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In [1] we have established the finite structure theorem between cc)mpléte rings
-of linear transformations and have used it to study the finite Galois theory of division
rings. In thig paper, we shall generahze the structure theorem to infinite case and
then we study the infinite Ga101s theory of d.1v1s10n rings, which is hard to deal with
as we know. In § 1 we shall estabhsh the infinite structure theorem between complete
rings of lmear transformatlons In § 3 we shall use it o study the fundamental theorem
of infinite Ga101s theory of division rlngs And in § 4 we shall 1nd1cate that our theory
includes the well known finite Galois theory of d1v1s10n rings.

.

If @ is a group of automorphisms of division ring F', then we write )
I(@) ={f€F|fo=f forall c€G}.. SO
If K is a division subring of #,-then we write A(K) ={c € GIK =K for all EEK}.
And we denote the-algebra® of G by E’ and the complete ring of P-linear transforma-
tions of M by L (P, M) just as in [1]; where P is any division subring of F.
Let M= 2 Fu; be a left vector space over a division ring F, E be the ring of all

endomorphisms of the additive group (sm +). A subset {x:}:;c; of M is called having
y—order if the cardinal number of {®:}:cz is 8,.- We denote it by Card. {@:};=¥,. Let D,
be the class of all sets with order<(§, in M. Then we can define a mapping [ -] of D,
into M as follows: for any element {@tier, of D, with C‘ard {5U¢};e11< ¥,, it corresponds
an element [{a;,},e,l] of Em ie., :
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1) Let R be a ring with an identity, @ its center and lot G be a group of automorphisms in E. Then we
ca]l the subalgebra E' over @ generated by the (regular) elements ¢ such that I,€G the algebra of the
‘group G.
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{#:}ier, “[“—]’ [{@i}ier]
such that [ ] satisﬁes.the following econditions,
(i) Ifall ;=0 for {@:}icr,;.  then [{#},cr,] =0, :
1) (fHola])o= [{(fww)o'}ien] for fEF, O'EE
(iii) Let {a* )},E, be a set of F, Card. I<S,,, Oard. I'Ky, and. let {ya},,ep be a

set of F-linearly mdependent elements of EUé If the system of equations

el =9s for ac T .1
is solvable for {w;};cyin I, thenvi_t follows that . .-

(1) Card. I'<Card, I, : et

(2) there exists a subset {a{®};er of {a® ’},e 1 such that for any element {Ya},,te rof
-D,, the following system of equatlons : S PTIRE S SRTI

- HaPX kel =Y., @€l o o (1.2)
has one and only one solutlon for {X },E 7 " that’ is, 1f two subSets {w},E r and {x,},,e 7
:satlsfy the equatmn (1.2), then ‘this forces x;—a;" for i€ .
o Deﬁnltlon 1 1 The abo've mapp@ng I ] of W s called a v—soluable fwnctzon 4
‘fuectoa” space is called a v—soluable space 'z,f 'z,t has a v——soluable functfwn I f the funct@on[ ]
is definéd in the dlass of all subsets of ED? then we call [ ] szmply a solmble functzon a'nd
M @ soluable space. '

Since M =aE for any non-zero element # of M, we can extend the p—soluable
function to E. Similarly, a subset {&;};c ,‘_'of,;E is called a set with y—order if Card. I =
§N,. Denote the class of all subsets with erd.ei's <, by D;, then we define a function
of D; into E which is still denoted by [ ], if it.is notito be confused with the iprece-
ding one. Furthermore ‘these two functions havé the following relations: for any

.élement & of M we' define a[{e:}ics] = [{w8:}ics] ;' where Card:' T<XN;v. It.iSeasy to see

* that the element. [{#:}c;] of M can be written .asi [{z;}, 7] = [{z&i}s=11, where: {s,i},:e,
cE. Itis also easy to'seé that [{ei}ier] o= [{&io}sc;] for any element o of E.

~ Let M= > Fu;-be-a'space, G.a group of automorphisms. of F, and let E-. be the

i€l
-eomplete ring 'of endemorphisms of (M, :+). Let T" and: ¥ be subsets of E, and: T be
‘a set. Then M (T "% I).of E is defined as follows': ' . S :

M, % D)- AHhodienl €T, 0,€ %, zlcz}, s

‘ Where t,GT 0',6,2” and t,a,EE for _7611
Deﬁnltlon 1.2. Let M 2 Fu; be @ space. A set Q Of E w called R,,—tmnsztwe

~4f and only if for any subset {x}ici of F——lfmearly mdependent elements of M and any
subset {yi}icr of M, where Card. IK,, there ewists an' dlement cEQ such that wo =y,
for ¢€1.
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Definition 1. 8. . . Let. SJE EFu,, P =Cp(B")={fEF|fé=6Ff.for. alle EHEP.

We say that M is a(N,, 1)- type space over P’ if and only if M s a soluable space and there
éxists a set M (EL, ,7 (F, M); 1 ) fwhwh s s',,—tmnsztwe in ‘.D% as the wector space over
P where Card. I=¥,. * IR ‘
«“Definition 1. 4. M(T, A I) -q',s called free if and only if that if ["{t,ﬂ,-’};e n]=0

for anyj element [{t,0;};er,] of M(T, & I), then all t;0;=0 for §.€ Ii. In this case we
write M(T, &; I) =@M (T, FiDD), & ;

we are now ready to establish the following theorem . v

Theorem 1. 1. Let M= Z Fu; be a space, G a group ofuutomm'phq,sms of F,and

. let B’ be the dlgebra of @, P' =0y (E"). Denote the dimension of the -left /uecto'r ‘space F

over a subring P’ by [F: Pl and let I be an indew set with Card. I=[F: P']p= =N, If
M is a (8,, 1)-type space-over P’ ; then the're ewists a-subset: {fr,} jer Of E’ such that
: e e J(P’ M) = @M({m}m, ZL(F, Mm); I). '
Oonfuefrsely, zf (P, ED?) ®OM ({frﬂ,},e,., f (F m; - I*), fwhere {fr,z,},e,.CE,-,,
then there emsts a subset {fr,L} jerOf {fr,z,} jers such that A .
: 2P, SJJ?) @M({O";L}fez, =5’(F m); I’)
and Card I’ [F P’]L L C
Pfroof We prove the ﬁrst assertlon Slnee P’ is a d1v1s1on subrmg of F there
ex1sts a P’—bas1s { f(“)},ze I such that F 2, P f‘“) where Card I=[F: P’] 1=, Hence

iaer

Nt
RS

M= 2Fu,-= 12 P’f""’u‘—v' 2 P'o{®, -where v{®=jf ;. Olear_ly {fvg“‘)};ep is also
. [13 = 4

a P'~basis of M. Let {5y¢,,}o,E 1 be an arbltrary sot of F-linear 1ndependent elements of
9. By assumption M is a (§,; 1)- type Space over: ‘P’. In ‘view of Definition 1:3 and
(1.8) -there exists an element o= [{r,,—,o",},g,] EM(E;, & (F S!R), I) for fr,LE EL,
0,63 (F ED?), I,= 1 such that o satisfies fvf"‘)a Ys , aC€ 1. Hence w0

Y —vPg = [{(f (“)u;) (mffj)}fen] = [{'r:f‘“’(um)}jen " a€l, 1.9
Let wa,'—fr, f( ) wy= o’ for a€l, J E I, then (1 4) becomes the followmg formula
b [{aalwi}.’lelx] ya: . acl, o . L (d48)

From the porperty of soluable function[ : 1t follows that Card: T<Card. I, further-
more there exists .a subset {@si}ic1, Of {@as}jer such that the following system: of
funotional equations .. . 0 T AN SEIPS
[{0iX}serl =Ya, a€L- oo il 0 0 (1.6)
is soluable for any set [Y ] ez of; éUb»an‘d“? it ‘has ‘a.unique.solution. Now we want to

 show that L (P!, W SHM ({ri}ser, LEF, M) D).

In fact, let o* €L (P, M); vi¥0*=Yo(4), aEI q,EZ‘ Oonsnder the system of
_functlonal equations (1.6). Then from the soluable- property of (L1.6) . for arbitrary

2) E'is thé algebra of thé group G where G ié’a-groupoff;a'u%bmorphisms n . i
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srlbset'{Y ataczr Of Wit follows that for any element i€ I the following system of
equations ' ' _ ‘ .
' {aa,X ('1,)},61] Y @), a€l ' o (1. 7)
has a solution. Smee M is a soluable space, (1 7) has a umque solution X;(3) =;(4)
€M for jEI. On the other hand, -since M= >} Fu;, there exists an element, o€

i€l
L (F,M) such that. : : : : st
' ,a,—a:,(q,) for jEI zEI‘ e (1.8)
Let o= [{rizo’}jer], then we have ‘ R ‘ .
v ®o= T ) {rpol}jerd = [{rif® (o) }; EI] [{aaim; (4) }J‘GI] =v{Po", /
Since {rv‘“)},,e, is P’-basis of I, it follows. that o*=cEM <{T:L}jel: L, M); I).

But o* is an arbltrary element of Z(P’, M), we have
ZL(P', M) CM('{"‘JL}JGI: ZL(F, M); I).

Let p’€EP’, vEM and o= [{fr,LoJ,} jer] s arbltrary element of M ({fru}iE I,

FL(F, M); I), where ;€ L (F, EITE), I*CI,_, then
(90) [{riz0}}ser] = [{rsp/v0)} el %P'(”‘[{"_’MO'Q}}EI*]),

this is true because p' € P'=Cr(E’) and r;€ E'. Since ¢’ and v are arbitrary, it follows
that [{rio}ser] € Z(P, W). Hence M ({ris}ser, L (F, M); I)Cf P, M.

“We need to prove that M({'er},e,, .i”(F Mm); I)= (—BM({fr,L},E,, Z(F, sm) I).
It M ({m},e,, ZL(F, M); I) has an element [{fr,Lcr,},ep] 0, where I'CI, then

() {rizos}ser] = [{aes (wio) }rer] = 0; a€l. : _

From the property .of soluable space of M it follows that there exists a subset {@u};er
of {@4;}e1, Where IC I’ such that [{a.; (u,a,) }ier] =0 for a€ 1. From the . property of -
unique solution it follows that w,0;=0 for all 4€I', Hence 0;=0 for jE I =I ’, This
proves rj0;=0 for j€I’. : ‘ : : .

Now we prove the second assertlon If .9” (P’ EDE) @M ({a',,-,},E m, £ (F %) I *) ,
Where {r;L},e ,.CEL, then we. want to prove [F P 1-,<Card I *, In fact, if we write
F= 2 Prf@, Card I=[F: P7] z then SIE 2 Fu;—z P’fu(“) o{® = f @y, Since {u}:cp

. o€l

is a basis of M, it is easy to see that {/v,‘”"},e r isa ‘P'_—-basls of M. Let {ya}aer be a given
' - : a€el

set of F-linearly independent elements of 9, then there exists an element ¢ € .% P,
M) such that v{®o=y,, a€I. By assumptlon o= [{r,,—,coj} jer], Card. I' Card. I*,
w, € Z(F, M). Hence we have - ST
' =[{rif® o tierl = Haawdserd, «€I, ~ (1.9)

where a,; —fr, f ®, w;=wuw;. Therefore from the property of 'soluable function [ ] it
follows that Card. I<<Card. I'. But Card. I'<Card. I*, hence [F':P"],<Card. I*.

On the other hand, in view of (1.9) and the property of soluable function we
can choose a subset {as;};er from {au;};cr such that the system of funectional equations
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[{“aa J}JEI] Y. ‘a€l R {
has a unique solution for any subset {¥ .} ;. Repeating the proof of the ﬁrst assertion
we can immediatly obtain Z(P’, m) =M ({frm},el, 574 (F, M); I) and Card. I=
[F: Py, ISI*. This completes the proof.
~ Definition 1. 5. We say tkat ZL(P, ?ITE) oM ({fr,L} jely. e.? (F EIR), I) is an

ewpression of L(P, M) about E and L(F, M), where {rtiacl. A expression,
oM ({r,,;} jer, L(F,MM); I) s calZed minimal if and only if any expression G—)M ({ric}ier,
Z(F, ED'E) I*) of & (P, M) about B’ and & (F, M) has the “property Card. 1 <(_J'afrd_
I*. In this case we call Card. I the cardinal number of expression of & (P’ WE)
From the last part of Theorem 1 1 and Deﬁmtlon 1.5 follows the followmg
theorem: o

Theorem 1. 2 Undefr the abo'ue hypotheses K7 (P’ Em) has a minimal ewpression -
about ' and & (F %) And the cardinal number of ts expresswn 8 equal to [F:P]y.

Liet G be a group of automorphlsms of F. Tt is easy to see that for any element 4:
of G there exists an F-semi-linear 1som0rphlsm S, which we denote by (S ¥) if we
need to emphas1ze Y. Let ©={S'= (8, l,b) [ YyEG}. As (1. 3) we write

M6, L(P,M); 1) - {[{S;0/}sen] | 8,€86, €L (P, M); LCI}. ,
" Definition 1. 8. Let M= ZFu,, P= I(G) {fEF|f°=F for all o-EG} 9)? 'bs

called a (8,, 2)-type space over P if M is a soluable space and there ewists a set M (@
<z (P’ M); I), which is §,-transitive in space M over. P.
Theorem 1 8. Let M= 2 Fu,, P’ O'F(E') I (G) =P, [P" P] 1= S,, Suppose

that M is a (8,, 2) type space over P, thrm there ewists in o a subset {/u,} jer 'wq,th caa"dfma,l
number ¥, such that L(P, we) ®OM ({S,)Jez, Z(P, M); I ). O’on'ue'rsely, q,f |
L, M) = @M({Sj}m, L(P, MW); D,

then there ewisis in' {S;} ez @ subset {S;};cr such that Z (P, EUE) (—DM ({S,},ex' 7 (P’
M); I’) and Card, I'’=[P': Plp. : -

~ Proof Now we prove the first assertion. Since E’ is the algebra of G P'=Cp (E ),

by [1] E"*=E’, P"%=P’ for any element ¢ of G. Let : '

._%—-2 P'wi_ > P_’U(a)

- jer,ael’

be P 7’-and P -spaces respectlvely, where P’/= EP 1@, i@ = f'@y, Tt is easy 1o See

that {v®} ser is a P-basis of M. Let {rya}uep be a set of F-lmearrly mdependent

elements of M. By assumptlons there exists an element o= [{S,cr ,} je ,,] € M (@ Sf (P’
EIR), I), I, I such that o

Ya _,U(a.)o. (f’(a)'w:i) [{Siaj}:el;] [(f’(a)’wy) {S aj}jell
= [{f"®¥ (w;80%) } jer,] = [{@as; (1) }jer], €L, -

‘where aa,; fl@w, P, (@) =w;(S;). Then from the property of soluable
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function [ ] it follows that Card. I’<COard. I, and there exists a subset {a}c; of

{@43} jer, such: thati the followmg system of functional equations: - R :
| HowX,@Dherl=Ya(®), a€l’ (1.10)

has a unlque solution in 9 for any subset {Y (i) Yacr B .

© Now we let 6*€.Z(P, M), v@c*=V, (¢) for a€ I'. Since 8;=(8;, ¢,) is an F-
‘gomi-linear 1somorphlsm, we know that {wiS;}icr is also a P -basis of M. Therefore
for yE I’ there exists an element EY (P’ 932) such that 'w;;S’ a,—X ('1,) for sel”. .
Let a [{S o },eI] ‘then __

o= {0108 }rer] = Ko Xy @) b yer] =V (@) =0f00*
for all 4€ I, ;aEI’ Hence ¢ -GGM({S iYier, Z(P’ M); I'). This proves that
2@, MEM{S}ier, LE,M); T).

- On the other hand let pEP fUEiUt [{S O} ses] EM({S,},E,, =,S’(P EUE), I,
then (p'u) [{Sjcrj},eJ] p(fv [{S 0itses]), it follows that [{S,0%};]1€.L(P, M). This
proves M ({S;};cr, (P, m); I’)CJ(P ﬂR) .

V Similarly to Theorem 1. 1 we can prove the remainder of thls theorem

Theorem 1. 4. Under the same assumpmons as in Theorem 1. 3, ¥ (P 5112) has a
mzmmal empresswn about 6 and .,? (P’ ") and the cardinal numbefr of thzs expression
is [P’ P] L \ ‘ o
. Proof Tt follows from Theoi'etﬁ 1.3. o

Now let F= 3 P/f®, Pr= 2 Pg"‘” then ED? 2 Fu, ' Z P(g’(‘”f(“’u‘)

. a€l el Bel,

Let v{® & g"‘”f“"’u ., a€ Il, ,BEIQ, theﬁ {fv("‘ "’} isa P- baszs of WE Write
o B M(@E Z(F, §D2), ILixIy)= {[{Sko"mwm}kezl},_
where Ichl, IQCIQ, SkEQ "'JLGEL, w,keg(F ﬂ’})
: Deﬁmtlon 1.7. Let. E)JE 2 Fu,, E’ be the algebm of G and let © be the same as
' abo'ue Then M is called a (x,, 3)-type space over P if M is a soluable space and. there
exists.a set M (OHy,, L (F, M); I) which is 8,-transitive over P. T
Theorem 1. 5. Let M= Z Fu;, G be a group of automorphims of F. Let P=
I(G@) as above, E' be the algebra . of G’ Pr= OF(E’), 6= {8;=(8;, ¥) |¢sE€G}, and
[F: Pli=N,. S,upposa that M is-a. (8,, 8)-type space. over P, then there exist subsets
<{S.'I}jel; Of@ and Aris}sen Of By, such tkat _QP(P ED?) @M({Sk"'ﬂa}kem _?(F m); -
IIXI,;) kolds, 'where Card. leIQ—S,,
“ C’onq)ersely, if (P, EUE) (—DM ({Sk'r,L}ke,l, ,?(F 212) ><Iz), wkefre Ske@

r;€EE, then there exist subssts. I 1< 1y and I Plad § such that Z (P EDE) (—DM ({Skfr,L}ke I

ZLF, W), I,xIo) anid Card. Iy Iy=¥,. L |
- Proof Let {9s,0}sc1,,ac1, b2 sot of F-linearly indepéndent elements of 9, then



NO. 4 ON INFINITE GALOIS THEORY FOR DIVISION RINGS 435

by the-assumptions, there exists an elem'e'nt cE€EM(OH,, L (F, EITE) Iy 2) such that
‘ T Ypa=0"P0, BEI;, a€ls, T :
Smce o= [{Skqﬂ,waw}ke ,,], where S, €0, ;€ EL, wy €L (F,; M), we have:

- [{g' @ ulr7 g (@ ules <uiskr,m,>}ken] = [{af¥a, e>}m,

Where aff ,“’— g (B) ilizf (0 @¢ulr, wy; (%) —u,Skr,wak,, Ir3 is an inner 1somorph1sm Anal-
ogous to the proofs of Theorem 1.1and 1.3 we can prove all assertions of our theorem.
‘Theorem 1. 6. = Let the assumptions-be asin Theorem 1.5, then & (P, M) has &
minimal expression about’ @E and Z (F E)R) And the cadfmal nwmbefr of the minimal

ewpresswn s e_qual to [F: P] T -
‘Remark. Let the assumptlons and symbols be as in Theorem 1.5. Then from
Theorem 1.5 it follows that ' L e ‘ :
(P, M) = @M({S;ﬂ”m}keh, LF,; M), IyxIsy. (. 11)

Putting Si;=Syriz, it is easy to see that S%; is a semilinear transformatlon of
M= D Fu;, and Py;=nl,; is the assoclated isomorphism, where Sy= (Sy, Yr), L is
sl

_an inner isomorphism, 7;€ B'.:

§2

We Jba,ke an example to explam the precedlng theory
We assume: that M =3 Fuy; G is a group of automorphlsms of F P I (G) E’

the algebra of G’ "P'=Cp(B’) and [F: Pli=n<oo. Denote the class of all: ﬁmte
subsets: {&;};c; of M by D, Where I always denotes a finite set. Then we can define a

function L] -of D into W& i e, @i}l = Z i, 01ear1y L ] satisfies all GOndJ.‘blOIlS
of Deﬁmtlon 1 1. Now we check ib. We have (f 2 m,)q (2 fa;,)a for fEF, c€E,

hence condltmn (11) is satlsﬁed It is easy to see from [1] and [2] that the condmon v
(m) of Definition 1.1 is sat1sﬁed Therefore the above deﬁned funotlon i a soluable

" one with finite order.

On the other hand, we can introduoe a similar funotion to E, the complete ring
of endomorphlsms of (M, +)."Let D* be the class of all finite subsets of E. Then we
define a function [ Jof D* into E, i. o. [{s@}ael] 2 &;. Olearly we have & D) &=

i€l

Elwa for any wGiUE - : L =
i€ - ' o
“Now let B be ‘the algebra of @, P'= Or (B, E L(F,; W) ={ rypw;|r;€ E,

J<o

w0, €EZL(F,M) }i. Then B Z(F, M) is finite “cransi’ﬁive in M over P, i. e., let {wi}idy

e a finite setof P'-linearly independent elements, {¥:};c; bé'a subset of M, then there |
exists an element o € EL.¥ (F, M) such that wo=1; for i€ I. Hence from the proof
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of Theorem 1.1 it; follows that M is a ([F':P"]z, 1)-type space with the above finite

soluable function[ .]. Without going: into the matter in detail it is clear that Theorem

1.1 coincides with the Theorem 1 in [1]. In this case we. have . '
@M({Tin}jez, _?(F M); I) = Z@TiL$<F, m,

Oard I= [F Py _ '
In the same Way we write 6. (P’ ﬂR) = 2 ng (P’ 5112) It is clear that

@.Sf (P, M) is. ﬁmte transitive in M over P. meg to the soluable functmn [ WJth
finite order mentloned above, it is easy to see that M is a ([P’: Pl;, 2)-type space
over P. In this case Theorem 1.1 coincides again with the Theorem 1 in [1].

-Let @E},,? (B, M) =X Syrin L (F, M), then it is olear that O, L (F, M) is ﬁn1te ‘
transiive in M over P. Similarly we know that M is a ([F: P] L, 3)-type space over
P. Theorem 1.1 coincides with the Theorqm. 1in [1] once more. -

53,

In this section, we are going o investigate infinite Galoistheory of division ring 7.

Let E denote the set of all endomorphisms of the additive group (¥, +). Let D,
be the class of all subsets {f:}; of F whose cardinal number<\§, and D, be the class
of all subsets {&;}; of E whose cardinal number<(¥,. As above, let [ ] denote a
function from D, to F and at the same time let [ ] also denote a funetion from D,
to E such that ¢[{8},] = [{e&};] holds for all a€ F'. Write Fr={fs|f € F, afs=af,
@€ F}. Tt is clear that FCE and F isa ring 1somorph10 to Fg. If { fir}s is any subset
of Fp and Card. I<¥,, then {fiz} €D, and [{fiz};]1EE. For the convenience of
future, we demand that { fm} 1] € Fg. And we can easily prove that [{fiz}/]'= [{giz}]
if and only if [{f.}1=[{g:}:]. :

Let [{a,fu,} 1,. [{69:}1] be two elements of M and Card. I<S,, where aj, b €F,
fv,G V. 1f {fv,} 5 is any maxmml set of F-lmearly 1ndependent eleménts of {w;}, and we
write {fu,) n={v}1—{v;}s, then for any element fvje {v;}5,, we have V= 2 g,"’fv.,

‘where all but a finite number of g{” are zero. Hence we have

e}l = [{awi}n U -{aiié 9Pv}jen],
{05031 = [{bw} s U'{b;“?__l} 9Pvi}en],

where U represents the union of sets.
‘Definition 8. 1. Let M= 2 Fu; be a v-soluable space (see §1), ﬁ be the completa

(3.1)

ring of endomorphisms of (F, +), and let ﬁ be the class of all subssts {s,}ie 1 with Card.
I< 8,. The function[ 1: D,—>E will be called a.»- ~function about F if q,t saitisfies the
following conditions:
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(i) If {fiR}éeIEﬁv; fir€ Fx, then [{fir}ic:] € Fxr.
(i) [{ewi}ier] = ({05} ier] f and. only if
= ' [airU {amg(’)},e,,] = [bm U {baR!](D}:ez.
for all '1,611 (see (3. 1))

' Now we consider the element [{s,}‘e 1] of E. It is eagy to see that for’ any elément
Eeﬁ we have [{Si}iel:lo"_ [{sia}ielj . Let [{Gt}eez:] and . [{ai}tel'] be elements of ﬁ
and K is a subring of F, then ‘we say that [{&}:cr]is equal to [{8:}icr] over K
denoted by [{Eierd = [{83}ier] if and only if B[ {e}ier] =h[{8}cr] for all hEK.

Let K be a subnng of F, s be an element of E. We say that SFR is (rlght) Fy-
cyclic module relative to Kz 1f there ex1sts an automorph1sm o of Fy such that IcRs-—
ek% for any kr€ K . When Kp=Fg, then &F'y is shortly said to be Fg-cyeclie module.

For the sake of simplicity we use the element 1z of B to ‘denote the identity of
K,i.e. klg=Fk for all k€ K. Itis easy to see that_lKFR isan F,;-eyclie mog_iu}e relatiyev
K g. ot

Deﬁnltlon 3 2 Let A, N € ﬁ Then t'wo FR-cyclw modules }\,FR and )\.’FR czfre scz'wl
to be (K z, Fg)-bimodule (3. e. left K r-module and also /M,ght FR-module) esomorphw
relatme to K denoted by WR = NFR q,f thefre emists an element SRGFR for the element ?\.

such that the frelatzon 2 Ic,R)» fm

,Rh fm holds if and only 'I,f the frelateon

2 kirN'drfin == 2 kighdz fir holds. C’on/ve/rsely, 7 f there exists an element 8’ 15 FR for '
' the element N such that the relation 2 Ia,Rh Fin=— 2 &} RN fip if and only if”
2 kJR}“aRf 2 2 ]GIRKSR]C iR.

Clearly we have i) hFR:)\.FR (11) 1f AFRZA’FR then )\.’FR"’}»FR, and (111) 1f

7\4F3~)\a’FR, }\"FR:}\"ER, then hFR:h”FR

Now we let {5-:;},E 1 be a subset of E FRCE and -
M({V }'rzeI: FR1 I) {[{SiftR}iel:I lfiR‘e FR}m .

, Then we can introduce the following definition.

Definition 8. 3. Let. {s;},,eIEE,,, H=M ({6‘%}.er, FR, I). CH s saq,d to be @ homo-

geneous Galois (K g, FR) -b/umodule q,f and only ef there 6xists a subset {?\.,} jed satzsfymg

the followmg conditions:
(i) MFris FR-cyclw module and H = 2, x FR3’,

(n) For amy FR-module thR we hawe }»,FR=1KFR ;

- Lemma 8. 1. Let H be a homogeneous Galoes (K z; FR) “bimodule,
- A={p€ H|gvlcR kRgafoa” all kr€ Kz},

3) _,2 MEp={>) A,ij | £s2.€ Fr}-and 3 A;f;z-express a;sum of elements A, and f.,m\hin,. rmg £.
€5 E J N . T
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the'n: AF = H R i . . . . ;o
Proof Since H= ZAFR, it is enough to: show tha’r A.,EAFR In faet AFR—
K

1xFz by the assurnptlon hénce from ‘the ‘relation - lchx’" 1K7(;R for any kr€ K R it fol-

lows that lth Or === A SRkR, Where ) B is an, element of FR Hence AORE A Therefore

MEAFR IR . -;,;-. N ;
Lemma 8:2.. Let H be a homogeneous Galozs (K ' FR) -bzmodule M 2=00r, (K R)
Let <P1, e, @y be aloments of A, ’S@ppose w6 have'a non-trividl fi‘eld_t'i,on hgl ¢¢f;}¢=0, fir
' E FR,i‘vytZien"’ #kére “e'ai'is.'t mm,, 'm“,,RG: M = Stuch that é ;me-eo 48 a fhoﬁLtré)vial“reiation
b i Proof Without loss 'ofv" genera-]ity we may ; a,seume- i that . Zn %'f{R:O and the
relatlon isa shortest one in the senge that the number of non-zero ‘6léments of - {fir}

. 1is least. If gm—O then our 1emma is clear. Henoce we assume 901%0 <p1+(p2 f2R+* +
q),,f,,R—O and. f,RaéO for 4 = =2 i . Thén we have - - ' o

ICR (¢1+¢‘2f2x+ +¢nfnn) - (‘P1+§D2f213+ +¢nfnR)kR—0
V fOI' aJ.]. ]CRE KR Hence 2 ¢1(kaiR_bekR;) O Therefore ka'lR—f RkR—O for 'I; 2

n. Th1s proves that fme M » for 6= 2
" Lemma'8. 8 Tet H=M ( {s;},E i FR, I is @ homogeneous Galois (K % FR)-
bq,module K=I(A(K))®, then H is @ homogeneous Galois (Kz,; Fz)-bimodule. -

Proof By Definition 3 3 1t is enough to show that A, FR_—_IKFR for any A Fr. We

;attend ﬁrst to the followmg Let o be an automorphlsm of F. OW1ng to the 1somorph1sm
of F onto FR, it is clear that o can be regarded as an automophism of FR beoause we
can define f%: f*fz=r*f° for f*€ F. COlearly o is an automorphlsm of FR and we have
(fr) 7= (f°)&. This proves that. A(K) = A(K&z).

Since lc;‘,lK—lKkR for k€ Kp, by.assumptions it follows that kpAMOp —— KSRICR

for 3€ F, where A=A, Smce by assumptlon AFg is an FR-cychc module we have
IcRMR— ABRk"I"“ — mRkR By the- deﬁnltlon of FR-oyohc module we know kph=2AER

for any automorphlsrn o of Fx. Operatlng the 1dent1ty 1€K on two sides of above
equation we get (1A)8ks= (11)0k% . Hence FEG™ = fly, for any i €F. From this
follows KL% = ky, for ky € K . Therefore ¢ I,.€ A(K). This proves Folw ZR, kR €Kz,
Since AF'y is Fr-cyclie module, it follows that E
Dbl fin == Dhinfio == D HE ™ fru =31 857 k,RaRfm - 3.2)

Now we make a correspondence o' 2 Firly fir—> 2 /Y. fiz. We want to show

4) A(E)={c€@|ke=F for all k€ K}, [(4(K)) ={f € F|fo=f for all aeA(K)},
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that if 0? 2 %lefffug, then O '-—_E-—— Z ’IEIR}\taRflR- If 75* 2 ElRll?flR= O for any element
€ K, then by (8.2) we-have 0=2 B0k 5dn fin =701 Z ]omSRflR Hence
2 km&zf ®=0.-

‘On the other hand we have

3 [ Iammem = 2 k*x/? 5Rfm-— <m>2 5Oz fir="0.
It fOl].OWS tha'b 2 %[Rhap,fﬂc

0. Oonversely, if 0 = 2 %,RASR flR, then accordmg
to the inverse course of. above proof we can - obtam 0= =2 > Zmle iz« Therefore under
the above correspondonce, q : 23 %ml_;; sz—>21 Iom_?.g_ﬁg f the (K, Fp)-bimodules AFp

and 1xFp aré (K &, Fr) -i)imodule’ isomorphig  relative to K ...Therefore We complete
our proof.

I—Iavmg above preparatlons we can turn baok to the Galms theory of d1v1s1on
ring F. ;

Let K be a d1v1s1on subrmg of F G‘ a group of automorphlsms of F and«=K>DP
=I(®). From Theorem 1.5-it follows that if M is a’ " (%,, '8)-type space over P, then

L(P, M) =@M ({8}jer, L(F, J);, L), where S; are F:semi:linear Jisomgrphisms

for jeI and Card I=¥,. Hence o= - [{S jcoj} je7] forany element a€ &L (P, M), where

w,e g (F ﬂ)‘é) In order to mohcate that o is. relative. fo the set: I ‘we, iwrite
specifically o=o07. Let I’ be a subset of 1, or=[{Siwi};crl, We call o an; associative
element of 0. If-op= [{S i@i}ier] is an arbitrary associative element of g, then we can
form & st H(ov) =M (Bbsers Fas 1) = {CLbafabserl [f€ T, whero 8= (S,
), 36 .. . . .

We are now ready to give the followmg deﬁmtlon

Deﬁmtlon 8.4. Let K be a division subring of ¥ and KDOP, ¥ (K 5.17&) be the
completa ring of K -limear tmnsformatfwns of M, L(P, W)=@M{Ss}jer; L (F, M);.1)
by §1. Let o be an assocwtwe element of cEZ (P, ED}) amd let. H (o-p) =M ({$i}ser,
Fygs I'), where ; is associative zsomorpkq,sm of S,, i é., S;= (S,, lﬁ,) We say that K
isa homogemze ‘diwvision sub/rmg if and only of H (o*I,) q,s a homogeneous Oalm/s (Kg, Fg)-
bimodule, where H (o) contains 1. L P e
Lemma 8. 4. Let EIR — Fu, be @ (8,, 8)-type space over P with v-function about

F (see Definition 3.1) and Zet K be a homogemze division submng of F and K>DP.
Write K=I(A(K)). Then (K, m) = — P&, M, K=K."

Proof Let H be a homogeneous Galois (K ®, Fg) bunodule As Lemma 38.1.
A= {ngHI(ka lcRgD for all kREKR} et 4 {ngqua]aR rp for all &€

Kz} Tt is clear that ACA By Lemmas 3 1 and 3 8 H= AFR—AFR Write Mz=
Or,(Kg). Clearly Mp=Mz=0p,(Kz). Hence 4 and A are both rlght “yeotor ‘spaces
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over My and 4 is a subspace of A. If p€ 4, then from H=AF,>A it follows that
there exist @y, «*+, @, € 4 such 13ha’o»<p—vi§1 @ifir, fir€ Fr. By Lemma 3.2 there exist
Myg, >+, Myr € M5 such that ¢=§ Pmir €A Hence A= A.

We want to show & (K, MSZEK, M. Since Z(P, EIR:) =@M ({S}jer, Z(F,

M); I), Card. I=8,=[F: P]y, for any element o€ Z (K, M) it has the form o= -

[{:S’,co,} se1], Where S;= (S,, ¥, w;€ $ (F m). Take an element ue EIR such that uo
‘%0, then for any k€ K we have

(k’”’>°'— [{ (Im) Sa'wi}je?] = [{k'”‘%},-ez,‘U {kwa’ezl gg”os}}ez;,],

(o) = [{b @S0 }ser) = [{hodier, Uk 3 g0 er],
wheis'v;=uSw;, {Vi}iez, is the set of maximal F-linearly independent elements of
{vi}jer and {9;}jer,= {fu,} ser = {fvi},e,l Since M has »- functlon about F, we obtain the

following: ‘equiation
[6%U {4} er) = kU {kg?’};ez.] €1, e
Thatis : - R ‘

[‘I’ U {\bagm}jeh [1RU {!]m jer, EFR : oo (8.9)
for any €1y If [kU{kgiP};e1,] =0 for all =y 1, then ug = 0, this is 1mposs1ble Hence
we may assume [1zU {g%} jez,] = b7'%0. Now we lot H — {[lplfR U {lp,f,e},e;,, [fR, an '
FR, T,E1,} Tt is easy to see that H ocontains 1p. It is olear that klg=k=Fklg for any
k€K "Therefore H is a- homogeneous Galois (K g, Fz)-bimodule by the assumphons
From the property of homogenize subring K and Definition 3.8 it follows that l/llFR
and y;Fy, are all (K, Fg)-bimodule isomorphis with 175 relative to K, jEIL.

By Lemma 3.8 H is a homogeneous Galois (K’ 5, FR) -bimodule. From (3. 4) it
follows that '

- k [‘/’ibR U {ig® bR}; cr,]=k€EK, . (3.5)
“where bn =[{1zU {g"’};ez,] Slnce [‘p.le U {Hbig(")bR}jez, o

kR ['ﬁle U {lljlga)bR}fGIa [‘ple U {l/l.’lgo)bR}] EIg] kR

Therefore [llzleU {xljfgy)bx},e,,] GA By Lemma 3.2, A=4. And we have ..
' Fr[nbz U {ll’igmbzz}jez. [Yudr U {%95’1:513}; er) kx,

for any %z € K. Hence -

=1z, We have

lﬁ[lﬁibﬂ u {!/!;g"’bze},ez,] 70" . ) et .
Flys U {sbjgs”},e,.l =BF=FLeU{@hel, - (3.6)
for all k€K,
If [1zU {g")},e,,] 0 by (3 4) it follows that o
. kn KAV {l/h.q(”}iez. : = 0= [‘/’i U {¥i9%} ser) bor.

‘Since A=4, it follows that
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%[% U {¢i98}jer] =0= k[lR U {gR}ser] (8.7)

for all 7€ K. In view of the property of v-functlon L ] of M about F and (3 6),
(8.7) we have

(70’@0' [{/?W’”a}ieﬂ {]"'w"ui}tezl U {kw’ua}Jel, = [{k"l), wEI; u {k”a}ael,] %@W)
If ug=0, then vo%0 for o#0. Hence (z+v)o+#0. From the preceding results it
follows that (F(u+0))o=k((u+0)c), therefore (hu)o+ (hv)o =k (uo) + %(vo). But
vo#0, it follows that (Fv)o=%(vo), and (Fu)o =% (uc). This proves o€ % (K, M),
hence Z(K, M EL(K, M)S L (K, M). This completes the proof. - .

Definition 8. 5. . Let G be a subgroup of G, K=I1(G). Let ' be the dlgebra of G.
Then G is called a homogenize group if and only if for any element o= [{;S’,c.,\,},e 7] of
Z(K, M), where S;= (S;, P;), we have .

(i) there ewists 6 in B’ such that l/J,I »€Q,

(i) iof 1x€H (a'p) =M ({{;}r, Fr; I Ny then H(op) isa homogenize Galois (K,
F R) -bimodule, where I'C 1.

- (i) if 8=(S, P) EL(K, M), 8= [{S:wj}ju] 8= '(Si,-‘-ll':-),- w,€Z(F, im)
and ¢,FR§1KFR for §EI, then t,bEG E |

Lemma 3. 5. Let M be a (x,,, 3) -type space over P (see § 1) with v funct@on
about F. Let K be a homogemze sub'r'mg of F A(K ), then @ is a homogemze sub-

Proof By Lemma. 8.4 K= I? I(G) ‘Let o-E,?(K M), then o=: [{S,coj}je,],
where 8;=(S;, ¥;), w;€ L(F, M). We first check (i) of Definition 3.5. In faot, we
choose an arb1trary element 8;= (S;, ¥;) and an element w such that fv,—uS,co,aéO
Let v;=uSw; and {fvi}ie I be a set of ma.xnnal F-lmearly mdependent elements and
fv,aé{'v et Wnte {v; },,E,,,—{'v;};e,——{'Ih},ez1 Then by (3. 4) there exists an element
1€ 1, such that

YU {¢'jg(j)}je1, [11c U {g(j)}JEIa] *0 o
Set H= {[¢1fRU {¥ifr}ser.] IfR, fREFR, IQCIQ}, then 1KE H From the property
of homogenize subring of K it follows that t,b 1 Frand Y;Fy are all (Kr, Fr) -bimodule
isomorphic with 1xFr relative to K for 3612 Ag the proof of Lemma 3.3 we have

llJJIa.hz
and d; EE’ Thls proves that (1) of Deﬁmtlon 3.5 is satisfied. From the property of

1K, hence lIJ,IajE G Since P"'1=p for any element P, of P, we have pl‘z——p,

-homogemze subrmg of K it follows that (ii) of Deﬁmtlon 3.5 is also’ satisfied. Now

we check (iii) of Definition 3.5. If 8= (8, ¢) € &z (K M), then k¥ = k for any element
k€ K. Hence ' € A(K) =G. This proves @ is a homogenize subgroup.
Lemma 3. 6. Let @ be a homogemze subgroup of &, then R=1G) s a homogemze‘

. subring and AK )

Proof From the property of homogemze subgroup and Deﬁmtmn 3. 5 it follows
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that K is a homogemze Subring. Now we need to’' prove 'the Tast assertlon Let G=
A(KE); then Gisa homogenize subgroup by Lemma 3.5. Let K =1 (G) then K is a
homogenize subring. Hence .Z(K, M) =& (K M) by Lemma 8.4. Let. ¢y €&, then
l/:GG by the: property of homogemze subgroup G (see Definition 3 5) Therefore
- We. are now ready to: estabhsh the followmg fundamental theorem of' infinite
Galms theory of division ring . S Gne e ey ek R
Theorem 3.°1.. (Fundamenml theorém),. Let Fboa dwmon ring, G be a. group
of ‘automorphisms:of F, P=1I (@) and [F: Ply=\,. Let G be an arbitrary” homogenize
subgroup of G, K -be an afrbztmfry ‘homogenizée ‘subring of F- and KP. Then the
correspondences G'—I1(Q’) and K—>A (K ) are imverses of éach: otkefr.

' We will show that the theofy oestablished. in § 8. .implies ‘the usual finite Galois
theory of division ring F. Let E be the complete: set of -endoinorphisris of (A, +),
{ fi}‘,E z be a ﬁmte subset of F, then the functmn [ 1 is defined, as follows: [{ Sitiedl =
Z fs, Where 2 expresses the ﬁnlte sum of F Clearly [{ fi}ze ,] GF Let s:rz EFui and

{v:}ier bo a  finite subset of M. Let {vi}ier, be a set of maxunal F-linearly independent:

' elements of {v:}icr, {¥ikier, = {vi}r— {0} s, then any element »; of {w;};, can be expressed

as v;= 2 9P, It is clear that - Z a;v;= 2 bv; holds if and only if-b, +\Z “b;9 =
a,+ 2 a,g”’ Thls proves that the above deﬁned funotlon [ ] sat1sﬁes a11 condltlons_

of Deﬁmtlon 3 1 Therefore ﬁ)} has a 0 functmn (1 e. y= 0) about F ‘ . _
" Theorem 4.1. Let M= EFu;, G be a g'roup of automorphtsms of F P T (G’) )
Let [F: P]i<oco, then . : EEREI
(i) fz,f K s a dw@swn subrmg of F and K DP theh K 'LS a homogemze subring
(886§3), R R N :
(1) -G is e homogemze subgrowp of & 'l/f and only tf Gisan N subgrowp“
' Proof - From- [ s follows thiat Z(P, ﬂYE) > ® 8,2 (F, sr), Where 1=

‘{,---“,‘ n} and Z(K svz) z@s,.y(zw we) ch Moreover A(K) {¢,is,

= (S,, lp,) for ]G.Il} Now we Want to prove that K 1s a homogemze subrmg in the‘
meanmg of deﬁmtlon 3. 4 In fact 1f qE _2” (K ﬂTE) then o= 2 S0;. We still denote

the associative eleent of o by op and. erte H (0'1;) = 2 t,b,FR It ig; e;nough to.show

1) Tet B be a rmg with an 1dent1ty, ) 1ts center and Iet G be a group of automorplusms in ) R. Then we
call the subalgebra B’ over & generated by the (regular) elements ¢ such that I,e@ the a.]gebra. of @
‘ We say ‘that G is an N-subgroup if and. only if for-every. regilar ¢'€ By Tee@i -
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that H (o) is a homogeneous Galois (K, FR) -bimodule. Since s; is an automorphism
of F, it is easy to see that ;F'g is an Fj-cyelic module. Hence the condltlon (i) of
Deﬁmtlon 3.8 ig satisfied. It remainds to show that ¢,FR=1KFR But it is olear because

k¥ =k holds for every s, §€ Ii. Hence ;== 1g for 3€I’ Thls proves I (a;l) is!

a homogeneous Galois (Kz, Fg)-bimodule. Therefore K is a homogemze lelSlOD.
subring.

Now we Want to show the assertion (1) of Theorem 4.1. Let G be a homogenize
subgroup and E’ be the algebra of G, 8’ € B, then '8,E L (E 21)2) where K=I(&).
By (iii) of Definition 3.5, the associative 1somorph1sm I, of &), belongs to &, hence
@ is an N-subgroup. Conversely, let @ be an N -subgroup, K=1(G@), then from [1]
it follows that every S;= (S;, ¥;) ‘in the form of the element o= 2 Sijw; of Z(K, M

mplies ;€ G. Let Go be a subgroup of inner automorphisms of @, then y;I, €G for
any I € Go Hence the condition (1) of Deﬁnltlon 3. 5 is satlsﬁed Let I 'cl,
0'p— 2 S_,,co,, H (o-_n) = 2 zp,FR, then clearly we have llJ,FR % 1KFR, Where K I (G’)

since 5* =% for Y € @. Th1s unphes that the condmon (11) of Deﬁmtlon 3. b is sat1sﬁ- \
ed. On the other hand, if §= (8, ¢) € Z(K, m), then from the well known proprety
that every N-subgroup is a Galois subgroup, it follows that Y EG. This proves Gisa
homogenize subgroup. This completes the proof.

Trom Theorems 4.1 ard 3.1 we can now obtain again the finite Galois theory

for division rings.

Theorem 4. 2. Let F be a division ring, G be a group of automorphisms of F,
P=I(Q) and [F: P]y<oo. Let G’ be any N-subgroup of G, and K be any division
subring of F containing P. Then the correspondences G'—I (@) and K—A(K) are
inwerses of each other.
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