ) ‘)’p{ll'p O(W 2 (P 'fb )ﬁ.(z Crz) 6’4)‘
= nopB( 2 oy R ),
whﬂe ‘ _ o .
HamTolte. °(w+2 o, z) ) ’b”'°p'8( DA NS vi)ﬁ.(;': o) ).

Consequently the followmg diagram Lo
Ha(my 225 23 Hy(p) - |

7ml . l‘y’ ’ (6)

(T (H2))n 225 (I (H),

commutes Thls venﬁes (6) in §1, if Y i defined by (20)
Let

dy: H (A3, Zp)—>H, 1(A2%)
be defined by i_ 9, then A4'=1 follows from (15) and (16). We have the groups
H;(43) (z=2, 3 4), Hi(43, Z,) (m=2, 8, ) and I'(H,(43) along with
homomorphisms. u,,q; 4 and y,. They together constitute a homology co-ring of an

A3-polyhedron. This explains the geometrio meaning of an abstract homology co-ring
-associated to a given A43-polyhedron.

) §3 _Realiiability_.

§38.1. If f: A3—>A? is a cellular map, it induces homomorphisms of the homology
groups H;(43, Z,) into the corresponding groups H;(4%, m), i=2, 8, 4, m=0, 2,
8, ---. These homomorphisms, ‘denoted by S commute with wp,q and 4, i. e., (9) and

- (10) are satisfied. If £ € H4(A43, m) and if &/ is a modm cycle belonging to =, then

@ > T'(Hy(43))m
lmm) lrm),. o @

Se(m)o "> I (Ha(45))
commute if m=0,2,8, .. Therefore the homomorphlsm -y,,. H 4 (A m)—>T" (H a (A )) m
satisfies '

(T(fs))m 'Ym Ym*fe(m), ; (22)
where (I"(f2))m is determmed by fa:Ha(AD)—>Hy (42). Tt is worth Whlle to remark
that v, is able to be cons1dered as & -homomorphism

Ymt Ha(48, m)—)_(q,ﬂs(K"))m, _
* then 7, satisfies PR e
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- FotYm="m* f4(7n), S (28)
where f* (¢l (K 2)) > (4I[3(K?)) m is induced by f| K. Of oourse (22) and (28) are
equivalent. All these hemomorphisms induced by a cellular map f: 43— A% constitute
a proper homomorphism of the homology co-ring H (A43) into the homology co-ring
74P, S

If H;(i=2, 8, 4) are given abelian groups, where H 4 is free, then H;(m), (m—-
0,2, 8, ««+), 4, wp,qcan be defined by (1), (2), (38), and I'(Hj) ca.n, moreover, be
constructed by its definition in § 1. Furthermore, yn(m=0, 2, 8, ---) may be arbitra-
rily given homomorphisms if (6) is satisfied. Then an abstraot homology co-ring is

completely determmed w1th a lot of arbitrary factors. Is it able to be realized by an
A2—p01yhedron? If so, is there a CW-map to reallze a proper homomorphism of a
homology co-ring mto another? The answers are contained in Theorem 1 and Theorem
2. ‘

" Before going to prove Theorem 1 and Theorem 2, we need to prove
Lemma 4. The homomorphisms .

Ym: Ha(m)—> (L' (Ha))m,  m=0, 2, 8, «=
are determined if> S - : s : e
vs,| 45,85 45,87 — (L' (Ha))s,, ‘l=1, s, g (24)

and .
. v|Hy H~>I'(Hg) . - (D)

are imown : ‘
Pa"oof Each element of H, (m) is able t0 be written as wm, oa:—l— 4, Ek;S, r Where
k= ('Z. % ), =1, «e+, (m, o). Hence ym(H(m)) is determined if- Y| tom,0H & and

'y,,,/.lmlc S are known. By means of (15) we ﬁnd
* ! kl kl (m 0'[)
YmAmkl‘Sl = ( o ) =Ym® Wm, o’;( of )

kl' (’n—'{:, O'l) Sio,)

'’

= Ymbom,5: 45, (

cpmaralaSD. (@)
Besides this we have from (6) that '
‘YMMm.OIH4“Mm 0(Y|H4)
Hence (24) and (25) provide the lemma.
Proof of Theorem 1. Let K be the CW oomplex glven by (12) and (13). Then .
the other boundary relations are |
26 (o) =08 (i=1, -, 1),
a83=0 (=1, -, pst+is),
982=0  (h=1, -, patia),

5) By S} we mean a generator of Hy of order T,
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Therefore H;(K )~Hi, ©=2, 3, 4. Let these three 1somorph1sms be denoted by h.
Because : :
H«(K m) = Mm.oHs(K)‘*“A* ;e 1—1<K))

and
- Hi(m) (H mt4 (m 1),
we may define o ‘ o
L k: H,(I(, m)—>H,(m)
by (7) and (8, ie., o o
- pm o+ 459) = o, o<hw>+A* wy, @D
Where € H{(K), y€EH; ,(K), .

Now H n (K Z,,,) and H, (K Z,,) may be computed from the boundary relatlons
in K. From 27 it is eV1dent that

H,(K, Zm) -“i’f»H,.<K Zy)

[ e

H,(m) 223 H,(p)
is commutative, where uy,m: H,(K, Z,)—>H,(K, Z,) is defined by

pomle] =[ L],

¢ being a cyele modm belonging to a homology class mod m of H,(K, Z,,). Moreover,

hd=4h, where 4 in the right hand side is that in the abstract homology co-ring H,
while inthe left hand side is that in H (K). From (27) we know that A: H,(K, Z,)
—>H,(p) is isomorphism for all » and p. Lemma 2 assures [T (B)]misan 1somorph1sm
onto. By the definition of Him,p We So0 that _ L 4

[r(mmum,p Mm.pfl"(h)]p | @
1,07

(mJ El), n

Let Hom, 0%+ A, 7cuSE denote an element of H. 4 (.Ag) , -where mE H (43, b=

=1, =, (m, 0;). Then
- B Imym(m, 00+ 4510i8F) = [T (h)]m(l‘bm oyw) + [T (]Z'>]m:u'm 57450t
= tm,o[L" (h)]vw_jl—/bm.a,\tf W 1ayadsrSi,  (29)
from (6), (26) and (28). In ocase o ‘ ‘ S
T(Byey= ‘)’hIH4, A
. [T 03z ve =va-h| 458T A=1, =, 1)
are satlsﬁed we find from (29) that T ’
LT (R Ty (pom, ow+A BiS?) = tom,0°7 B+ im, 5t Y, .S
I _7m (,U'm Ohm> +Vme /u’m o;Aa;’rlhsg

| . ".—‘?’M<lbm,9h<”) +7md*ml< (ﬁ éll) )th’

=Ym*h(pm, 02+ 4,187 (1=1, e, fa),

()



NO. & ' ON 43-POLYHEDRA ' 425

Because any element of H.(43, Z,) is a linear 'eipression of (tim, 08+ 4nkiS3) it is
concluded that (I"(A))m* Ym="7m*h for all m. Now I'(h) and (I'(h))7, (=1, =, ts).
are isomorphisms onto. The condition (P) becomes ‘
y= [T (W1 ™y (H) -h| Hy(K), @)
Yar= [T (B) 15t vs,(H) h| 487 (=1, %), 7
which means h: H(K );>H -is a proper isomorphism if the attaching mappings of the
cellsef, (I=1, t3+p4) are .
Bt =S8+ [T () 152+ (H) » h(@z“(dz)), T=1, =, 13 (Pn)
Betsu= [ (R)1*y(H)- h(etsn), u=1, +==, ps, = _
whero ¢t(c;) denotes a.mod o; homology class represented by et (oy), and 6t an
integral homology class represented by. éf,.,. The conditions (@' can be asmgned to
K. This completes the proof of Theorem 1. i : o
§ 3.2. Let K and K’ be two simply connected GW-complexes and let KT (or
K') be the r-dimensional skeleton of K (or K"). By a chain group 0,.(K) we mean
n,(K, K "‘1‘, n=2, 8, ---, Let B: m, (K n K "‘1)—>II,,_1(K = 1) denote the homotopy
boundary operator and o II ,._1(K »=1) —>II,,_1(K »i, K"*%) the 1n3ect1on Then yB 0
is a homology boundary operator. A ‘chain map Int On(K Y=, (K", n= 2, 8,
induces a (uw, 4) homomorphism of the homology co-ring H(K) into the homology
co-ring H(K’). Onthe other hand 1f a (u, A) —homomorph1sm h: H (K Yy—~>H (K ’) is
given, we have
Lemma 5. Tkeaﬂe es a chain map '_
,,(K)—>0 (1{'), n’="o 1, 2,
realizing h, : :
Let a€ H,(K) or H (K Zn). If ’€a and jnga —hgma for all @, where jm
denotes the injection of &” or ga’ into its homology class, then 4 is said to be realized
by g. This Lemma is the dual of Lemma 4 in [1]. We sketch the proof of Lemma 5
as follows: 'I‘he chain map g O, (K )——>O’ (K ) reahzes % if and only if hjopal = jopgai
(=1, ¢, q,,) “for alln, Where a basis a?, - aq” for each group O,(K) “is so chosen
that da?=oTar™t (4=1, qn), where o7 may be zero, and @}~ are basis elements of
0,_1(K). Then the required chain map g is able to be constructed by induction.

" Proof of Theorem 2. Through the “procedure of the proof of Theorem 1, it is
shown that a reduced A2—polyhedron exists so that its homology co-ring is properly
isomorphic 1o a given homology co-ring H' Let K and K”'be two reduced A3-polyhedra
which realize two homology co-rings H and H’ respectively. Let g: Ca(K)—C. (K")
for all » be a chain map realizing a given proper homomorphism 4: H(K)—>H(K').
To prove Theorem 2 it becomes necessary and sufficient to show the exigtence of a CW-
map ¢: K—>K’ reahzmg the cham map g: On(K)—0,.(K ’) ‘Because K® and K 2 are

©6) Oo(B) =2, C1(K) =4, -
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bouquets of 2-dimensional spheres, g: Ca(K) —>C’2 (K) is easily realized by a CW-map
¢: K*—>K", Now K? takes ity fashion as (12). Analogously K8 is written as

\/ (S’ZUe (0’.4))\/ V S : ' (12)
where o, is zero if u>t2 Then '

98} = 2“:«:(0")'5‘26”‘5"3 (=1, - ,Ps'*‘ts):'-

gei (a,,) = E T (oJ,,) +. 2 by, ,,S’3 (h=1, ),

Because 99=g9, it follows that _ R

=0 (=1, e, pg+is, u= 1 Jeee, 1),
‘ OOy =0rny  (h=1, e, 1y, u—l, eee, 1),
in ich we have assumed g8} =X r4,S7. Since .

BgSi=d=¢BSE,
,Bgeh (0' b) = 2 amﬂ' ;S' 2 g h'rlmS,z =0 h¢S 3= ¢,33% (o h)
_ the map <;[> is sble to be extended to a map of K3 into K7 eo that ¢ mduees a chain
' map b, II; (K‘”’ K”)—>II3 (K"”’ K’s) sat1sfy1ng
¢’ eh(o'h) geh(ah);
¢*S, gSl:

(o) and S} are considered as elemento of I, (K, K 2.

Let é3(os) be a cell of K*. It is evident that Ja6h (o,,) isan element of H, (K o)
with unique representatwe which is e} (o) itself. Let § denote an 1somorph1sm of the
group of spherical homology classes of K3 generated by S8 , +es, Spuer, in (12) onto -
:the direct summand {3, -+, bp, s} in. - . __ |

. : Hs(Ks) —%Hs(K’) +{bz, >, bp.+:,'}.
In other words- D
_ , - I (K?) —F(Hs(K3) +j{5"°‘ sty Shurtaks »

where {S%, -, p,“,} is a free module generated by the 8-spheres S (i= 1, e, p3+
‘%1) attached at a point. Let 4: I'(H,,(K ))—>II3(K?) be an .injection: suoh that pi=
1rcayxy. Then II;(K3) becomes f o e L
. Iy (K —zpﬂs<1<3> + <1—zp>113<1<3> T € )
Hence : - '
| _ﬁge;t <o1h>, — ipfget <a;,>-+ (L ip)Bgel(ah),
Because
—~——> II;(K?) - IIS(K3) —> II3<K3 K’) ——>
is exact the homomorphlsm ~ :
j@—ip)By: 04(K Z,,)—){S e, S}
becomes g =g0: C4(K, Z5,)—>{8%, +-, 83,4} since ipIl;(K?3) =4ill3(K®) and §i=0.
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Furthermore, j| (1—ip)ByCs(K, Z,,,,) is an isomorphism because the kernel of jis
sz 3 (K %) which is a direct summand in (30). On the other hand

$Bei(or) =PipBe;, (o2) + @ (1~ip) Be} (o).

.7¢ (1_’2)) Beh (‘T h) ¢.7 (1 —’P) :30h (0' h) ¢33h (0' h) !]aeh (0' h): 2
because qS is cellular and realizes g in K3. Hence
jd(1—ip) Bei(0) = j(1—ip) Byei(an).
Because §| (1—ip) I3 (K®) is isomorphism into, we have
95(1—113) Bei(os) = - zp) Bgei (o). .
Consequently
Byget(o3) — ¢33h (o h) —zp,Bge,. (on) — ¢'P:36h (o) =i(PBg— ¢P:3) ei(on). (31)
By definition
13,0 (PBgel(on) — ppBei (az)) =7z,[96t(03)1 =T (¢)vs,lei (w1,
in which [gef(o3)] is the same homology class as hlei(os)] owing to the realization
of b by g, while I'(¢p) =I" (h) owmg to the reahzatlon of h|H 2(1{ ) by ¢. It follows
from (22) that
, Iba,. 0 (p,Bgen (0’ h) ¢P/80n (04)) = O
in the homology module (I"'(Hs))5,, Whmh means that ;
PB(get (0r)) —ppBet(04) = EROLAT AN
From (81) we have _
 Boeh (52) ~ $Bet (32) =00 (S s, G
where X ), ,e“,,,e ¢Il3(K'?). We remark
Beh (0';,,) O';,,S h + 2 aa.76a. Yo
Define a CW-map ¢’: K*->K’® such that
¢ | KP—Si=¢|K*—
but ¢’ |53 is the composition of the following maps:
832> stvisy Y5 spv ke 25 ke,
where w clutches Sj by its equator to obtain S3V 83, u maps S onto S3 of degree 1

and » maps S} into K’ so that » represents . d),,d,,. The map ¢’ still realizes the
chain map ¢g: K*>K". But (82) becomes
 Boet (@) —¢/Bet (o) =0, |

It means that ¢’ can be extended over to realize gej (o1). If 0,=0, we have

By6t,su=DBY6su=rvh[61ul,

Bt su=1T (k) <7+ [6f1a]. :
From (11) with m=0 we have y+h=1I"(h)+y, which means ,Bge;”,+u=.'¢,8e§,+u, This
guarantees the extendability of & to realize gef sy, u=1, +-+, ps, In short, the chain
map g is able to be realized by a cellular map. Q. E. D.
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