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l Introductlon 8

To the author S knowledge the ex1st1ng results for mlxed partlal d1ﬁ'erent1al
equations.involve equations of 2nd order only. The theory. of mixed equations:of
higher order is to be developed. e T S s -

. Busemann, A.®, starting fromthe wave equa,tmn in three varlables der1ved a
special mixed -equation”of second order in .two variables, . This. equation - has -been
applied to gasdynamics extensively %, Hua, L. K. also obtained the same equation
from differential geometry and d1scussed various boundary value problrms W  Using
the theory of positive symmetrle systems 5 6] Gu, C. H. considered more general
equations in n variables and obtained a large olass of well-posed boundary value
problems'™. The method can be used to treat much more general equations of second
order, ineluding some quasilinear equafiohsES' %101 Some new phenomena have been
found. Hong, J. X: considéred. in detail the equations whose degenerate surface is
characteristic™™, On the basis of the appaoach in [8, 9], Sun, L. X. obtained some
results on a class of equations with non-characteristic degenerate surface™®. The
results stated above mainly concerned the existence of 0" solutions with r>2, whereas
many other papers on " mixed ‘equations in several variables éonsidered only the
existence of weak solutions or strong solutions™®,

The resluts in [7] can also be obtained through the properties of the wave equation
without using the theory of symmetrlo positive. systems. In the present paper we

extend. this approach to the equations of higher order, solve two kinds of boundary
problems and consider' the existence and unlqueness of C= solutions. The results
in[7,14] have been completely generahzed to the cases of higher order. As a continua-
tion, of the present work, Hong, Jo X obtamed some further results on mlxed
equatmns of hlgher order However, hls Work eannot 00Ver the results obtamed here
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since the related hyperbolic equations in the present paper may have multlple
characteristics.

UL A class of mixed éq'uat’ioﬁs'of higher order

Let (y, t)—(yl,A -, Un, 1) Do the coordinates of the pomt in B** and (¢, %) =(&y,
ess, &u, 7) be their dual variables. Thus :

. Eoy+at=0. 1)
is an n-dimensional subspace of R™1, provided (¢, 7) + (0 1;) Let
ko v O PEW=FP@F @

be a homogeneous hyperbolic polynomial of m-th degree Here P,,._, (§) are homoge-
neous polynomials of degree m— j with real and constant coefficients. Moreover, (2)
is hyperbohc with respect to (¢, v)=(0, 1), i. e., as an equatlon of 7

w T ol P w) =0 - sl Tt IR 3)
admits real roots only.: No loss of generahty, we suppose “that P(O 1) =1, Corre-
spondmg to (2) we have the hyperbolic equation R : S
BT P9y, d)uly, )=F(y, 1), .- N C))
In particular, if w isa homogeneous functlon of degree'a+1 deﬁned on the half space
t>0 of R"+1 ¥ '

_‘tmw_(y) s ®
then F(y, t) must be a homogeneous fungtion of degree g+1—m . )
F=ta+1—mf (__) . ‘ . B , (6)

Let (iyt_l_,, ‘ "

>= (wy; »es, w,,) From (4) (5) and (6) we: obtam a partlal dlﬂ'eren-

tial eqnation

S L(w a, a)cv f B N )
Here o - o _ :
’ L'(’a;, Oz, @) = 2 P,,,_,-(:aa,) k_l]l (a—l—2—k—w-3,)
m 1 . IR . ’ ) ‘ _
2 I=I (a+1v—m—f-“lc—woaz_)Pm_j('a,)' . - ®
with ' S med= Ew, o

In partmular for the oase of
N P(f; 7) = f + +&—77,
we obtain the equatlon con51dered in [7, 8]. :
When (3) is ‘satisfied by (€, 7)#(0, v), (“1) is just the oharacterlstm plane of
(4). The envelop of the characteristic planes is the oharacterwtlo cone 4, having the
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origin O as the vertex. When (3) has multiple Toots for some £+0, “the structure of 4
may be very complicate™®.

Consider R" as the plane t=1in R”+1 and denote the intersection A NR" by 2.
Then 3 is the envelop of the famﬂy of the planes’ ‘

gota=0 (P 0)=0). | ©

Further 2 is the degenerate surface of (7). 'The number of the real roots of the
characteristic equatlon for the equatlon (7) is changed When the point moves across.
S through a regular point of >. '

For snmphclty we denote L(z, a,, a) by L(a)

' Lemma 1. The characteristic directions of the dzﬁerentwl opefmtor L(a) at @
point o are the normal directions of planes (9), passing through wo.

Proof The vector £+0 is a characteristic direction of L(a) at @, if the
characterlstlc equatmn for L(a) ' ' '

Q (o, é)—EPm-;(f)( —£+w0)!=P(¢, —é-wo) =0 @0

is satisfied. The fact that the plane .x+7w=0 passes through o is equivalent o
4= —&+mo. The conclusion of Lemma 1 follows from (8) and (10) immediately.
Lemma 2. The principal part of L(a), Q(», 8.) is hyperbolic outside the convex
Fadl of 3. | | -
Proof The condition of hyperbohm‘ay of Q(a; a,) at @, is that there exists a
nonnull vector —z such that :

Qeo, £—rn) =P(—r, ~E-wtr(rad) =0, )

as an equation with an: unknown , admits only real.roots([17], Theorem 5.5.3). Let
I'={(—mn, &) |P(—n, 0)>0, Yo=1} o (12

be a cone in the dual space of R**1, Evidently for each — we have (—=m, N)ETLIf X
is suffeciently large. It is known that T is a convex cone ([17], Theorem 5.5.6) and
‘bhat . _ )
' P(¢—mm, ,u,+1;7\.) =0, (18)
as an equation for v, admits only real roots for eaoh non-null (£, w). Suppose that
@€ R" and there is a vector (—, A) such tha (—n, neao) €T
Comparing.(11) with (18), we see that (11) admits only real roots and henoe
Q(a, 0,) is hyperbllc with respect 0 7. Here we require that there is a plane —n-2-+A
=0in R"or a plane —qey+Ar=0in R guch that. (—=n, A) €I with A= neao. This
means that (@0, 1) lies outside the supporting planes of the dual cone of I" or z, lies
outside the convex hull of 2. o :
- S Q. E. D.
" Lemma 8. The formal adjoint of L(a) 45
' L*(a) = (=1D)"™L{—a—3+m—n), (14)
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- Proof . From (8) by diret calouation we obtain
L@ - éP;;_,(a,,) 1’1 (¢+1—m+1c+n+a;-'az)"

=(=Dn ZPm—:(az)H( a— 3+m n+2—k— waz)

=(- 1)”'L( a— 3+m n) _
- Let Qbe a bounded region, contammg the convex bull of . Suppose that aQ is
smooth and space-hke i e., (—=n, nez) er, where n is the normal of a.Q
We consider the followmg two kinds of boundary value problems
Problem T;. To ﬁnd the solutlon to equat:on ¢ ) in .Q such that the boundary
value conditions ‘ A - o
, | ¢lab¥=”°9z¢laa=---='(n-3;)’”'1¢'laa=,:° o (15
are satisfied. S R | R _
Problem T;. To find the solution to equamon () in Q Without any given
boundary condition. G

1L, _‘Analyt_i'c_\al" Lemmas

" Let H, (R") be the functional épace with the norm

el=faxigris@©ra, . e

where q?(f) is the Fourier transform of @. Moreover e R
H.(2) = {ulu€ H (R, suppuc B}, (17)

Byl (R"“) {ulu€ Hi*(R™?), suppuc€ Br+'y, . (18)

Here R"** g the closed half space =0 of R"“1 and »€ H}™ means that pu€ H, (B*+1)
for each € OF (R*), | | A

- Let K5 be the conical region in B+t

={<y, ) [#>0, _%e@' qxt;o, y=0} (19)"

%@ O=Howp(L). . o)
Here ¢ is a function defined on @ and H (¢) is the Heavls1de functmn a

B Lemma4 (1) Suppose thwt p>s—7——-— (s>0) (p(w)EHs(.Q), zﬁ” @ (y, t)‘

€H 1""(R”“) and supp @,,CK - :
@ If p> =55, 9@ EH,@) (5>0), thon
o Oy, DEMS Ry, @

and . 2 .
P,(y, e € H_((Ry). . (s>0), : (22)
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Proof (1) Ev1dent1y supp D, (y, t) = K5 is equivalent to supp ¢ (@) Q. From
afa'*( ( )t”)—t”"“"’ 11 (@ la| +1—k—52.)0%p

B a:%-
it is seen that

(0] Jotosmnw, 0 l"dydth’t%“’_““'."’,*”flf S |o%|*de

Q\6|<|al+]
for each #,>0, if p>s——;i—-% and |a|+ j<s, Here C is a constant, independent of

o ‘This proves the ¢ only if” part.
Conversely, if @, (y, t) € Hix (R (s>0) for each to>0 and Ial <s, we have
t2(p—la|)+‘n+1

o> [ [ 080, 0 Pdvdt=gr l)—l—n+1.[ |0zp|* da,
Moreover, supp @ () Q. Consequently, ¢(z) € H, Q).
(2) From (20) it is seen that S
@p(y, ?) EH_.(R )

for each ¢>0. Then from - o ‘
[* 12 D1 do= ! pomaf_@riEmloE0 1

\max(l 128 J

we obtain (21) (22) can be obtained by the similar way Lemma 4 is proved
Suppose that P (€, v) =0, as an equation of 7, has a root of multiplicity 7 for
some § #0 and has no root of mult1p1101ty>l+1 for any £+0. As usual, let - o
o =S PO Dl
Lemi!la 5 (1) F or each polynomwl P mentzoned abo'ue thefre isa constcnt c such
that =~
=0+ |12+ lwlﬂ)m—l, : ‘ (28)
where (¢, ©) €C* and O>0. ' S et
(2) For each polynimial P mentwned above there is-a constant C’ such that
[P, v—is) =0 () A+ £+ 2D, @)
where (&, 7) € R*1, ¢>0 and O’ (g) >0.
Proof (1) For any (¢, v) €C** with |£[?+ |z |2 1, all th derivatives of P(§, %)
' cannot vanish sunul’oaneously Otherwise, P(§, ©) would admit a root with multipli-
city=1+1, since P(§, 7) is homogeneous. Hence there is a constant Oy such that

‘ _ Pz 3 | PO, 7)l”>0'1(l§|2+17|”)’""
1f |€ l” ++2>1. Moreover, 2 [P"")I’ isa posmve constant I—Ience we have (23)

(2) By the hyperbohclty of P(&, 7) we have P(f T— w) #0 (£>0),Moreover. :
|P(¢, 7—ie) |<C(e) | P(, 7—is) |
(see Lemma 4.1.1%7), Using inequality (28) .we obtain (24).
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'The Cauchy problem for the hyperbolio operator P(9,, 9;) has a fundamental -

solution & which satisﬁes
AN

6=l — m, Ve>0 (25)

and : '
supp B Lo={(y, #) | —n'y+7t=>0, (—n, ©) €T} (26)

- ([17], Theorem 4.6.3). Moreover _ e
E«F€ H, , (Bi+Y), VFE H1°°(R”+1) ' (.37)

is the unique d1str1but10n solution of (4), if the support of the solution belongs to
R"**, Here we have utilized Lemma 5(2). : :
Lemma 6. Let {f,} be a sequence of distributions such that SHhrE€D'(B™?), supp .
SaC R If there is e>0 such that
6™, €S (R™Y) and e“”f,,iee"“f (h—>0), : (28)
then )
h=Bxfy—> Bxf=u (h>oo), (29)
Here S is the space set of all temperate distributions™™,
Proof From the properties of the convolution we have
. P stu =g stE*e—stf . (30)
Oons1dermg the Fourier transforms of the both sides of (30) and us1ng (25), we obtain

L PR - o1 ' (81)
’ B " P(§, 7—%8) he R
From (24) it is seen that o : - '
__‘1 /St\ ——)S “—_‘ 1 . St —&t &t
PE i) * T PE ey f o~ fud- f (o), (32)

Smce the Fourier transformation is a contmuous map from S’ to 1tself we have ;

6™y, —S—> 6™ . (h=>00),
Consequently, for any l/JE Cg (Rr+1)
L, Py =<6, € “¢> - <6““"u 6"’*/!) (u */J)

This proves Lemm 6.

'IV. Problems 7, and T;
For the problem 7', we have

Theorem 1. If 'a>m+q—g§— (¢=0) and fEHs(.Q) (+<9), then in the

space’ Hoypm_i(Q) the problem T1 has a umgue solution 'wkfwh satfl,sﬁes (7) in the sense of
distribution. Moreover = ~ : S '
o | €0Hs+m—z<0’aﬂf ls (Ci=constant). (33)
Proof Flrstly, suppose that f(#) € 0~ (R*) and supp f(¢)<B. From Lemma 4
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we have . _ , S . )

Py, ) =H®f (L) erne ARy, ey
Hence equation (4) admits a solution ' , :

u(y, ) =ExF(y, ) € Hs ey (B, (85)
Since F'(y, t) isa homogeneous funotion of degree at+1— -m, u(My, A.t) /)\.“+1(?\,>O) is
a solution of (4) too Moreover
B w(My, M) =A"*"u(y, 1),

‘Hence there is a function @(x) such that

u(y, ) = H@#+p (L),
From Lemma 4(1) we have ' : ‘
(@) € Hyrma(BY,

smce g+m—1=>0. Further, from the properties of the convolution we have .
suppucsuppE+supchI’o+Kgc:Kg,

since 2 contains the convex hull of X and 9Q is spacelike. Hence ¢(2) € Hyim (.Q) :

Now we prove that @(z) satisfies (7) in the sense of dlstrlbutlon In faot for any

$(2) €07 (B) and ¥ (a) €05 (RY)

(Pu, bV (L))=<1 @, V(m'>><t“+1-"m+"_, w»'
holds On the other hand

*{u vor (D)= (erion(2), vov (1)
=<L(a)p, V<++i—me, ‘#(t))
Choose m[;(t) such that {*—™ i(¢)>+0, we have

@, V@)= @p@), V@) (36)
and hence (7) holds in the sense of distribution. ' : ‘

Let fEH Q) (s<9). There exists a sequence {f;} such that f,,E (/3 (Q) and
fr—ofin H, (Q) as h—> oo, From Lemma 4 we have .

6~y (y, 1) —> e F (Y, 1), - (37
Since F€E07 (Q) there is (phE Hyim1(Q) such that L(a)g,— S Let wy=ExFy=
(p;.( )t‘” 1 From (36) and Lemma 6 it is seen that

' (Br+ R
"D = BeF @ . (39

Henoo (u, ¥ )¢<t>> @, V@<, y@)> - (u, V(L ¢<t>>

Consoquently.  {pa(a), V(@)> = (s sV (L)) /s, w>
holds for any VE 00 (R™). Hence there is an element o () € 2'(R") defined by
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o), V@)= < var (4 >/ @, ),
It is easily seen that -

- ) w;.(w)-—+¢(w) supp ¢
and _ L(“)¢ hm»L(“)‘Ph—

ThlS proves the existence of the so]utlon . e _ ‘
Suppose p € H. semt(Q) is a solution of (7). Then u=H (#)g (—:'ti) 1+ € 9’ (R+Y)

satisfies (4) in the sense of distribuion. From the uniqueness of the “solution of
Cauchy problem for (4) follows’( the uniqueness of the solution of problem 7'y. Hence
L2(a) is a linear operator from H, (Q) to Hemi(Q). ,

Finally, we shall prove the boundedness of L~*(a) by using the closed graph
theorem. Suppose that {4} is a sequence in HS(Q) such that Ji>f in H +(2) and
L(a) f—>¢ in Hoima Q) as h—-)oo Let (p—L 1(a) f. Repeatmg the above argument
_We see that : ‘

e L @fh 2 @i —p, @)
Hence ¢'=g, i. o., {(f, L*(a)f| f € H, (Q) is a closed set in H, (@)% Hyym1(Q).
From the closed graph theorem it follows that L 1(a) 1s bounded The proof is
completed.

Theorem 2. If a< —5 5 —land f€ H,(Q) with s>, then the Pfoolem T, has
unique solution in Hgym ;. ‘ L

Proof From Lemma 8 'we see-that L*(a) = (—1) '”L(a*)

with a=-—a 3+m—n>m+l——2— -g- ' (40)

ItyeH, (Q) L(a)y=0, then the Green formula gives
: (L@, )=0 - - :
for all ng H m (.Q) IfccCy (.Q) then from Theorem 1 we gee -that there is a- functlon
EH am—1(2) such that L(a*)p=o1. Then :
L (o, )=0"
holds for all o €C5(Q). Henoce Y=0. This proves the 1 unlqueness of the solutlon
Let f€ H,(Q). For all y €C5(Q) we have :
[y &) I<IF LIl -s<elf || T* (@) ¥ —omas. (41)
Thus (, f) is a bounded linear functional defined on the subspace {L* @) p|ypE
C5(Q)} of the space H_,,; ,,. From the Hahn-Banach Theorem it can be extended to
a bounded linear functional on H el Acoordmg to the properties of H ~s+t-m, this
funectional can be expressed by an element ¢ € Hyypy, i. 0., for any y€CF @

U, 0 =(o, I*(@)) = (L(a)p, P, 42
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This means that @ is the solution in Hjn!, (.Q) The proof is completed
Using Theorem 1 and 2, we obtain : :

Gorollary 1. If s>l+[ ]+1 a>m+s—-§—-§- and fe H,, then the problem
T, admits a O™ (.Q) solution uniquely. P ‘ '
Gorollary 2. If s=>1+ [7] +1, dk'—'—-g—‘ —"—%——l and f E H,, then the problem T,

admits a O™(Q) solutwn umquely N : ‘
..Remark 1. By the fundamental solutlon E the solutlon to problem T1 can be

expressed as

(43)

(o) - (Eﬂ“*%f( )er)'

t—1, y_z
Remark 2. If we cons1der classmal solutlons, then the boundary condxtlons in
problem T, may be non-homogeneous ' )

| V. C"’,"" ?Soilitiohs :

Let f €c=(D). we consider the :O"“(ﬁ)"solutiohs: of (.7').' FFrom Theorem 2 it

follows that (7) admits only one O’°° (.Q) solution, 1f a< —%——2——1 We next discuss
the case a=> 4%‘;—%—2, For convenience we use the comma as ‘the “fiotation ' for
pei'tial differentiation, e g. , N o )

P siot= - % -‘ ' (4

azv,, 0m;,

(pﬁ *g=1s ds aw ¢¢1 "fs-10 .

. Lemma 7. Ifq)satzsﬁes N; then : R PR
. L(a- 1)¢,¢—f,=—<L(“)¢).¢. : . . (4b)

Proof " Let @(ry, t) —t“+1 ( . ) and let 0] satlsfy

Py, 0Dt f< )
Differentiating with respect to- Yi, We obtam T
r o ()],
(45) fo]lows from the deﬁmtlon of L(a—1),
.. -Lemma, 8. . If we write L(a) in tlwfor{m A e _
VM@i?%@% B )
o(@) = ao..0(a@) = (a—l—l)-a (a m+2) N 1 )
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Proof (47)is a direct consequence of (8). "
Suppose that @ is a C=(Q) solution of (7)..Then the s-th denvatlves @, i,0i, SaTISTY

S . L(“ 3)?’,51 is=J by ige T A o (48)
Conversely, choose s such that a——s<-—12"-—-%—-l Then (48) adm1ts one and only

one solution g,,. s o= (.Q) Since f,,..;, are symmetrw ‘with respect to .the lower
1ndlces the uniqueness of the solution gives that Pty are also symmetrlc with respect
to the lower indices. Differentiating (45), we obtam ‘ '

L(a—s=VPuisuiFoiivtone o (49)
From the above argument, we have C
U ) Pttty = P whsilsrribge (50)
Beca.use Q is simply connected there ex1sts a system of functlons @iyt SUCH that
Pirbperyts = Pitae . _ _A (61)

@ipos,, are determined by (50) except for additional constants. We may choosé &
system of g;,..,,, which are symmetric With respeot to the lower indices. From (48)
and (45) we obtain : e _
, (L(“ 3‘*‘1)%1 z.,-l) W= L(a 3)%‘ isetis = =T ,;,...c,‘
and hence _ 7
g L(a—8+1) @ity —F iivier = Ctrotons Sl (B2)

Here c;,..4,., are constants which are symmetric with respect to the indices.- If ap(a—

b
s+1)#0, we can change g;,.,,., by adding a system of constants @iyip, Which are
determined uniquely such that g;,..; , satisfy the equations = I
" L(e—34+1) @i, =F titpne (83)
Using the same procedure successively, we see that if ¢+1 is not a non-negative
integer the C™ () solution of (7) éxists uniquely for any f€C=(2),
Now let ¢+1 be a non-negative integer.- ‘For ‘example, lot a=—1. The above
procedure gives a system of 0= (£2) functions @s,, satisfying L(a—1)g,=f,, and g,
= @i, Hence there is a C0=(Q) function @ such that L(a)p—f=0C. ¢ is umquely
determined up to an additional constant. However, the additional constant does not
effect the value of the constant. 0’ for ao(a) =do(—1) =0. Define the equivalent class
of 0=(Q) functions [f(x)], as
[f(fv)]o—{f(w) +olo€ Rl}
In each class there is one and only one f (w) such -that’ (7) has a C=(2) solution. If
@() is a solution, then every function in the class [¢]e is also a solution. a0l
More generally, let a= —1-+%, where / is an integer and 0<<k<<m—1. Define an

equivalent class of functions

[f@)]={F(@) |Ff(x) €C~(Q), f(a;) — f () is a polynomial of degree s<<k}..
From the above procedure and
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ao( -1)= Go(o) =ee=ag(—14k) =0, v ' IR
it is seen that in each class [ f (@)1, there is.one and only one functlon such that )
admits a O""’([)) solution. Moreover if qJ isa O"”(Q) solution, then all functmns in

“[@]: are solutions.

Let a=m—24p, wherep is a positive mteger Usmg the same argument ‘we

obtaln the following results: Let
[f(w)]p. {f(m)l?(w)ea‘*’(ﬂ),
F brmin— = foirs, BTO polynomials of degrees<m— 1}
In each olass [ f (:v)],, = there is one and only one. function such that (7) adm1ts a
0=(Q) solution. Moreover, if ¢(z) is a C=(2) solution of (7), then for each sot of
polynomials k,,..., which are symmetric with respeot to 43--+i, and of degreec<m, there
exists one and only one solutmn (p(m) suoh that
P, io = @ tymip Koyt
The sets [ f(2)]x and [ f(4)],,m have dimension
1+01+- -+ OfFF 1

and ' OvHo L Optp oo - OB 102
respectively. Thus we have obtained

Theorem 8. Let f(z) €0~(Q). If a+2 is not @& posztwe 'mtegefr then (7) admits
one and only one C=(Q) solution. If a=—1+k (lc—O 1, -, m—1), then in the class
Lf(@)]x there is one and only one function such that (7) admits solutions. Further, if
(@) is a solution, then the whole set of solutions s [(p @)1y If a=m—2-+p, then in the
class [ f(@)]p,m there is one and only one function such that (7) admits O=(2) solutions.
The solutions are determined ea;cept for a set of polynomwls k. o (w) wkwh are symmetric
with respect to their indices and o f degfree s<m. '

- Remark. In IV we have seen that the problem 7', admits a solution However.
even for the case f € 0”(9), the problem T’y does not. admit a O @) solutlon in general.
As pointed in®*!, for equation of mixed type the boundary cond1t10ns for solution in
C~(£2) and for the solution in O” @) (m<fr< +oc>) may be qulte different.’
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