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§ 0. Introduction
0.1. Cauchy-Fantappié kernels
In the case of one complex variable, the Cauchy kernel gives rise to gingular

integrals on boundaries of arbitrary smooth domains. Cauchy kernel deﬁnes an
analytic function Hu on plane domain Q by -

Hu(w) = J H(w z)u(z)da, wE.Q
z€Db.
where H (w, 2)is the Cauchy kernel [271:1,(2 fw)]‘1 olcr,= is LebeSgue measure on-dQ.
There is the famous Plemelj formula _

Ha('w) = —;—u(w) +p.: Y.Lem H{w, 2)u(z)do., wEdQ, - (0.1)

as w approaches b2, where p. V.I is deﬁhéd_ by 7

Z€bQ

&->0

" "limLew H(w, z)u(z)da;; (0.2)‘

>0 . lz—w|>e

| An mportant point is that the deleted mneighborhood around w in (0. 2) ‘i, 8.
{€bQ, |z—w|<e} is symmetric. If the deleted mneighborhood around w is not.

symmetric, then the limit might fail to exist or the number % in (0.1) might have

to be modified. There ig a corresponding Plemelj formula too as w approaches bQ from.
the exterior of Q. According to (0.1) and the correspondmg formula; we may establish -
the theory of smgular mtegrals and: singular mtegral equatlons of one variable. For
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example, we can obtain the famous Poincaré-Bertrand formula: If @€ Lipa, (0<a
<1), then :

o | BEp-to. o
Here H is th‘e‘, Oauchy‘ singular ;iiitegral\_ operator defined by.(0.2). Using these
formulas, we can solve the singular integral equations with Cauchy kernel, Hilberb
kernel and some important boundary value problems. There are many works about
this topio([1, 2D..

In several complex variables, there is no perfect analogue of the Cauchy kernel,

what come closest to it are certain CauchyfFantqppié (C-F) kernels

| K (w, z) = ;: O Nz oo Nz, wER, 2€ 50, 0.4)
where - » -«n('r—l) o N o v
=D F (=11 (2wi) S (0.5)

0w )= Bewaw, ), 08

©=010ga N+ ABgate+ (= 1)" g, ABgs A+ Ay, (0.7)

These kernels are different from the Calichy kernel of one complex variable, they
depend on the domain Q. But they can be constructed for a wide class of Q° (smooth,
bounded strictly pseudoconvex domains). The: very important one of these domains
is the ball. Henkin, Ramirez, Stein and. Kerzman have consfructed some important
O-F kernels which are analytic when w € Q. These kernels are called Henkin-Ramirez
(H-R)kernel or Stein-Kerzman (8-K) kernel. It is well known that the requirement
of the analyticity of the C-F kernelé i‘s/irersr iﬁpOrtant.

10.2. Cauchy integral on the sphere’ _ :
Singular integrals on the boundaries of special domains in C* (such as the ball)
first appeared and were studied in connection with Szegd kernel. Generally speaking,
the Cauchy kernel ig different from the Szegd .kernel,‘ O-F kernels are in the spirit of
the Cauchy kernel and not of the Szegt kernel. However, if Q is a ball in C*, the two
kernels coineide. In 1965, Kimg‘,n S. and Sun, C. K. -studied the Cauchy integral
on the sphere in C*, They proved: If z— (21,/ e, 2) € Cr, 22/<1, wu/'=1, f(u)€ Lipp
(0<p<1), then when 2z approaches » (v’ =1) along the nontangential direction, we

nave - .. - IR S TR (A B S D P UITNLI SRR EFRPPE SO S
| % ‘a)vg:,L’.‘_; Lﬁ!=1 ﬁ%=%—f@) +P.v. mi_; J‘,;a,=1 (ILY:))T(,%T’ (0.8)

where wa,—; is:the volume of wi’/ =1, The principal value is defined by '

R e T O W B R OV R

v Wgn—1 J uir=1 (]:— Wa,}” i '-8:90_2”0)2,,‘_1-' .m?.';l' (1—’04,—0,)"' R
i ’ ) 11—’ | >e

After that, Koranyi and Vagi™ obtained the same results: bygenerahzed O—aﬁrléy
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transformation, this is equivalent to the Plemelj formula of generalized upper half
Dlane E . . _ .
D=fe= G, -, w); =3} [ul*>0)].
On the other hand, using the Plemelj formulas of the sphere, we may obtain the
Plemelj formulas of the matrix hyperbolic space and the Lie sphere hyperbohc
space™®, Shi Jihuai®™ also proved the followmg result

m L F)i  ona 1 [ e
lim . A =2 LN
0 oy Juw=1 (L—z2u)™ f(,v)+P v Can-y Ju —1am (1— 'W/)"'
where p. V. 1 J- .. I8 deﬁned by lnn j ‘
O)g,,__l uw 1(Im) : 650 . Wap—1

|Im(uu’)[>s S
Ir uw =1, 'va —1 we have the followmg smgular kernels
H (v, u)y= (1—ou’) - (Cauchy kernel), °
' B(o) u) H (v, w) +H(u ) —1 (B kernel),

h(fv u) ————(H (v, u) H (u, fv)) (Hﬂbert kernel)

By ‘these singular kernels, we may get: the followmg smgular integral operators on

sphere . e I L
" . H(p 2w2,.-1 J. (p(u) H ('v u)u
' Bgv 2w2,,_lj " (p(u)B(rv u)u
th 20051 J' 6 (u) h(v, u) u,

where the prmclpal value is, deﬁned by hmf If ¢EL1pp (O<fp<1) these
utt’'=1 :

T &0
s>0 [1—vu’|>e

singular integrals exist. From them we may ‘also obtain the generallzed Poincaré-
Bertrand formula (H*=I), the generallzed Hilbert formula of Hilbert kernel and
solve the linear singular integral equations or the systems of linear singular 1ntegra1
equation with Cauchy kernel, B. kernel and Hilbert kernel, etc’™®. It is worth
mentmnmg that B kernel does not appear in one varlrable This shows the dJﬁ‘erence
‘bebween one and soveral varlables o ' ' =

" 0.8. Main results of this paper

Pseudoconvex domains are the domains of holomorphy For the strlctly pseudo-
convex domains, we can construct the analytlc Henkm-Ramlrez (H-R) kernel and
Stem-Kerzman (8-K) kernel.. .
" ALtH® in 1974, Kerzman and Stem“‘“ in 1978 proved respeotlvely the plemelj
formula for the H-R kernel and 8-K kernel. They proved: If Qi is O~ smooth bounded
strlctly pseudoconvex domain; u€0°° (b!)) 1 (w 2)is H-R kernel or S-K kernel
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Hu(w) =j o H (w, 2yu()do,, wEQD,

Then when w approaches b2 along the nontangential direction

Hu () =-—1—u('w) +p. V. f L H@, Du@do, (w€bQ) (0.9)
holds, where p. V.J s ‘defined by luon oo ' a0 ") and
zE . &> E-4 w, &, i

B(w,. &) ={2€0Q2, |g(z, w) | <s}

In the section 1 of this paper, we consider that the deleted neighborhood B (w, &)
around w in the boundary of a strictly pseudoconvex domain is a more general form
ingtead of above form, a corresponding plemelj formula is obtained. This shows the
essential difference between one ahd several variables: There is only one method to
define the principal value of the Ga,ﬁchy integral in the former, but there are infinite
many methods in the latter, even if the deleted part is symmetry, Basing upon these
results, we discuss the smgular 1ntegra1 on the boundary of a strlctly pseudoconvex
domain.

In the sections 2 and 8, we discuss some special cases of B (w, &) and the theory
of the corresponding singular integral equations. In the section 2, we consider the
situation that the deleted neighborhood B(w, &)is an “ellipse” or a “belt” when the
“ellipse”is a “disc”, we obtain the results of Alt and Kerzman-Stein. We also discover
that there-is a method of deletion, such that the term u(w) does not appear in the
Plemelj formula, in other words, when w approaches the boundary from the interior,
the Cauchy integral approaéh‘es a special principal value. In the section 8, we consider
the situation that the deleted meighborhood is a “rectangle”. All these show the'
varwty of the definition of the prmmpal value of the Cauchy integral,

Part results of this Ppaper were announced in[10].

§ l. Cauchy integrals on a sfri(:tly pseudoconvex domain

11 Henkm-Ramlrez kernel and Stem-Kerzman kernel

Suppose Q is a smooth, bounded stnctly pseudoconvex domam Aisareal functlon
AG C=(Q), Mz)<0, if z€Q; A(z) =0, if 2EbQ; h(z) >0 1f zeQ grad )»(z) %0
zG bQ and

",:<f’é:?;»§‘)>"éz T aan

>where the constant C>0 ig 1ndependent of z€. .Q I is the 1dent1’sy matrlx For 2€50,

wE.Q and w near z, set

¥ (w, z)———(z)+é ;i‘: (z)(w, —2), (_1..1.2') -
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g, ) =S a—w)gh@w, 2).
Extend the local g* (w 2) to a global g(w z) for w near 2, set
9(w, 2) =g"(w, 2)$(w, 2), .
where. gb(fw 2) is a locally defined function and is holomorphic in w for w near z.
Furthermore ¢z, 2) #0 The global g;(w, z) are obtained from the division problem
g(w, 2) =3 (z—w) g:(w, 2), (1.1.3)
It may be proved that there are the functions g;(w, z) which are holomorphic in w
such that (1.1.8) holds. Substitute such gi(w, 2) into g;(w, z) which are needed in
the C-F kernel(0.6) of Q and substitute g;(w, 2) of (1.1.8) into g of (0.4), we obtain
the C-F kernel H (w, ) of Q, this is just the Henkin-Ramirez (H-R) kernel. As for
the details of proof, see[11,15]. | | | i
Sfein and kerzman““ constructed another kernel E+O’ called Stem Kerzman
(8-K) kernel, where E(w, 2) do, is a C-F form (0.4), in Wh1ch g:i(w, z) are tota.lly
explicit, but are holomorphic only when w is close to z€ bQ, namely as w mnear 2,
gi(w, 2) =gE(w, z) and O'(w, 2) is the correction term, such that H (w, 2) =H(w, 2)
+C(w, 2) is holomorphic in w globally. Furthermore
O(w, 2) €0~ (U @) xV (b)), : .
where U(.Q) and V(bQ) are the nelghborhoods of Q and bQ respectively. That is to
say, C(w, 2) is infinitely smooth even when w= 2. O(w, 2) is a solution of a & pro-
blem. C(w, 2) is not a C-F form, but H+C can reproduce holomorphie functions. As
for the details, see[14]. '
It is known that for H-R kernel and S-K kernel we both have

[ |H (a, 2) |do,=o0, WE DR, | (1.1.4)
where do, is the Lebesgue element of area on 5Q. )
Fix w€ b2, without loss of generality, take w=0, then we have the followmg
Theorem 1.1.%%14 Suppose Q is a smooth, bounded strictly pseudoconves “domoia,
0€bQ, H(w, 2) is the H-R kernel or S-K Fkernel. Theh near z=0, there is a holomorphic

local change of variables, such thai bQ and H (0 2) hawe the f ollowing forms 2E0Q if
and only ’bf ta—1t+iT sat@sﬁes

= ¢ eE, ), @)
where z= (21, *+*, %), £= (21, ***, %a-1), the error term ¢ is of third order, namely
- e, H1=00", (1.1.6)
where p*=|£|*+12. For H (0, z), we have -
H(O, 2) = 2*—+¢(), 1.1.7
©, ) =i H® @17

where ¢ (z) is absolutely integrable in zE€ bQ and vy, is a constant.
Obviously (¢, #) €C"*xR and 7= |£|? is “Heisenberg group” surface Sp-i:
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(1.1.5) shows that near z= 0 the .62 may be approximated by the “Heisenberg group”
surface S,_; and the e (f, t) of (1 1 6) is the error of approxmlatmn
It is easy to knowia81

‘L,d|<‘;;|=+W—nd,b‘=;o’ e 118

'L‘,“ 'bl(lfl”ﬂt)‘”du o, T Tt
# <a<p .
' where du is the usual Lebesgue measure . da, dyy-- da;,,_l dy,._idt (z,—a:,+'oy,) In fact,

We may prove

oDl (,glzﬁ_m,.(lw(p)) 1"(1.1.1o>

1.2. General plemelj formula
Weo first prove the followmg general Plemelj formula

) o Theorem 1.2. ;S’uppose Q2 is a smooth bounded strwtly pseudoconfvem domam |
H (w z) is the H B loefrnel o'r S—K laefrnel uE C’°° (bQ),

Hu(w)= J H(w, Hyu@do, @eg | ‘(1‘\\2 1)

4s the Cauchy integral, where do, is the Lebesgue element of area on BQ." Then Hu 'is
holomorphie in Q and admits a continous e:vtenszon up to Q. Wiwn wE bQ deﬁm

p V. J H(fw z)u(z)daz-: ' ('w z)u(z)daz, (1 2 2)‘

s->8 2€0Q~D(w,8)NbQ.
hea"e D (w; &) i3 the neighborhood around w and oontmcts to tke pomt w as s——>0 ‘T f
lim lim (fw+6v z)dtr,——a ,: o " (1 2. 3)

7. 850 60 JzeDw,e)nda:
e.fmsts 'wkere @ 18 @ constant and v ’bs tke fmner 'rwrmal 0 bQ at w, 8>0 Denote the mlue
of (1. 2. 2) by Hyu and o ' '
Hu (w) = hm Hu (fwo)

w/wfre Wo approaches wEb.Q along the mntwngent'ml dwectwn from tiw 'mterfwfr of Q.

Then fwe hcwe the Plemelj fo'rmula _ S

_ v Hu('w) au('w)—l-Hau(’w) B (1 2. 4)
Obvmusly, this deduces to the Theorem of Ali:”‘”J and Kerzman-Stem““ when

D (w, s)ls {zE bQ, | g(z w) |<s} In this case, a= % and Pleme1] formula becomes

Hu(fw)——-u('w)+H1u(w) T {1.2.5}

We now prove Theorem 1.2,
Keep wE bQ fixed, say w= 0 Then the condltlon (1 2, 3) becomes
llmhm (0+8v 2)do, = o (L.2.6)
- 850 30 J 2eD(0,5)nb2 ) RS s

where v is the inner normal to 5Q at w=0, Write
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]JmhmI : H(0+dp, z)u(z)dcr., :
>0 08-0 zeba-D(o s)nba .
—lim j | |
s—>0 ;—1301 2€00-D(0,8)NDQ2 H (0 + 81), 2) [u (Z) u <O>] dO', .
" 40(0) lim lim I “H{o+oy, z)da,,
e>0 0-0 J2ebQ-D(0,8)Nd2

since u€ O~ (bQ), the above first ‘integral exists™®,- and the second mtegral is equal
to u(0) (1—a) by (1.2.6). Therefore for 0EbQ, we ‘have

v | H(0, Du(do,=lim f CH(O, Du)do,

&> £€D0— D(O a)nba i
s>0 o

_J H(O 2 [u(z) u(O)]da,+u(O) 1-a),
Henoce, for w € b2, we also have .
v H, Dudos={  Hw,s) [4E) —u@)ldos+ulw) (1-a).,

. @1.2.7)
Let 'wOGQ

- LEb H (fwo, z)u(z) do,= I H (wo, z) [u (z) u(fw)]dcr,

+u(w) I H(fwo, z)dcr, I]_+Ig
When Wo approaches w along the nontangentlal direction, by d.2. 7) we obtam
’ liiﬂI;—J’ H(w %) [u(z) —u(w)]do, -

-p. v.j _H, du@de—u@)(1-a),
Hu(w)=p. v. [ H @, Ju@dos—u(w) Q-a)+ulw)
' =Dp. V. "‘J"”"m H (w, é)u(é)da,+'au(wj X -
v z€ . :
This ends the proof. S S
Notice the condition (1.2. 3) By Theorem 1.1, theremaholomorphm local change

of variables, such that 52 and H (0, z) can be represented by (1 1.5) and (1.1.7)
respectively near 0€ b2 and (1 2.6) beocmes™® 14

. s a —n - &
tmim{[ g duk | »@-,,>¢«=<?>d“}:

where ¢;(2) is absolutely. integrable in ,ze bQ and %1_)1(1)1% (2) =¢(2), Since D(0, &)

contracts to a point as e——>0 obviously

MIlmLeD(o)@(z)dM 0 USALER

&30 60

therefore the condmon (1.2.8) becomes
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im li n +0+it) "du=a,

];]--I(!)‘l 51—3):l zeD(o,s)’y (Ifl + +I’l) d'u’ Q'v

Consider generalized Cayley transformation 7' ‘
P/ S Sl

a1 1+uﬂ ’ > %n—1 1+un > Ba=1 1+un .

© Bince z,=%-+147, hence _
' ' _ 2Imu, — |u,|?

_lm’ T THTI”’
- T transforms |£|2+44+8 into

oy [ 3=+ Joty |2 +2zImu,,
|1+u,[?
Since 7' maps upper half plane 7>0, 7— 1£* onto ui’= =1, the above can also be
written as
1+2¢Imu,— |u, 1+u,) (1—u, 1—u, 1+98) —(1-9)u,
- llﬁunl”l ~o- (Jrll)(l )+6 Tru 0T (+a)1+%,, =
and du = w3z, (1+u,) ™. -
* So the condition (1.2.6) becomes

+3,

Iim lim I u — — lim lim -i— ______u_
&0 80 Wapg—1 2E€D(Py,8) _ 1_8 n7 &80 p-1 wﬂn-l zeD(p,, &) (1 Wn)"
A+o)" (14 u) oK |
— lim lim f v o 1.2.8
, s]_.'f(x)l .a1—>1 Wan—1J 2eD(ome) (1— ppu’)™: - e ‘ ( )

where p,= (0, -+, 0, 1), D(rp,,, &) =T (D(O g)) s the ne1ghborhood around Dns
1-96
L
Let us observe the D (w, s) in detail. In Theorem 1.1, when changing the
variables, we set g(z, 0) = —it+7= —iz,, Henoe, if the definition of D (w, &) depends
‘on g(z, w), D(w, &) may be written as D(w, & Reg, Im 9) it becomes D(0, &, Reg
(2, 0), Img(z, 0)), i. e. D(0, &, =, —t)after the change of variables and becomes

— |u, |2 —2Imu,,)
D(p,,, & [1+u,,]"” [1+u,[?

under the generalized: transformation of anley

For example
D(w, ¢, Reg, Img) = {a2<Reg)’+B”(Img)3<S”}
may be reduced to
{a®(1— lu»l”)”+4/32(1muu)2<62}
- D(w, s, Reg, Im g) ={|Reg|<as, |Img|<,88 >0, >0}
may be reduced to
{1—|u|?<ae, 2[Imu,,|<,8£ a>0 ,8>O}

In the sections 2 and 8, we shall give some concrete neighborhoods D(w, ¢);

calculate the value of ¢ in (1.2.8), one can discover some interesting results.
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1.3. Singular integrals on b2
When wE bR, I H (w z)u(z) d(rz is a smgular 1ntegra1
Let zG bR, p(2) GLlpp, 0<p<i, v, wa bQ, set
)= B @ o =] A, dpuien

where I stands for the Cauchy principal Valﬁe, the deleted neighborhood is
b2 ' : ! ’

D,(w, &), such that the corresponding value of (1 2 3) is a.
Consider the Cauchy integrals : =

f={ Hm, 9p@do, fitn)=| Hn, D)o, n€Q,
when 7 approaches { € b2 along the nontangential direction, by (1.2.4)

FO=[ HEGDe@dorar®, HO=], HE Dp@dotin ),

By the definition of 1({), @a (0, we have ‘
1) =f (O —ap(0), pa(D) =f1(0) — b%(l) Le€oQ,
Substitate @, ({) into the expression of f;(1n)

i =[,, Ha z)f(z)daz—aj 0 z>q)<é>daz=,<1—q>f<n>,

thérefore

%(C)—(l a)f Q) - b[f(C)—aqv(C)] (1 a—)f () +abp().

For a, if there is a neighborhood D,(w, &) around w, such that the corresponding
value of (1.2.8) is b and 1—a—b=0, then @;({) =abp({), that is to say
- HyH,=abl,
Wwhere I stands for the identity operator. In the same manner, we can also prove:
o HH, =obl.
Thus we obtain the generalized Poincaré-Bertrand formula, -
Theorem 1.8. Let Q be a smooth, bounded sirictly pseudoconfuea: domain of Cn,
H (w, 2) is H-R kernel or S-K hernel, p € O~ (bQ) . The singular integral operator H, is
defined by (1. 2 .2): If for a, there is another deﬁm)ti'oﬂ of Cauchy principal value, such,
that the fvalue of (1.2.8) is b, and 1—a—b=0. Suppose the correspondmg smgular
mtegml operator is Hy, then R B
: - HHB,=-HH,=aebl, "~ e (]_..3.1) :
where I stands for the identity o perator. ‘ '

If ab+0, (1.3.1) may also be written as: denote % Hatpv;—vv,b, then %— Hyp=gp; or
denote %Hbq) Y, then— Hyp=o. '

It is easy 1o know by the operator theory, if A is not a characteristic value of the
singular integral operator H,, K is a continuous operator, f&€C~(bR2), then the
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singular integral equation on 52 N : SRR :
(= 7»I+I-I,,+K)q) 3 _ (1 3.2)
has exactly one solutron namely it can be normahzed to a Fred.holm integral
equation. When D (w, &) ={|g(w, 2) | <8}, Q2 is a ball, this is Just the theory of the
singular integral equation on a sphere[8 o, \ :

‘When 2€5Q, wE bQ, the H-R kernel or S K kernel H (w, 2) of Q are both
singular kernels. For the case of sphere one can define B kernel and Hllbert kernel
from H (w, 2) R S I T S :
| B(w, 2) = H(w, z)+H(z, w)—1,.
Bw, )= FLH@, ) ~HG w)l,

From these kernels, we also have

Ba‘l’:..l'aa('u')B(’w; () dos, -

mep=[ b, D@ o,

where the integrals denote the Oauohy pr1nc1pa1 value, the deleted neighborhood
around w is Dy (w, s) such that the value of (1.2, 8) is a.

Obv10us1y, if H, has an inverse operator, then B, and h, also have the 1nverse
operators. Therefore we can also solve the singular mtegral equatlons on b2

( ,u,I+B.,+K)¢~f S S (1.8.8)
and R R O

Sl (—-vI+h,,+K)(p—f, IR L (1.8.4)
where u, » are not the characterlstlc Value of B, and h, respeotlvely, K is a continuous
operator, f€C=(bQ). : L ;

As in[8, 9], one can solve the systems of. singular integral equations similar to
(1.3.2), (1.3.8), (1.8.4) and when D(w, &) ={|g(w, &) | <&}, @ is a ball, this is
_]ust the theory of smgular mtegral equations dlsoussed in[8].

§ 2 The case that the nelghborhood is an’ “elllpse”

2 1. PlemeIJ formula : T

. In this section, we shall consider some. special nelghborhoods D(w, &), such that

the concrete Plemelj formulas are obtained from the general. Plemelj formula ‘We

first consider the case that the ne1ghborhood D, (w &) isan “elhpse

{szQ a”(Reg)”+,89(Img)2<sﬂ} ;

where >0, >0, a+B+0. When a=g, the “ellipse” becomes a, “disc” thls is Just:

 the case disoussed by Alt"# and Kerzman-Stein®#, In this ‘case, ‘we shall prova that
(1 2.8) ' becomes . . it Coeo i owa Lo :



SINGULAR INTEGRAILS IN SEVERAL COMPLEX VARTIABLES(I)

NO. 4! HENKIN INTEGRALS OF STRICTLY .PSEUDOCON VEX DOMAIN 483
Jim Tim | H(w+dv, z)da,——( 28 ) 2.1.1)
g-0 6->Q 2€De(w,8) a-i—B - :
That is to say, the value of @ in_P-lemelj_ formula (1.2.4) is

=7 (a?ﬁ)

’When a= ,3, this is just the Theorem of A1t3 and Kerzman-Steint™, Therefore this
result has generalized the works of Alt and Kerzman-Stein.

Another case 8=0 must be noted. In this case, =0, it follows that the Plemelj
formula becomes vary simple

Hu(w) = Hou(w).,

In other words, when w, approaches w€ b2 along the nontangential direction from
the interior of 2 ' ‘
lim LE H(w, 2)u(@)do,= hmJ’ H (w, 2)u(z)do.,

'wn-bw 9 zEbD—-D(w s)ﬂbD
Now D(w z)isa “belt” »
{2€0Q, |Reg|<s}.

Namely, one can find a manner to define the principal value of Cauchy integral, such
that this principal value is just the limit value of the Cauohy integral Hu(wo)when
wo approaches w€ bR along the nontangential direotion from the interior of Q. It is
impossible in one variable that the limit value of the Cduohy integral on b2 can be
represented by a certain prineipal value of the Cauchy integral on 52.

‘We now disouss the conditions under which the singular integral operator H,
has an inverse operator. It has been pointed out in the section 1.3 that if one can find

an operator H, such that 1—"a‘—b=0, ab+0, then % H, is the inverse operator of
% H,. Obviously, if ' |

é_ < aiBB )ﬂ_l j<.1’

i. e.

( o %>2n~1—1, _ (2.1.2)

take D,(w, &) ={z€bQ, «2(Rog)?+ B2 (Img)?<e?},
where />0, B/>0, o/+ 8 #0 and

[ (2B,

__ 4 B _ B
: 1/ 28 \*?t_
if denote | | o (m> =b,
then -élb—Hb is the inverse operator of H,. That is o say, under the condition of

(2.1.2), H, has an inverse operator. In the same way, we may set up ‘the theory of
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singnlar integral equations.
2.2. The proof of (2. 1 1
To prave (2.1.1), it is enough to prove that (1.2.8) holds by §1.2. Namely

lim lim —2 I % limlm_ 1 v
&0 p—)l Wan-1J ueDme) - pp,,lu,’)” © gm0 pol Cozn_1 ueD(pme) (1 — p’u,,,)"
. : 28 : .

T (a+,3 ) ?

where p,= (0, -+, 0, 1), 0<p<1, and - _ Lo ‘

' D (ps, &) ={w’'=1, a® (1~ |un|?)*+48° (Tm u,)*<e%},
Let D(p,, &) ={uw'=1, (1~ |u,.,]2)2+4,82(1mu,,)”>62}
Wan—1J ueD@ne) (1— pu,) ™ w2n—.|. ueB(@me) (1— plty)™
we only need to prove

Since 7

Jim Tim L S T S

&0 p>1 Wap—1JueBome) (L—puy)® o0 w2n—1 u€B(pn, s) (1 u,,)"
—1-—— 2.
2 <oc+,3) ? @.2.1)

where-a=>0, >0, a+,8#0
- when a=0, >0, (2.2.1) has been proved 1n[7]
- We now consider the case a>>0, 8>0.
As has been discussed in[3,7], let ..
Un=76", 0= (U, *>, Uy_y), .
tnen D(p,, &) may be witten in form
vy’ =1—1r?, . X -
{a?(l—r”)2+4 2r? gin® 0> g2, S g
NE—F =177 - ” |

Set =arcsi
e ¢=arcsin 5B s

we have

1 u 1 5“_0 g +r-v g }
Wan—1J ueDion,e) (1—&,,)" Won—1J ypr 3 —(w—c) (1f¢656)" o (1—’)"6“’)”

1 J’ | J“ a9
+a)2,,_1 017,?%’0 —a (I—16°)" =Ii+1Is, (222)
It is known by[3,7] ‘ C
J‘” dd +r-° dé
—(w—0) (1—’)"6“)"’ c (1 ’)"Gw)"
= S 1 £ 1 1 —re®
2 {E P A A=t +1°g }+2(w—2c),
n—1 . .
hence I,= 2 Im{EJr EHk+Jo—Ho}+ 2 J (m—2¢)w,
L . Wan—1 ) k=j_' - Wan—1 WI<% ) )
' RN 5 .
Whe-re Jo—Iw,< 10g1—+—~— 'Uf, Jk.._‘[m:’<% m, k——:l‘,’z, ,f.f’_nfl’
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H =J' 1o : v, H f o k=1 2 . op-—1
0 m_)l<% e 1—re " vl<.§. k(l_,rew>k ’ P ,, ? ? ._.4

VeE—a2(d—r?)? Cosc=. \/4,82'1‘2-—8 +a?(1—1r?)?

Since - sinc= 5Br , %8 ,
. - _ \/4,82(1 32) +as —g* \/s —a?s?
. ic
80 1+fret 58 5B ,

here s?=1—1r2, Let o= (aa,z @, . . wg,._g) ; -adopt the’ sphermal polar coorolmates
€Ty = s COS P1, Ta= S Sm ¢1_ COS: Pa, ** _$2”_2 =$8in ¢_|_ sin Pas: Sln Pan—3,

an—t P2+++SIN Poy_sdsdy- - Apan_s.

then p=s "'3sm an—5

It follows that

q)sm

- ot Jg{ \/4,32(1— N ol — & .\/m‘}"” an—3
Tu= Icr(n—l)[o‘ o 28 BT $ds,

Let 97—— s=a/ 7%, then Jy is equal to

2072(28)" ,7;;1 [ i Bt -
kI (n—1) 2B+ \/4,82(1 —nt*) +a*y? (#F 1) —Z‘\/a dA—t5]%’
since the absolute value of the integrand is bounded ‘hence foeet

hka-O k=1, 2, o n-—l

- &0

We may prove limJo=0 in the same manner.
&0 ~

As we do for Jy, Hy may be written as :
2@.1&-—1 (23) 13 J‘ ﬂ—ltﬁn—:‘} dt ‘ . ‘
k' (n—1) Jo [28—~/46°(1— T @B —D) — i A 1
When k<n-—1, the absolute value of the integrand is not greater than
. M ; ‘
Bt*+a’(1—1*) =1’

where M is an absolute constant, it is integrable in [0, 11, %0

Hy=

lim H =0, k=1, 2, - -2,
830
‘When k=n-—1, we have ‘ R .
H _ 2 (2 ,30'5) 2—1 j‘ n—1t2n—3 dt
o I'(n) Jo 28— \/ 482 (1 —nt®) +o®? (t*—1) — i~/ aﬂn” 1-t)]**
_2 (2}871:) n—1 J’ NS oot l’/ ‘
I'(n) o [Bt?— w\/ 1—2* + O(n)] ”‘1 :
Set y==2, then
et Y B | . )
. _ 2”:75"_1 j‘l tﬂn—s dt L
E—%H"_l_ I'(n) (tz—'z,y'\/l—t‘*)"‘1 '

Let t2=cosf
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(275)"—1 cos™2 6 sin 6 df
1.]-% Hpi= r (n) (cosg—iysin @)
' . (275) n—1 j (6% 4 1) =3 (g20 1) 0
T (n) X+y)"* 1 + 1— ‘)’ ata)"_l

r<n§2<a§):;> =), —{ 5 zi (=Drosmog @l;/)qg-

[62;9<p+a+1)__ ezia(p+q)] + 1 ( 2409 1)}

- @mt % . ay—2mig—z (1=7\
T 2T (n) (1+‘y)"‘1 22( D050 <1+z>_
( 1)p+q+1 ( 1)p+q o (27”)”-1 o
X[ , Z’+9+1 - ptg ]+T(n) A+y)r1 ’(1__2'7)’

It follows that
291—2%.1» .
I'(n) L4y)"*

lim Ira (H,-) = Im (lim A, ) =

1, 20
—_— ,refc .

‘We now caleulate Hy:
JE
% gon-s log (1—ré')ds,

H°=J’m—,,<%1°g T T—1))o
Since Imlog (1=7r6) =arg (1—re) =0 @,
hence when n>1 :
/&
Tm (Ho) =0 ( J g ds>=0(s"‘1) —o()  (e—0),
By the same reason, when ﬁ>-1, we have -

f (w—20)5=0(1),

vor< S 3

Sum up the above results, we obtain . .

limZ,— — L (_l_)’_‘“i_-:g 1 (aze )H'

0 1 o 2 \14vy/ -2 \a+p
As to I, by virtue of _
i dg _ = ncl 1
|t {2 k<1+a~>" v >k}+2”” 2,
1im I;=—2% f o=1, |
© =0 Way—1 J 0<vi'<1

Substitute thses results into (2.2.2), we obtain(2.2.1) Jmmedlately.
Finally, we consider the case a>0, ,8 0.
(2.2.1) now becomes

e=0 Wap—1 J u€B(pn, ) (1—’11")” )

where . D, 8)={uﬁ’=1, 1—|u,.|9>%},
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usmg the above transformations, one may write ﬁ(p,,, e) as
o' =1—1r2,
1—r2>2

. : (24
then . kLt - j

Wan—1 J ueB(me (1 — ’l;,,) » Wan—1

@ de :
q) b rum - c e
£<wvr<1 J-—"’ (1- re)"”
This is just the integral I discussed before, but it is known limI,=1, so (2.2.1)
&0
holds when >0, 8=0..

§ 3. The case that the neighborhood is a “rectangle”
8.1. Plemelj formula. : _ :
Now let the nelghborhood Dy (w g) around w be a rectangle
| {2€6Q, |Reg|<as, |Img|<p},
: here a>0, 8>0. In this case, we shall prove that (1.2.8) becomes

hmanGDAws) H(w+61) 2)doe= = {i_k (arctg B)} (311)

-0 6-0 (
where hy(z) = J- cos™? ¢ Mdt,
sint
and the value of ¢ in Plemelj formula (1. 2 4)is '
: on—1 _ B } . oo ' v
a=— {— h, (arctg —(;) . N (312)

In particular when a=jf, i. e. the rectangle becomes a square,

n—1 N
e )R
When a=c0, Dg(w, &) becomes
{z€bQ, |Img|<pBe}, L
this is just the case discussed in the preceding section. By virture of h,(0) =0, so
=22 thig coincides with the. result of the preced_mg section.
When B=o0, Dg(w, &) becomes - v
{z€bQ, |Reg|<ae}, s
thls is the case discussed in the precedmg section too. We shall see in § 3.2 =

,..(arctg 5) arctg +§Wsm<kamtg B)

therefore, when B—>oco arctg ——>'B %, S0 hy (—2—)= 5 It follows that ¢=0, this coinci=
des with the result of the precedlng section too. BRI Cud

-As the preceding section, for the. smgular mtegal operator I-Ia, if one can find an

operator Hz,, such that 1—a— b 0, ab#0 then %— H,, is the inverse of l H,.
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It is not hard to prove %,(z) >0 for arbitrary positive integ_et nand z€ [0 [ 3 %] :

and

@
0<x< 5

| max by (2) =h, (2,
If a, B satisfy k , ‘ '
. —9l-n — T
(1-2 )w,,h,,(n_

il )<}o,,u<aro tg §>< (1;_21—_;») ,,,,.’

then H, (@ is defined by (8.1.2)) has an inverse operator. That is to say, we only
choose Dg(w, &) as

: , {z€bQ, IReg[<as [Img[</8’s},
where a >O B >O ‘such that

(arctg B) (1- 21“")71: by (arctg‘ ’8)
Set _ b= 2”1 {——k (arctgﬁ—-)} .

then i H, is the 1nverse of l— H,. It follows that under the cond1t1on (3 1.8), H

is mvertlble We may also dlscuss the theory of the smgular integral equations in

the same way. ' ' '

8.2. The proof of (38.1.1) : :

- To prove (3.1.1), by the argument of § 1 2 we only need to prove that 1.2. 8)
holds i. e, :

¥

e .
1:-3)1 il—gl wi; f u€Dxa(pme) - (1 —/l:wz_t,,)?‘ - 271:' {%*hn (arc e g)} ?
where p,= (0, -, 0, 1), a>0, 8>0 B '
. Dy (ps, &) ={w'=1, 1— |u,|?<ae, 2|Imu,| <Be},
Let ' ﬁR(p,,, &) ={uw' =1} — Dy (p,,"s),
RN e Ma=A{w/ =1, 1= |u,|*>ac},
No={uuw'=1, 2|Imu,|>Bs}, -
Q={uw'=1, 1—|u,|?>ae, 2| Tmu,|>Be},
Thus the result which needs to be proved. is equivalent to

R Y Y o __2»—1{”_;@ i ,3} S

I:i% Wan—1 J’ﬁx(o,..e) A—u)* 1 @ |2 o <arctg7) : (3.2.1)
But . I, » EEEE S
Sy 1 .1 } u

T = == + — —— 3.2.2

 Wan-—1 Jﬁx(pms);(l—-u,.)” ~{w2n'~{. Me: @ap—y Na“ Wan—1J Qe (1——’2,0”)” . ( v )

It is known by § 2.2 h - S _ D,

o tm A%y g L g g g9

&0 Wap—1J MU, (1'—'11/,,)" 7 e0 C‘)27;—1 Ne (1 'II/,,)”
80 we only need to calculate - '
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lim 1 j %
o0 Wan-g e (1—u,)"”
As the argument in §2.2;set ‘
Up=76", v=(uy, ***, Up-1),
then @, may be written as . L :
| ' =1—12,
{1 2> ae, 2‘)"|S]n0[>,38

1 J’ ’ ’l,.L _ 1 1. -{J—c J'm:-c} do
@an-1 Qe (1 un)"’ Wan—1 Lpe"v‘ J —(w—0y -+, o ] T=re)™’

“Be”

where: c=arc sin oS and

' ,P {/v— (u_l, e un-1) as<'v'u <1 (ﬁz§> }q
By[S3, 1, the ‘above equality may be ertten as

1 J’ w 2 { }
= = T J. J
Wan—1J Qe (17-%,,)’?  Wap—1 _.m E k EHk'i‘ 0o— Ho P (av 26)'0
| N S ‘ ; K
e To=|, 108 e &, Tum |, ey L 2 vy m 1

' 1 . _ v _ _
Ho= [ og =i b0 Ho= |, gy b=, 2 - m .

Use the spherical polar coordinates

e . Be
; Be . 2717”_1 J“/l_( ) 2n—3 Bs
: cv=1| . arcs. C —
Joe L»e m2\/1 o T—1D) ~taresin oo

Qp— —1 {J‘i 1— 188 n—1 . Bs
arcsin — di
T(n 1) [ (2) ] ‘ "‘éx/l—[l—-<£§.>2]t9
. N2 o
. > : ‘. _
-— n—1 3 Bs . dt} )
Jo ooy -2avosin Ao a.
Since the integrands are bounded,
. 1im] =0,
P T

£->0 -

It follows that

. . . 181—%1 w2n—1 J‘ P, (W - 20) o= 1"
By virture of ' 1 +re~ \/ ,82 —1 5 ;Gs,
hence L ' - ‘ B
__ 2z 1_( 8 T — — o8 1™ 2
Jr= kf(n-—l)J.va—s— [1+—«/4(1-—s) Be '88] ds.

oA Tl TP 7

v

~% e I i E*T—_)ﬁ (ae)nfltw—s [1+.;:</4 AT—act®) —,3282~-;:—,36];k d,
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the integrands of these two integrals are all bounded, so

- 271;'"_1 1 . tz»—s

1i =
51_%1.]’,0 lcl’(n-1) 0 (1+\/1—t2 ) di, .
it is a real number, hence Ny
: llmlm(.fk) 0, k=1, 2 n—1,

We may prove in the same way
lim Im (Jo) =0, lim Im (H,) =0,
-0 X &-0
As the caleulation of J3, Hj may be written as.

e ) o e T e T

- n] i T ] )

—m(Xk Y.

The absolute value of the integrand of the first integral is not greater than
t2n—3
A—~/1=*)*’

we have

it is an integrable function on the iriterval- [0, 1] when k<n-—1, S0

h X J‘ tﬂn—-‘i
-y oA—VI=F)

it is a real number. The absolute value of the mtegrand of the seoox_id integral is
O(e™™ 1), so
IimY, k=0;

B->0
as k<n—1. It follows that when kt<<n—1 ‘
. &0
Finally, we calculate H,_,
A i
Hﬂ—l - ’—m)—' (Xn.—l Yn—l):

where

Xpy= (1—71— 3262>"—1 ﬁt?"*'** 1 _ ‘/ (1 —~ 1 )(1 ) —%  Be ] P

o S - p e

Let 1—%— B2e?=n%, we have ‘ 

1 |
> e I I r BV ey B P

by[7], we obtain
B limm (X,-s) =2,
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— — 2 _ - 2,2 — —_— a2 __Y 2
Since 1 ~/1 ast 4,86 p Be 3 ait?: 5 ,3»8-’:—0(6 ),
we have v S : : v
. ’ B 1 t2n—3 dt - 1 t2n—3 dt S 1. $""_2 da
_,=9n 1J _ =9n-1 J’ — on—2 _
i N NG I e L
Fa -5k | | :

: n—2
ﬁ”@w%ﬂ~m+2%ﬁiﬂ}

)

wheIe y=€- 2 o2 — 1 (—1—17—) (n=8), It follows that
lim Tm (¥ 1) =22 [aro tg 31,_'—"111'1 D) ] @=3 (3.2.4)
=0 /
_ . N 1otdt 1
 when n=2 hmIm(Yl)—ZImqo L ,7)—arc_tg—7—,

If deﬁne ‘Dy=0, then (3.2. 4) holds too when n=2.
' ‘We now have

IimIm(H, ;)= 2 {1—3 arc tg 71, —l——%—Im(D,,)}

e>0 I'()
here n>2. Consequently
1 u n—3 __2_ te L4 2 |
sl nigr i (e g dma), e

By (3 2.2), (8.2.3), (3 2.5), we obtam
1 [ w L g
lsl—g)l w2n—1JD3(Pm3) 1= ’wn)" 1=

(arctg————lm(D,,)) (3.2.6)
It is not hard fo prove
- _ B B
Im(D,) = —arctg —;-&—h,, <arc tg - >.

Substitute it into (8.2.6), this completes the proof of (3.1.1).

References

[1] Muskhelishvili N. I., Singular integral equations, Translated from Russian, Groningen, 1953.

[2] Zygmund, A., Trigonometric series, Cambridge University Press, 2(1959).

[8] KungS8. and Sun C. K., Integrals of Cauchy type in several complex variables I. Acta Mathematica
Sinica, 15 (1965) , 431—443 (In Chinese) .

[4] Koranyi, A. and Vagi, 8., Singular integrals'in homogeneous spaces and some problems of classical
analysis, dnn. Scuola Normale Superiore Pisa, 25 (1971) 575—648.

[5] XKung8. and Sun C. K., Integrals of Cauchy type in several complex variables III, Acta Mathematica
Sinica, 15 (1965), 800811 (In Chinese).

[6] XKungS8. and Sun C. K., Integrals of Cauchy type in several complex variables II, Acta Mathematica
Sinica, 15 (1965), 775—799 (In Chinese).

[7] 8hiJi-huai, On the Cauchy type integrals for the hypersphere, Journal of the China University of
the science and technology, 2(1980), 1—9 (In Chinese) .

L8] XKung8. and Sun C. K., Singular integral equations on a complex hyperspher, Acta Mathematica Sinica,
16 (1966), 194—210 (In Chinese).



502 oo . CHIN. ANN. OFM'_ATH.‘-- ST voL:3

[9] Sun0. K., Regularization theo:em of the singular integral equa.tlons on a complex hypersphere, Acta
Mathematica.Sinica; 20 (1977), 287--290 (In Ohmse) .

[10] Kung, S., A remark on integrals of Cauchy type in several complex varmbles, Proceeding of the Ist
symposia of partial differential equation and differential geometry, Beijing, 1980.

[11] Ramirez De Arellano, Ein Divisionproblem und Randmtegraldarstellungen in der Komplexen Analysis,
Math. Ann., 184 (1970), 172187

{12] TFolland, G. B. and Stein, B. M., Estimates for the 3 complex -and analysns on the Heisenberg group,
Comvm. Pure. Appl. Math., 27(1974) , 429—522.

18] Alt, W., Singuldre Mtegrale mit gemlschten hologeneltaten auf® Manmgfa.ltlgkemen und Anwendungen
in der Funktionentheorie, Math. 4., 137(1974) , 227256,

[14] XKerzman, N. and Stein, E. M. The Szego kernel in terms of Gauchy—Fa.ntappé kernels, Duke Math J.,
45(1978), 197—224. . - -

{15] Henkin, G., Integral representatlons of functions holomorphlc in stnctly pseudoconvex domams and

some applications, Math. USSE, Sbornik, 7(1969), 597-—616.

| zﬁ'&mﬁﬁ%ﬂﬁ ()— A8 Henkin 1%

‘ B H T
(SR B, B B <q:@7‘r+&j<+)

D LT SEE S

XT? % E,Eﬁ['&'ﬁm ;E]:bjiﬁij Henkln-Ramlrez B Stem-Kerzman 7[% ﬁ %XE{] Oauchy
RSy, ARSCHE H: WA S B Plemel] AR, BE Cauchy Zﬁfﬁﬁﬁ%&ﬁﬁ{ETU%
FH A Cauchy: EE{E, JZ“’“%KE?J‘T%E}E%IEE%I 'ﬁiﬁiﬁtkﬁ ﬁzliﬁ_tE{JTrJ



