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In the past 25 years many works'havé beén' done by Chinese and Soviet mathe-
maticians on the quahtatlve theory of the real quadratic dlﬂ‘erentlal equatlon

dy Q2<$ ) ‘
Ao Py(w, y)’ ' @

where # and ¢ are real variables, P, and @, are polynomials of de'gree' <2 with real
coefficients. (See [1, 2]). Meanwhile, in the Soviet school, researches about global and
local aspects of the general polynom1a1 system’ :

“Z=P(Z) i C ©)
in complex variables have also been carried out gradually (see [8]), where P(Z) is-
polynomial in Z = (Zy, -+, Z,) of degree <N, and Z€C" Up to now, ‘one can sée
very little affinity between these two areas, although they have 0bv10us1y a common
objective: 10 solve the second part of the Hilbert’s 16th problem. '

As an intermediate work, the purpose of this paper. is to carry out-a rudimentary
investigation of the quahtatwe property of solutions or integral surfaces of equation
(1), whers, instead, we will assume throughout this paper that z, y are ‘complex

" variables, while Py and Qg still remain to be polynomlals of’ degree <2 with real

coefficients. .

§ 1. Some properties of solutions of a complex
differential equation with real coefficients

Consider the equation Co
PG, 9 @
where P and Q'are power series of the complex variables z and y with real coefficients.

‘Let =, +12s, y=v;+4ya, then on separating real and imaginary parts, any integral

f(=, y)=00f (3) can be thought as a 2-dimensional surface

L
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S: fiay, @s, ys, ¥2) =0, fa(as, @, Y1, ya) =0 €y
in the 4-dimensional (a;l, Za, yl, Ya) real space '
Let ' ‘
F(z, y, C)=0 - , (5)

be the general integral of (3), then, generally speakmg, (4) can be obtained from
(5) by giving C a definite value, real or complex Furthermore a solution of (3) may
be a multiple-valued function, which can have even infinitely many branches. Hence
in the sequel ‘we must fix a smgle -valued branch of this solution, otherwlse even the
unlqueness of solutions of a boundary valie problem WJ_ll not. be ensured

Example 1. Consider a very simple special case of (3)

ﬂ=—x& - (6

where >0 is real and irrational. The general solut'ionyof (6) is
’ oy=C, ¢
Let o=re' =, +iw,, y= yl-}-zyg, C= C’1+1,O'3, then one can get from: (7) a family
of integral surfaces B f .
o (yl oosu(0+2kav) ~Ys si_n_fb(.ﬂ + 21m) ). =_0,'1, -
{W‘(yl sin,w(0+2kav) +4/5 cosu(0+2icar)) =0, ,
- (k=0, £1, i2--)' =

®)

5for any fixed value of 0 . . e
. In order to find the 1nterseot10n of (8) with, the real plane a;r-yg—o one needs
only to put in (8) a:g—yz—() =0, r=a,. Now, there are two different cases. .
- Case A. k=0, Then we get from (8) . SRR ‘
: . wiy;=Cy; O 0'2, : : .

“Which means that the infersection curve of (8) for O'= - Cyand k=0.with the real plane
is just the integral curve of .(6) which corresponds to the .same,eonsta_nt C,; if (6) is
considered to ha\re real Va,riables.. Moreover, we see that if Cy#0, then (8) for k=0
does not intersect the real plane. :

Case B. k+0. Here the intersection curve must satisfy ‘both the two equations

- wly cos Zlm,u_:O’l, ' w’fyl'sin.zkaw =Ca. )
For C3+0, (9) yields ' o
01 = 02 cot 2](775’/1/, R (10)
from which O, is determmed by &, ,u, and Cs. The intersection curve (9) is then
. _ : 01 L 1
Ys= cos 2k c: - 101 R (1)

‘That is to say, for O5%0, k=0, only when O satisfies (10), the integral ‘surface (8)
will intersect the real planie at'a curve (11), but here O} 0, , different from “that of
Oaso A. R
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Tt is easily seen that for Ca=0 and k+0, (8) will intersect the real plane only
when C;=0, and thus the intersection will always be 2, =0 and | y1 —0 for all k #0.

To sum. up, we-see that for a fixed real number C}+0, one can determine
mﬁnltely many pairs of Oy and O, say, (C”f, (29} by (11) and (10), correspondmg to
k=+1, +2,. such that all the surfaces (8) Wlth C= O’"+q,0’ will 1nterseqt_the real
plane at the same curve (11) In other words, 1f we ta,ke ' L ‘

. _ a:lyl = O'1 When g = yg =( ‘
asa boundary condltlon for the equatlon (6) then the solution i is not un1que Slnce in
this paper 'we are only 1nte1'ested in ‘the mtersectlon curve of mtegral surfaces of a
complex equation (3) with the real plane, we will agree here after to. take only the
fundamental single-valued branch of any multi-valued solution. : s

It is interesting. to note-if we put w=0o-+4% in (6), such that o, T and o‘/ T are all
positive irrational,:then parallel to’ (8) and (9) we will have now: :

{0’1 776~ O+ D [y 008 (710 140 (042kw) ) — yasin (v Inr+a (0+2kw)) ], @)
Oy =17~ %) [y, gin (vIn r 40 (64 2kw) ) +y2 cos (1 In fr+o-(0+2lcar))] -
and (forwg—yg—O 0=0, vy=u1) e sl
{ O, =afy,6~% cos (v In o+ Zkaw) , ®)
Ca=afyse~ 7 sin (v In'wy + 2kewo)
Thus for any ﬁxed C=0C:+ z02, €©)) Jmphes ,
oy = O™, |0 | =~/C3+C3 0’2 (11)

‘For k=0, +1, +2, - the family of interseetion curves (11)will be dense-in the real

plane, which reveals the density property of equation. (6).

It is easy to prove the followmg fundamental.

' Theorem 1. T f an mtegml swface N of (3) 'z,ntefrsects the real plane at @ cwrfuel (¢
may consist of more than one connected components), then l is an mtegml ‘eurve of tke '

'cowesgyondmg 'real equatwn

doy P, y1) ° D A T .(12)

- Proof Rewrite (8) in the form of a dynamici system (% real): .-

N -P@ ), H-Q@y. 09
Separatlng real and unagmary parts gives 4 _ |
» | '2? =Py (@1, @, ¥i; Y2), - d L2 —Pi(ws, o5 95 U2),"
Cdys “dy. (18

dya
di Qr (CU1, g, ?/1, yQ):,‘ dt _-QJ (ml: $2, yi; yﬁ)
Notlce that for any positive 1nteger n, we have

7 (wgtina) s [af Faa (e )]+/1,:v2[ ], ete., -

. (14) gives when a;,,—yg—O I
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-%a,mmmmﬁmnm>9%émmmmwﬁm

dt Sy
((ii’gl —Qr<£vi, 0 Y1, O) Q(mly y.l) d/y2 _QJ (wly O Y1, O) O

Whlch means that any traJectory of 14), startlng from a pomt of 1 will always remain
in the real plane, travelling the Whole or a connected component of 1, and hence isalso
a trajectory of the dynamical system obtained from (12) )

Remark. If we put in (14) o, = y.=0 (or = ya=0, or By =y = 0), in general we

L. d:vi dy]_ . ’ dfb‘l _ Y2 d(l/g . B dﬁl}g dlyl —
- will notget T T 0( 7t _O, or —==— 0) So, even if the

plane @y =4;=0; o1 =9a=00r azg——(yl—O interseots S ata curve ¥, it meed mnot be a
trajectory of (14). ‘

‘ Theorem 1 implies that, in order to investigate the property of intersection curves
of the ‘general ‘solution surfaces F(w, 9, C)=0 of (38) ‘with the real plane, it is
- sufficient to consider C' to be a real constant only. Because at this time F (x4, Yi, C)=0

will represent a.general solution of (12),'and the loous of this: famlly of. curves will
already fill up the whole real plane. ‘

§ 2. Propertles of Solutlons of a Complex Quadratlc
System w1th Real Coefﬁc1ents

* For the complex quadrahc dlﬂ'erentlal system with real coefficients oorrespondmg
to equation (1), i. e.(with-t real) ' '

=P y), L %@yx_;, @
‘the deﬁmtlon ofa crltlcal point is just the same as. that for a real quadratlc system
But now a oritical point may have complex coordinates. Hereafter we will call it a
real (complex) oritical point, if it lies (does mot he) on the real plane @, —=ys=0.
We can find in [4] many 1nterest1ng properties of the trajectories of a real
quadratm system, and now we are going to do the same 1nvest1gat1on with regard to
(2%).

- The general equations of a 2- dlmensmnal plane in the real 4- d1mens1ona1 space

are .
041 -+ asa+ sy - asta+as =0,  Bamy+ Bawa+ Bays+ Beya+ Bs=0, (15)
‘Of course, (15)can not always be written as an equation of a complex line

as+by+e=0, ' (16)
since (16) is equivalent to ' e -

1% — @a®a+ b1y1 — bayat+€1=0;  @.@s+ agwy+b1ya+bays+0a=0, @an)
where a=a;+iaa, b=">01+4ba, c=cy+4ica. Hence we call (15) a general (2-dim.) plane,
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and (16) a special (2-dim.) plane LTl ;

The proof of the following theorem is just the same ag that of the correspondlng
theorem for a real quadratic system. ‘ . T

. Theorem 2..:The special:plane (16) has at most 2 tangent pomtsl) with fmtegml
surfaces of (1%), otherwise, (16) 48 dtself a. solution of (1).. T

Theorem 8. If (1) has no Specml plane solution, tken any three eritical points of
(1*) can not be collinear.

Proof Suppose on the contrary,there are 3 critical pomts Py, Py and P; lying ona
straight line L. Obnously, we.can find a speolal plane (16) passing through L. Sinos
any P; can be taken as a tangent pomt of (16) with some integral surface of (1),
Theorem 2 1mp11es that (16) is a solution of (1), oontrary to the hypothesns

" Remark. If (1) has spemal plane solutlon, then (1*) may even have 4 collinear
critical points. For example, if Py(z, y) =a?—y?, Q(x, y) =ay, then (1) has a solution
y=0, while the origin is a critical point of multiplicity 4 of (1*).

The following theorem is a generalization of the well-known property; “Any closed
orbit of a real quadratm dlﬁ'erentml system is a convex oval” in [4].

Theorem 4. T fa plané 11, mtefrsects an fmtegml surface S of (1) at a closad orb@t 4
of (%), then I must be convex. -

Proof Let (15) be the equations of IT;. Introduce ’th_e' following coordinate trans-
formation with real coefficients ‘ _ v - ,‘ |

@ = 0oy — T+ 0gY1 —AsYa, .
| %= 0attagtytagys +ayatas,
Y1 =B — Birat Buyr— By, .
Yo=Pats + Bawa+ Bsyr+ Buya+ Bs.
(18) can also be written as .
o' =aw+by+e, Y M:+/wy+v R (19)
Where o =ah+iwn, Y =1+ iyh, B=21+i2a, Y=y1+iys, a=ag+iay, b=astiaz, c=1ias,
A=PBa+1B1, w=PBs+1Bs, v=1B;. Suppose in the new coordmates (1*) becomes :

“(18)

(g:,l '_Rl,(w‘l) yl; m2: fl/’2), %‘=R2(w:'l; yI: w2: y2): L
day’ dy . ‘

dt =R3(w’11 y;-l $,2,~ y'2) Tdyt_2=R4(wZ,l) y:’l) a;IZ, y,2)
Now:IT, has equation b= yz—O i:-e:, it isrthe new real plane and 7 is a olosed
orbit of the new real quadratic system ’

R, 4, 0,0, MR, 4, 0,0,

Hence from [4] s VZ must be convex

- 1) i.e,a pomt at which Qa(@, Y) -—-Ci, and hence any cntlcal pomt on (16) can be considered as a

_ 9( ) y) .00 _
iangent point bF this plane, - SRR g e
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Remark. If the closed curve ! in Theorem 4 is not an orbit of (1*), then we can
not prove its convexity.v P . N '

Similar to [4], we have also the following two theorems, the proof is.omitted.

Theorem 5. No (2-dim.) plane can imtersect any integral swface of (1) at ‘three
disjoini closed orbits of (1*) with relative position "

O or
O O

Theorem 6. If an integral surface S of (1)intersects the real plane at a closed ourve
(4t must be an orbzt of (1*)) s then S necessafr'bly has common pomts mth the plane

7 D, aa Ps-i— Q2— 3 ) ' (20)

- Remark 1. The common part of § and D need not be a l-dimensional curve.
Example 2, The.equation (a, b, ¢ real) -

dy _ - w(ax+dy+e) :
de —y(aw+by+e)+1—a’—y?
has #®+4°=1 as one of its integral surface, which intersects the real plane xa——yg—O

at a circle 22+ y?=1. It can easily be proved that now

oP 2. 3Q2
am

bas only two points in common Wlth a:2+y =1.

=(b—-2)a—ay=0

Remark 2. Suppose the condition of Theorem 4 is satisfied, since (20) is invariant
under the coordinate transformation (19) » D will still have common points with S.
However, if the (closed) intersection curve of S and II, is not an orbit of (1*), then
S may have no point in common with the plane D.

Ezample 3. The equation
' dy _z+(@—g?—1) ' (21)
de  y+ (@®—y*—1) . : A

has an integral surface . o o
_ 8. 22—1P=1 or &—yi—-ai+yi=1, @Wa—yYw.=0,
it interseots the plane @s=y;=0 at the circle 2i-y3=1, but the plane
LorZh 2e-9)-0
has no commor point with S. It is eas11y seen that the circle wa=11=0, af+y3=1 is

not an orbit of the corresponding dynamlcal system.

§3. Variation of perlodlc orblts with respect
to the pdrameter.

In this section we will give three examples in order to show that the investigation
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of a polynomial system with real coefficients and complex variables # and y will make
clearer the property of periodic orbits of the corresponding real system.
Egample 4. The system

L —vts@hy oy, G oty () e
has an integral surface
Py =1, (23)
Wh1ch in the (@1, %a, ¥4, Y¥a) space can be written as : :
: o3 +yi—af—y3=A, 2123+ Y192 =0, R ' (24)

When A>0 (28) intersects the real pla.ne at a cirele af+yi=A, which is the unique
(unstable) limit cycle of the correspondlng real system. This circle tends to the origin
as A—>0. If A<0, then (238) has no common pomt with the real plane. The origin in the
real plane is a stable focus when A>>0, an unstable focus when A<C0.

Rewrite (22) as ' '

[ ‘f;;l = —y1+o: (2 497 — o — 98— 1) — 200 (0100 +y110)
03? =1+ <w¥+y%—w§-y§—?§) —2@; (@122 + Y192) > '
9 das . R . . . : ) (25)
T —Ya+ @ (@i +yi— 23— Y5 — ) + 201 (2122 +1190), : '
W —sn-+ya o+ =495 — 1) +20s (osza+0a32).

Putting in (25) o= y1=0 gives

dy1 e das =1 : 22
dt dt FO & y2+w2( x5 —1Ys 7\‘) » B | (26)
e g~ gi).

From this we see that all mtersectlon curves of integral surfaces of (22) with the
imaginary plane 2, =g; =0 are traJectorles of (25) ; and it is easily seen that when A>0
the imaginary plane has né common point with (24), when A=0 they have a unique
common point (0, 0, 0, 0), when }\,<0 they intersect at the circle @3 +y3= — A, which
is the unique (stable) limit eycle of (26) in the imaginary pla',ne'.‘l

It is well known that A=0 is a bifurcation value of the so-called Hopf bifurcation

of (22), when (22) is considered to be a real system. But for a complex system (22),
A=0is only a bifurcation value of the integral surface (24). When A varies from

positive to mnegative, the shape of (24) undergoes a sudden:change, so that the
intersection circle of (24) with za=y,=0 shrinks to the origin, and ‘then another
intersection = circle of (24) with #;=y,=0 appears from the origin and grows
gradually. Moreover, all these intersection circles are trajectories of the oorrespondmg

.4-dimensional gystems (25).
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A somewhat different example is the followmg
Ezample §: Consider the system

%‘.’;{_—y(am+by+0)+?\- o — (U, _Z_-’/_=m(aa:+by+c) e

wa, (28) or (24) is again an integral surface. It has been proved in [5] that if A>0
- ?>A(@?+07),

then (27) hag a unique limit eycle #¥4y2=A in the real plane; which: will shrink to

the origin when A—0. Let us consider the case When A<0. Put A= ——,u, and rewrlte

_ (27) as o . o ) .

- dwy

= i—a(wﬂh “’72?}2) b(y1 )—0y1+a72+y2—w1 yl
‘f;? =~ a(@1Ya+2a1) — 2041y —cYa—2(2203+Y19), - nily B
A Co e 1 (28)
. dyl ——a(wl—m2)+b(w1y1—w2y2) +ca;1, o :
l. (f;éa = 20&)1&72 +b (wlya + Q)le) ’+‘ 0%2
Let 2y=9:=01in (28), we get
day = ija(ama+b )-Hv + s dyy ( +b )
ai 2 (awa+bys 3+ys—u?, pr @ (a@s+0Ys),
-day ; S (29)

. @ v Ta
50 that we can not get the desired closed orbit in @, =, =0, conirary to that happened
in Example 4. Now let us examine. the equation satisfied by the projection on (wg, Ya)

plane of the family of traJectorles on (23) We solve from (24)
LaV w2+‘y2 :Fyg\/fl}2+fl/9

=4 s 3 30),
.yl_ \/wz'l'(l/z _ \/$2+?/2 . ( )
substltutmg in the ‘second and fourth equatlons of (28) gives -
dw, [‘1(92 582) \/w2+92 w —26-72@2 ’\/992—*-92 ,U/ ]
@ F ,\/w T kP v
2T Y2 . o o (3D

dy2 =TT fngﬁ P [2“$2ya+b(y§—m§)]+cw2 .

From (31) e see that the intersection cirele @3+ yz=u? of (24) and the (wg, y;,)
_plane is a closed. orbit. Introduce in (31) the curvilinear coordinates
. wa=p(@—n)cosl, ys=wmw(l-n)sinf, (32)
under Whloh n=0 corresponds to @3+ y5=u? . In order that (31) can be a real system
assume n<x0. Noticing ‘that under (32) we have :
eyt =pP(n?—2n), yi—a3=—pP(l- n)”cos20
i 22019 = p?(L~n)28in26 - '
and
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ilzﬂ;a= (1— n)smada ,u,cosﬂ-—@— ‘gzs =p(l— n)eos0 0 /.bsm9 . (33)

and putting 7= ,u(l n)t we can solve from’ (31) and (33)

—-.==ci,um/ n(n—2 ..‘(—:asm&—i-.b.cosﬂ), Coond
34
i(l n),u,\/n(n 2) (acost9+bsm6) s

Slnce —Z% has the same s1gn as G’ When n] is sufﬁc1ent1y small we see from (34)

that 23+y3=p? is a limit cyocle of (31) from' outside. For A= — u? there is no point on
(24) satisfying 23+y3<<u?, the projecting system “(81) is thus only defined for 3+ 43
=>up®. However, we have in (30), (81) and (34) both plus and minus signs, so 23+ 43
= 42 is still a twosided Timit cycle on (24) ‘

Remark. For A=pu?>0, if we s0lve o, ¥ from (24) subst1tute in the first and
third equations in (28) and introduce in (a1, y1) plane the same curvilinear coordi-
nates as (32), and also the' change of time scale: 7= ;1,(1 n)t we W111 ﬁnally get

d0
,w(l n) .
i@—n)—(b cos0 asmﬂ)

+acos6‘+bsm€

dr :
From the condition 62> u?(a®+b?) we see that 22+ y2=pu? isalso a limit oyocle on (24).
But different from (31) » . the projection of trajectories of this 1ntegra1 surface on the
(4, 1) plane satlsﬁes the equa.tlons .

L —yl(aw1+by1+c) ”‘(wl“Ly’ ) (ay —ba)

dt a4yl .
dy, Y1 (“51 +y3—p) (ayl — bay)
Fraatd (aa:l +by; + 0) : —Ere ,

which are defined for all (zy, y1). _ :
It is also easily seen that in Example 4, the 1ntegra1 surface (24) is filled ‘with
closed orbits, and there is no limit oycle for the dynamical sub-system on (24).

In the above two examples we see that with the Varla.tlon of the parameter limit
cycle in the real plane shrinks to the or1g1n and then reappears in the imaginary plane
or in a certain integral surfa,ee In the following we will give a third example, which
shows when two limit cycles in the real plane appi‘oach to .e@ch other, coincide and

‘then disappear, how we can find them out agam

Ezample 6 Consider the system

~[ y+w(w +y 1)’]cos?» [w+y(w”'+y 1)“]sm7~

(85
dy [w—i—y(w”-&—y 1)2]cos?»+[ y+w(w+y 1)2]smk )

As a real system (35) has been dlscussed somehow in [5] One finds that (85) can be
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pbtained from

dzr

dt—~y+w<m+ry i Wy (36)

- dt
by rotating its veotor field through an angle A. For o<a<Z R (85) has two limit oycles

A+y?=1+~/tanh, TN (37)
They coincide and become a semi-stable cycle 2 +4?=1 as A—0, and then disappear as
A becomes negative. Let us examine ;(35) as a complex system for any real A, by using
the method of the former two examples. The integral surface of (35)

: : (w’—l—y —1)2=tan A . - (38)
can be written as

[ ebrat- 2—1)? 4(@watyn)*=tand, (39)
(o — @i +yi— 93— 1) (222 +1192) =0, .
If tan 7\.>0 then (89) is equlvalent to _ ot
oi—ad+yi—yi—1=t~/tand, =122+y192=0, - _ (4()?
if tan 7\.<O (39) is equivalent to ' V
wf—ai+yi—98—1=0, @xm+uys=tin/Tan’, (4

2
In the following we discuss only the latter case. First, write out the equivalens
4-dimensional system of (85) '

dmi ={—yi+ao (2} -3+ 4i— 1) 4y (w49 +91Y2)?
— 4wy (i — 25+ 97 — 2—1) (971”2 + yl’yﬁ) }GOS A
- = {m At (@ -2ty 3= 1)7 —dys (w@e -+ yuya)?
—4ys (2 — 23 +yi— 98— 1) (2222 +yuy2) }sin A
=Ry (», y)cosA— Ry (x, y)sinA,
Ws — Ry(o, y)oosh+Ru(, Y)sind,

Y dwg s s s s - (42
7 ={—vatwa(@i—a3+yi—y5—1)? —das (@122 +y1ya)?

+ 4wy (28 — 25+ 43 — 93— 1) (@122 + g19/2) }oos A

— {wa+ya (2 — a8 +9f — 95— 1)? — 4y (@122 + y19/2)?*

+4y, (o} — 23+ 4} — y3— 1) (2222 + yuga) }sin A

=R;(w, y)cosA— Ry(w, y)sinA, ‘

dys :
L di
Solve @, y; from (41), we get
1
2 (m2 +43)

=R,(@, 9)cosh+ R;(w, y) sin A,

€y =

v/ — “tan A wa— y;,\/4y2(w2+y2+1) +tan?\. 1,

= [/ —tan X ys+ o9 v 493 (@34 y3+1) +tanir],

2(@3+y3) +y2)
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Subst1tutmg in (42) gives

‘j;ﬁ =[—yy+aatan A] cos A— [wg +4a osyk , .
dt2 = [wa+yatan A]cos A+ [ —ya+ a5 tan A]sin A= os)»

Its phase-portrait, after projecting on the (s, Ya) plane, is a family of circles.
Similarly, if we replace (41) by (40), solve from it zs, ys, Or @, 41, and then
substitute in (42), the result will be the same as (43).. So the situation is just the same
as in Example 4, i. e., we can not find in the integral surface (38) limit cycles which
disappear in the real plane as A varies from positive to negative.

It is worth notmg that if we put in (42)a,;=y;=0, then we get

(gf =[- y2+$2($2+y2+1) "Jcos A— [ +ya (@ +y3+1)2]sin A
dy’ [:vz—l—ya(mz—l—yz-l—l)”] cosA+[— yg—l—wg(wz—i-yz—l—l)"’]sm} o (44)
dwl — dyl =0,
dt ~ dt
Transform the first two in polar coordinates
Zf; —-rr[('r +1)900sk smh] fg —cos?»—%—(fr +1)Ssm7» (45)

12 limit cycle

fr-'=\/\/tan)» -1

bifurcates from the origin in the (s, ys) plane, which is, just come out of the one

shrinking to the origin in the (#1,"y1) “planie when A=

4 But the other limit cycle

still remains in (21, 1) plane.
In order to find the missing semi- stable cycle of the real plane when A varies from
positive to negative, let us look for a plane -

o= kwa,  y1="kys, o (46)

Where k is real, such that it will intersect (41) at a 011'016 For this purpose we
‘subst1tute (46) in (41), and demand that

( 1) (@3+93) = =1 and lc (23493 = i \/ —tan A _ 47

will be the same equation. This gives
v =tan . B+ 2k—~/—tan 1 =0, o 48)
Obviously, we must take llc |>1, and then (48) will give only two values of lc
14 \/ 1—tan A
h=t—— == (A<0 49
mr 0. @

Substltutmg (49) in (46), and (46) in the latter two equatlons of (42) gives



‘468 : CHIN. ANN. OF MATH. VOL. 3

— {@a+ya{ (Bh*— 108*+1) (wz+yz)2— (6%°~2) (wz+:l/z) +1]} sin A

1= 0 — (gt [ (BH— 10 +1) s+~ (O —2) (39D + 11} os
{l = M 1(@a, ya) cos A — M, (wg, y,,) sind, | R (50)

dt (%, ‘.1/2) cos 7“" M 1(@a, :ljz) Sln 7\.

Now, let us solve the equatlon Lo L _ e
_ (5k* —10%*+1) (a3 +y3)3— (64— 2) (af+y3) +1—tan A=0. . -
in 2343, this gives two solutions T L
1 ‘ (F2+1)2 .
k=1 (5k*—10k*+1) (K —1) *
The first represents a circle in (wg, %) plane when || >1 while the second represents

2, 2
vz +Yz=

and a3 +¢3= (51)

a oircle wher Ik | >——-\/ 5-+2+/5 ~1.87. Substitute (51) in (50), notice that the value

in the [ ] equals tan), so that (50) becomes (48). The circle®

1

vy=kaws, Y1=kya, w2+y§=—k.§—_—1-‘_

(52)

lies in (41), along which also stands , . fo ey
dt (@2~ kag)= ('yl kyz) =0, (63)

This shows that (52) is aotually a closed orb1t of (85). But (53) does not hold along
the 011‘016
(Ic”—!— 1)2
B —10+1) (P —1)
(except when |k|=+/8, for this value (54) coincides with (82)), since o} — a3+ ¢ —
93—1+0 on (54). Therefore, (54) is not a closed orbit of (85).
In polar coordinates, (50) has the form

_ 105 a__ 1 (e (P12 |
G =TGR =10841) (rf ) (- GF =108 1) (P )>°°s7“’

SN 2 2,
| dg =14 (5K —10k*+1) (Ts“"/c%f)@h B = 1(()]122:3 ) ).
hence (52) is really a limit cyele in the plane (46). Since k. has two. values in (49),
(52) actually represents two limit oycles, each in a plane (46) They are Just the limit
cycles which d1sappear in the real plane when A changes from positive to negative. This
is because as A—>0, we have |k|—>c0, and in (52) 23-+¢3—>0, but
k?

a;1+y1-————>1

-1
Remark The last equatmn in (52) can be written as

—1+~/IT—tani
: 2

1) For the sake of convenience, we call it clrcle, too. Actually, only its pro_]ectlon on (wg, yz) plaue 1s a
circle. : : : B : :

(54)

¥y=kxs, Y1=hys, - 23+y3=

w+y
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and from the first two we get

Y 2 —
oi+yi= kgk — 12 fanh

Then by means of (41), we see that the two circles in (52) satlsfy the equations
22+ —a:1+y1—w2 Y5+ 24 (w122 +419a) =1+ q,\/ —tan A =1++/tana  (55)
respectively, and this is just the same as (87), although A is negative now. Notice that

the plus and minus signs in the right hand side of (55) only explain that these two
cireles are situated in different planes of (46), but not signify that they have different
radii.’ : .

The reason we can find the dlsappeared 11m1t cycles of the real plane in any other
place in the above three examples is that in every example the equatlon of an integral
surface f(z, y) =0 is known. And if this integral surface interseots the real plane, the
intersection. curve is always a limit ‘ayole, i. 15 f(wy, 1) =0 is-'the 'equation’ of this
cycle. On the other hand, if only the existence but not the eqﬁﬁtien“of ‘the: 11m1t cycld
is known, it will still be a difficult problem’ to find out the disappeared Timit-eyele of
the real planeas the parameter varies. Thus, for example the real quadratic: dlﬂ'erentlal
system of type (I) (see[6]) R G ' o

dm _ 9 . dy —
when 81>0, and

v _ 9y _

v y+ 0z + oy +ny?, 7

when 8n>0 all belong to this case. We have conﬁdence in this problem that the same
situation would appear for these systems.
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