ON THE REPRESENTATIONS OF THE LOCAL CURRENT ALGEBRA AND THE GROUP OF DIFFEOMORPHISMS (II)

XIA DAOXING

(Institute of Mathmetics, Fudan University)

Single Barrell

Dedicated to Professor Su Bu-chin on the Occasion of his 80th Birthday and his 50th Year of Educational Work

1. Let X be a k-dimensional connected C^{∞} -manifold. Following [5, 6], we consider the group $\operatorname{Diff}(X)$ of all C^{∞} -bijections φ which are identical mappings outside some compact sets K_{φ} . The group $\operatorname{Diff}(X)$ is a topological group if it is endowed by the usual Schwartz's topology. The unitary representations of this group is closely connected with the theory of quasi-invariant measures, statistical mechanics, the representation of the local current algebra in the quantum theory of fields, etc. (cf. [1-5]). In [6] there is some series of elementary unitary representations of the group $\operatorname{Diff}(X)$. The aim of the present paper is to find another series of elementary unitary representations by means of the tangent bundle.

In § 1, the preliminary of the tangent bundle connected with the representations is discussed. In § 2, the representations connected with finite configuations are given. In § 3, the representations connected with the infinite configuations are given. In § 4, the representations connected with the Poisson measures are discussed.

Let $C^{\infty}(p)$ be the family of all C^{∞} -functions defined on a neighbourhood of the point $p \in X$, where the different functions in $C^{\infty}(p)$ may have different domains of definition, and s be a fixed natural number. Now we consider the following linear functional $t(\cdot)$ on $C^{\infty}(p)$, which depends on the partial derivatives of $f \in C^{\infty}(p)$ up to the order s only, namely, if $x = (x_1, x_2, \dots, x_k)$ is the local coordinate in the neighbourhood of the point p, with coordinate x^0 at p, then there are real numbers $t^{t_1t_2\cdots t_k}$ such that

 $t(f) = \sum_{1 < i_1 + \dots + i_k < s} t^{i_1 \dots i_k} \frac{\partial^{i_1 + \dots + i_k}}{\partial x_1^{i_1} \dots \partial x_k^{i_k}} f(p(x)) \Big|_{x = x^0}$ (1)

for $f \in C^{\infty}(p)$. The vecter spaces of all linear functionals of the type (1) is denoted by $\mathscr{T}_{\mathfrak{s}}(p)$. The dimension of $\mathscr{T}_{\mathfrak{s}}(p)$ is

$$N_s = \sum_{1 \le k \le s} n(n+1) \cdots (n+k)/k!$$

Let $\mathscr{T}(p)$ be the tangent space of X at the point p, $\otimes^k \mathscr{T}(p)$ be the space of all

Manuscript received February 2, 1981.

contravariant vectors of order k. Obviously,

$$\mathscr{T}_{s}(p) = \bigoplus_{k=1}^{s} \bigotimes^{k} \mathscr{T}(p)$$
.

Let $B^{(s)}$ be N_s -dimensional Euclidean space, $X^{(s)} = \{(p, t) | p \in X, t \in \mathscr{T}_s(p)\}$ be projection

$$\pi: (p, t) \mapsto p, \quad (p, t) \in X^{(s)}$$

 $G^{(s)}$ be the group of all non-singular linear transforms in $B^{(s)}$, and $(X^{(s)}, B^{(s)}, \pi, G)$ be the fiber bundle like the tangent bundle. We choose a basis t_m , $m=1, 2, \dots, N$ of $\mathscr{T}_s(p)$ arbitrarily, then we choose the cooresponding dual basis f_m , $m=1,\ 2,\ \cdots,\ N$,

$$t_l(f_m) = \delta_{lm}$$
.

A Sandaron Gilla alay gaya We can choose the neighbourhood O(p) of the point p sufficiently small such that O(p) is diffeomorphic to a sphere in the k-dimensional Euclidean space with the local coordinate $x=(x_1, \dots, x_k)$ and there exists the dual basis $t_l^{(q)}$, $l=1, 2, \dots, N_s$ is $\mathcal{I}_s(q)$ for any $q \in O(p)$ such that

$$t_l^{(q)}(f_m) = \delta_{lm}$$

If $t \in \mathscr{T}_s(q)$, there is a set of numbers η_m such that $t = \sum \eta_m' t_m^{(q)}$, hence we have an open set $O_p^{(s)} = \{(q, t) | q \in O(p), t \in \mathcal{F}_s(q)\}$ of X, in which the local coordinate is

$$(x_1, \cdots, x_k, \eta_1, \cdots, \eta_{N_s}),$$

where (x_1, \dots, x_k) is the local coordinate of q. Of course, $X^{(s)}$ is also a manifold.

If $\psi \in \text{Diff}(X)$, $p \in X$, $t \in \mathcal{T}_s(p)$, then $(d\psi)t$ is an element in $\mathcal{T}_s(\psi(p))$ satisfying

 $((d\psi)t)(f)=t(f\circ\psi), \quad f\in C^{\infty}(\psi(p)),$

and $\mathrm{d}\psi\colon t\mapsto (\mathrm{d}\psi)t$ is a linear transformation on $\mathscr{F}_{\mathfrak{s}}(p)$. Hence we can define a $C^{\circ\circ}$ diffeomorphism $\widetilde{\psi}$ as follows There was explored to the bridge.

$$\widetilde{\psi}(p, t) = (\psi(p), (d\psi)t), \quad (p, t) \in X^{(s)}.$$
 Let $(\text{Diff}(X))^{\sim} = \{\widetilde{\psi} | \psi \in \text{Diff}(X)\}.$

If $p \in X$, $D(p) = \{\psi | \psi(p) = p, \psi \in \text{Diff}(X)\}$ and $dD(p) = \{d\psi | \psi \in D(p)\}$, then dD(p) is obviously a group of linear transformations in $\mathscr{F}_s(p)$. The space $\mathscr{F}_s(p)$ can be decomposed into multually disjoint, invariant and transitive with respect to the group dD(p) sets $W_j(p)$, $j=0, 1, \dots$ with $W_0(p)=\{0\}$. For any $q\in X$, if $\psi\in \mathrm{Diff}(X)$ and $\psi(p) = q$, then $(d\psi)W_j(p)$ is invariant and transtive with respect to dD(q). The set $(d\psi)W_j(p)$ is denote by $W_j(q)$. Hence the submanifold

$$X_{j}^{(s)} = \{(p, t) | p \in X, t \in W_{j}(p)\}, j=1, 2, \dots$$

of $X^{(s)}$ is invariant and transitive with respective to $(\operatorname{Diff}(X))^{\sim}$ (actually the restriction of $(\text{Diff}(X))^{\sim}$ in $X_j^{(s)}$. The trivial case is $W_0(p) = \{0\}$ and $X_0^{(s)} = X$.

For any $t_0 \in W_j(p)$, the isotropic group at t_0 is $dD(p, t_0) = \{d\psi | \psi \in D(p), (d\psi)t_0\}$ $=t_0\}$ The submanifold is diffeomorphic to the manifold $dD(p)/dD(p,\,t_0)$, which is a left coset. Thus every $W_j(p)$ is a C^{∞} -manifold, for $j \neq 0$.

n nei nie gegint, pie nie vielend beh

Suppose that m is a smooth measure in X, Diff (X, m) is the subgroup of all diffeomorphisms ψ in Diff(X) satisfying

$$\psi m = m$$

According to the measure m, we can choose the neighbourhood of p and the local coordinate there such that

$$dm(p(x)) = \prod_{j=1}^k dx_{j}.$$

Let D(p, m) be the group of all diffeomorphisms ψ in a certain $\mathrm{Diff}(O(p), m)$ and $dD(p, m) = \{d\psi | \psi \in D(p, m)\}$. In the following we only consider the case that $W_j(p)$ is also transitive with respect to dD(p, m) and there is a smooth measure in it, which is asle invariant with respective to dD(p, m). In this non-trival case, the manifold is called suitable. We shall then fixed a suitable $W_j(p)$ and denote it by T(p). This does exist, for example, if $T(p) = \mathcal{F}(p) - \{0\}$ and the smooth measure ν in it is

$$d\nu(t) = \prod_{j=1}^{k} dt^{j},$$

where $t = \sum_{j=1}^{k} t^{j} \frac{\partial}{\partial x_{j}}$. If T(p) is suitable, and $\psi \in \text{Diff}(X)$, then $T(\psi(p)) = (d\psi)T(p)$ is also suitable. The manifold

$$(X, T) = \{(p, t) | p \in X, t \in T(p)\}$$

is also denoted by \widetilde{X} . If $\widetilde{\nu}$ is any smooth measure in T, then there is a measure ξ in X which is equivalent to the product measure $m \times \widetilde{\nu}$. The measure ξ is denote by \widetilde{m} when $\widetilde{\nu}$ is ν . In the following sections we shall construct the unitary representations by means of \widetilde{X} and $(\text{Diff}(X))^{\sim}$.

2. By the method similar to that in § 1 in [6], we construct the unitary representations of Diff \tilde{X} . For the convienence of the reader we shall give the details.

Let \widetilde{X}^n be the topological product of *n*-copies of \widetilde{X} , $\xi_n = \xi \times \cdots \times \xi$, where ξ is a smooth measure in \widetilde{X} . Let $L^2_{\xi_n}(\widetilde{X}^n, W)$ be the Hilbert space of all W-valued, measurable and square integrable functions F on \widetilde{X}^n with norm

$$||F||^2 = \int ||F(q_1, q_2, \dots, q_n)||_W^2 d\xi(q_1) \dots d\xi(q_n) < +\infty,$$

where W is a Hilbert space.

Now we construct a unitary represtation U of $\mathrm{Diff}(X)$ in $L^2_{\ell_n}(\widetilde{X}^n,\ W)$ as follows

$$(U(\psi)F)(q_1, \dots, q_n) = \prod_{j=1}^n J_{\psi}^{1/2}(q_j)F(\widetilde{\psi}^{-1}q_1, \dots, \widetilde{\psi}^{-1}q_n),$$

where $J_{\psi}(q) = d\xi (\widetilde{\psi}^{-1}q)/d\xi(q)$. In particular, when $\xi = m \times \widetilde{\nu}$, we have

$$J_{\psi}(p, t) = \frac{dm(\psi^{-1}p)}{dm(p)} \cdot \frac{d\tilde{\nu}((d\psi^{-1})t)}{d\tilde{\nu}(t)}, \quad t \in T(p).$$

If $\xi = m \times \nu$ and $\psi \in \text{Diff}(X, m)$, then

$$(U(\psi)F)(q_1, \dots, q_n) = F(\widetilde{\psi}^{-1}q_1, \dots, \widetilde{\psi}^{-1}q_n).$$

Let ρ be an irreducible unitary representation of the symmetric group of order n

in W. Let $H_{n,\rho}$ be the subspace of all functions F in $L^2_{\ell_n}(\widetilde{X}^n,\ W)$ satisfying

$$F(q_{\sigma(1)}, \dots, q_{\sigma(n)}) = \rho(\sigma)^{-1}F(q_1, \dots, q_n), \quad \sigma \in S_n.$$

The restriction of U in $H_{n,\rho}$ is denoted by $V^{\rho,T,f}$ or simplely by V^{ρ} . This is also a unitarry representation of Diff(X). In particular, V^{ρ} coincides with that in [6], when $T = \{0\}$. But in general these two representations are different.

Theorem 1. If dim X>1, then the restriction of $V^{\rho,T,\widetilde{m}}$ in Diff (X) is irreducible. Proof By the similar method in the proof of the Theorem 2 of § 1 in [6], we replace the Lemma 1 there by the following lemma

Lemma 1 If p_1 , ..., p_n are n different points, $t_j \in T(p_j)$, j=1, 2, ..., m then there exist the neighbourhoods O_j of the points (p_j, t_j) in \widetilde{X} , j=1, 2, ..., n, such that

- (1) the closure \overline{O}_i of O_i is C^{∞} -diffeomorphic to a closed sphere, $\overline{O}_i \cap \overline{O}_j = \phi$ for $i \neq j$, and $\widetilde{m}(O_1) = \cdots = \widetilde{m}(O_n)$.
- (2) for any permutation k_1, k_2, \dots, k_n of 1, 2, \dots , n, there exists a $\psi \in \text{Diff}(X, m)$ such that $\overline{\psi}(\overline{O}_i) = \overline{O}_{k_i}$, $i = 1, 2, \dots, n$.

Proof Without lose of generality, we may suppose that X is an open sphere in the Euclidean space, and m is the Lebesgue measure. From [6], there exists $\psi_{ij} \in \text{Diff}(X, m)$ for any two points x_i , $x_j(x_i \neq x_j)$, such that (1) $\psi_{ij}D_{x_i}^{\varepsilon} = D_{x_j}^{\varepsilon}$, $\psi_{ij}D_{x_j}^{\varepsilon} = D_{x_i}^{\varepsilon}$ for a certain sufficient small positive number ε , where D_x^{ε} is an open sphere with center x and radius ε , (2) ψ_{ij} is an identical mapping in a certain neighbourhood of every x_k for $k \neq i$, $k \neq j$.

Now we construct a mapping $\varphi_{ij} \in \text{Diff}(X, m)$ satisfying the following condition: there exists a small positive number ε such that $\varphi_{ij}D_{x_i}^{\varepsilon} = D_{x_i}^{\varepsilon}$, $\varphi_{ij}D_{x_j}^{\varepsilon} = D_{x_j}^{\varepsilon}$ and

$$(d\varphi_{ij})(d\psi_{ij})t_i=t_j$$
, $(d\varphi_{ij})(d\psi_{ij})t_j=t_i$.

In fact, by the transitivity of T, there is a mapping $\varphi \in D(x_i, m)$ such that $(d\varphi) \cdot (d\psi_{ij})t_j = t_i$. Let

$$\widehat{\varphi} = \psi_{ii}^{-1} \circ \varphi^{-1} \circ \psi_{ii}^{-1}$$

Obviously, $\hat{\varphi} \in D(x_i, m)$ and $(d\hat{\varphi})(d\psi_{ij})t_i = t_j$. We can modify the mappings φ and $\hat{\varphi}$ in the neighbourhood of x_i and extend them suitablely so that φ_{ij} satisfies the above conditions. From § 1, we know that the mapping $\varphi_{ij} \circ \psi_{ij}$ preserves the measure \tilde{m} .

We take a suitable neighbourhood O_i of (x_i, t_i) such that $\pi O_i = D_{x_i}^s$. Let $\widetilde{\varphi}_{ij} \circ \widetilde{\psi}_{ij} O_i = O_j$. Hence

$$\widetilde{\varphi}_{ij} \circ \widetilde{\psi}_{ij} O_j = \widetilde{\varphi} \circ \widetilde{\psi}_{ij} O_j = (\widetilde{\varphi} \circ \widetilde{\psi}_{ij})^{-1} O_j = O_i$$

Theorem 2. If dim X>1, and ξ is an arbitrary smooth measure in \widetilde{X} , then $V^{\rho,T,\xi}$ is an irreducible unitary representation of $\mathrm{Diff}(X)$.

Proof We construct a unitary operator Ξ from $L^2_{f_n}(\widetilde{X}^n, W)$ onto $L^2_{\widetilde{m}_n}(\widetilde{X}^n, W)$ as follows

$$E: F(q_1, \dots, q_n) \mapsto F(q_1, \dots, q_n) \prod_{j=1}^n \left(\frac{d\xi(q_j)}{d\widetilde{m}(q_j)}\right)^{1/2}.$$

Then $V^{\rho,T,\xi} = \mathbb{E}^{-1}V^{\rho,T,\widetilde{m}}\mathbb{E}$. However, $V^{\rho,T,\widetilde{m}}$ is an irreducible unitary representation of Diff(X) by Theorem 1. Thus $V^{\rho,T,\xi}$ is irreducible unitary representation also.

3. Let $B_{\widetilde{X}}$ be the set of all finite configurations in X, $\Gamma_{\widetilde{X}}$ be the set of all infinite and locally finite configurations in \widetilde{X} , μ be a measure in $\Gamma_{\widetilde{X}}$ which is quasi-invariant with respect to $(\text{diff}(X))^{\sim}$, and $L^2_{\mu}(\Gamma_{\widetilde{X}})$ be the Hilbert space of all measurable and μ -square integrable functions on $\Gamma_{\widetilde{X}}$. We construct the unitary representation U_{μ} defined by

$$(U_{\mu}(\psi)F)(\gamma) = J_{\psi}^{1/2}(\gamma)F(\gamma), \quad \gamma \in \Gamma_{\widetilde{\lambda}}, \quad F \in L_{\mu}^{2}(\Gamma_{\widetilde{\lambda}}),$$

where ${J}_{\psi}(\gamma) = d\mu(\widetilde{\psi}^{-1}\gamma)/d\mu(\gamma)$.

Theorem 3. If μ is a quasi-invariant and ergodic measure in $\Gamma_{\widetilde{X}}$ with respect to $(\text{Diff}(X))^{\sim}$, ρ is an irreducible unitary representation of the symmetric group S_n , then $U_{\mu} \otimes V^{\rho,T,f}$ is also an irreducible representation of Diff(X).

Let ρ be an irreducible representation of S_n in W, n=0, 1, 2, \cdots . We use the similar notation $\Gamma_{\widetilde{X},n}$ as in [6]. Suppose that $\widetilde{\mu}$ is the Campbell measure of μ in $\Gamma_{\widetilde{X},n}$. Let $L^2_{\pi}(\Gamma_{\widetilde{X},n}, W)$ be the Hilbert space of all the W-valued measurable and square integrable functions F on $\Gamma_{\widetilde{X},n}$, with

$$\|F\|^2 \! = \! \int_{F_{2n}^{\infty}} \! \|F(c)\|_W^2 \, d\tilde{\mu}(c) \! < \! + \! \infty.$$

We construct the unitary representation

$$(U(\psi)F)(\gamma, q_1, \cdots, q_n) = J^{1/2}_{\psi}(\gamma)F(\widetilde{\psi}^{-1}\gamma, \widetilde{\psi}^{-1}q_1, \cdots, \widetilde{\psi}^{-1}q_n).$$

Let $H_{\mu,n,\rho}$ be the subspace of all functions F in $L^2_{\pi}(\Gamma_{\widetilde{\lambda},n},W)$ which satisfies the condition

$$F(\gamma; q_{\sigma(1)}, \dots, q_{\sigma(n)} = \rho(\sigma)^{-1}F(\gamma; q_1, \dots, q_n), \quad \sigma \in S_n,$$

and $\widetilde{U}^{\rho}_{\mu}$ be the restriction of the representation of $U(\psi)$ in the space $H_{\mu,n,\rho}$.

Theorem 4. If μ is an ergodic and quasi-invariant measure in $\Gamma_{\widetilde{X}}$ with respect to $(\text{Diff}(X))^{\sim}$ and ρ is an irreducible unitary representation of S_n , then the unitary representation of $\widetilde{U}_{\mu}^{\nu}$ is irreducible.

The proof of these two theorems is similar to that in § 3 of [6].

4. In this section we consider the unitatry representation constructed by the Poisson measure.

Let $\Delta_{\widetilde{X}} = B_{\widetilde{X}} \cup \Gamma_{\widetilde{X}}$. We add the point O to the set T(p) and define $\nu(\{0\}) = 0$. Let $\widetilde{\Delta}_{\widetilde{X}}$ be the set of all those configurations in $\Delta_{\widetilde{X}}$ of which there are only finit points (p, t) with have non-vanishing t. Let ξ be a smooth measure on X,, $\lambda > 0$ be a parameter, and μ_{λ}^{f} be the Poisson measure with the parameter λ cooresponding to the smooth measure ξ .

Theorem 5. If $\xi = m \times \tilde{\nu}$ is equivalent to a smooth measure and $\tilde{\nu} \sim \nu$, $\tilde{\nu}(T) < +\infty$, then the Poisson measure μ_{λ}^{ξ} is concentrated in $\tilde{\Delta}_{\tilde{\lambda}}$ and quasi-invariant with respect to (Diff(X))~ with the Radon-Nikodym's derivative

$$\frac{d\mu_{\lambda}^{\ell}(\widetilde{\psi}^{-1}\nu)}{d\mu_{\lambda}^{\ell}(\nu)} = \prod_{(r,t)\in\nu} \frac{dm(\widetilde{\psi}^{-1}p)}{dm(p)} \frac{d\widetilde{\nu}((d\psi^{-1})t)}{d\widetilde{\nu}(t)}, \quad \nu \in \widetilde{\Delta}_{\widetilde{\lambda}}$$
(2)

for $\psi \in Diff(X)$.

Proof We have to consider the case of $m(X) = +\infty$ only, since in the opposite case the measure μ_{λ}^{f} is concentrated in the set $B_{\widetilde{X}}$. We constuct a sub-manifold $Y \subset X$ with $m(Y) < +\infty$. Let $\widetilde{Y} = \{(p, t) | p \in X, t \in T(p), t \neq 0\}$. By the definition of the Poisson measure, we have

$$\mu_{\lambda}^{\mathbf{f}}\{\nu\in \Delta_{\widetilde{\mathbf{X}}}\,\big|\,\big|\,\nu\cap\widetilde{Y}\,\big|=n\}=\frac{(\lambda m(Y)\widetilde{\boldsymbol{\nu}}(T))^{\boldsymbol{n}}}{n!}\,\boldsymbol{e}^{-\lambda m(Y)\widetilde{\boldsymbol{\nu}}(T)}$$

Hence

$$\mu_{\lambda}^{\mathbf{f}}(\widetilde{\Delta}_{\widetilde{X}}) \geqslant \sum_{n=1}^{\infty} \mu_{\lambda}^{\mathbf{f}}(\{\nu \in \Delta_{\widetilde{X}} \mid |\gamma \cap \widetilde{Y}| = n\}) = (e^{\lambda m(Y)\widetilde{\nu}(T)} - 1)e^{-\lambda m(Y)\widetilde{\nu}(T)}.$$

When the submanifold Y varies and $m(Y) \rightarrow \infty$, we have $\mu_{\lambda}^{\mathfrak{s}}(\widetilde{\Delta}_{\widetilde{\lambda}}) = 1$. The other part of Theorem 5 can be proved by this equality.

Theorem 6. If $m(X) = +\infty$, $\tilde{\nu}(T) < +\infty$ and $\xi = m \times \tilde{\nu}$, then the cooresponding Poisson measure $\mu_{\lambda}^{\mathfrak{f}}$ is concentrated in $\widetilde{\Gamma}_{\widetilde{X}} = \widetilde{\Delta}_{\widetilde{X}} \cap \Gamma_{\widetilde{X}}$, quasi-invariant and ergodic with respect to the group $(Diff(X))^{\sim}$.

References

- [1] Goldin, G. A., Grodnik, J., Powers, R. & Sharp, D. H., Jour. Math. Phys., 15 (1974), 88.
- [2] Goldin, G. A., Menikoff, R, Sharp, D, H., Particle Statistics from induced representations of a local current group. (preprints).
- [3] Matthes, K., Kerstan, J., Mecke, J., Infinite Divisible Point Processes, John Wiley Sons, (1978)
- [4] Menikoff, R., Jour. Math. Phys. 15 (1974), 1138.

ในสน้ำของที่เป็นได้สะเทษ เรื่องรู้

- [5] Xia, Daoxing (夏道行), On the represtatiots of the local current algebra and the group of diffeomorphisms (I), Sci. Sinica (1979) Special Issue (II), 249-260.
- Верщик, А. М., Гельфанд, И. М., Граев, И. М., Представления Группы Диффеоморфизмов, УМН, 30 (1975), Вып. 6, 2—50.

关于局部流代数与可微分变换

设 X 是一个 k 维的连通的 C^{∞} 流形, $\mathrm{Diff}(X)$ 是 $X \rightarrow X$ 的可微分变换且在 无 限 远 附近不动的一一映照全体所成的群。 本文继[5]以后,利用 X 上的张量丛给出一类新的 既约酉表示,这种酉表示密切地联系于拟不变测度,特别是 Poisson 测度。

> al continue de la companya de la co White of an about the day of the printing