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ON THE GROWTH AND THE DISTRIBUTION OF
VALUES OF EXPONENTIAL SERIES CONVERGENT
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Dedicated to Professor Su Bu-chin on the Occasion of his 80th Birthday and
his 50th Year of Educational Work '

Ritt, J. F. investigated, the growth of entire funotions defined by exponential
series and introduced the Ritt 6rd_er or order (R); Mandelbrojt, S. ® and Valiron
G. 29 studied the growth and the distribution of values of such functions. Blambert,
M. ™, Sunyer i Balaguer, F. I, Tanaka, C. “81,? the authort3*! and others continued
to do research work in this respeot o 4, , L , v

For analytic functions defined by exponentlal series convergent only in the
right half-plane, the author™* 1ntroduced the order (R) and studied some exponential
series and random exponentlal serles In this paper we introduce the order (R-H) of
such functions. Applying an extension of an inequality and we study the growth and
the distribution of values of such funetions in some horizontal half-strips and obtain
rosults similar to the case of seme entire functions defined by exponential sories.?
1. The order (R)in the right half-plane. Consider the exponential series. -

oo

F© =S aem, (1.1)
where {a,} is a sequence of com'plex :num]eers; 0=Ro< My <o++ <A} +00, s=0+it, &
and ¢ being réal variables. Suppose that . o g ‘

Tim logn _ - hmlogla,,l 0, o 1.2)
N> 00 }\,n n->doo
Then the abscissa of conyergence and that of absolute convergence of (1. 1) is 0 and
the series (1.1) defines a funotion f (s) analytlo in the right—half plane.
Let M)~ _sup_|f(o+it) | (>0,
The quantity ' '
: + +
= log log M (o)
= lim —&—S2— 4
P . g->+0, log(l/a)
1s called order (R) of f (s) in a>0 We have the followmg theorem

| (71,.3)"

Manuseipt rec1ved Dec. 5, 1981.
1) Some results in this paper have been announced in a N oteflﬁ]
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Theorem 1. 1.” Suppose that (1.2) and

) B — ?»,, . - o . )
are fuemfwd Then f (s) zs of ordefr (R) p in or>0
1og 1og lanl . :
@)ﬂﬂ- sy S - @B

where p i T st be replaced by (1) in the case p=-too.

Following Hiong Kin-lai " we.introduce a.proximate order (R) in the case
p=-+oo. Let p(u) (u> 0) be a strlctly mcreasmg posmve funecition such that
1 hmp(u) A0 SR RN SN i '
log U (v') . =1,
uspeo 10g U(u)
where o ' :—u+

I:f__';' '

(u)
log U (u) ’ U (’u) -

"—1og1ogM(a) P
EﬂﬁogU(l/a) =1,

 we say that f (s) is of order (R—H) p(l/O‘) in a>0 We estabhsh a theorem sumlar
to Theorem 1.1,

Theorem 1. 2 Suppose that (1 2) zmd (1 4) are 'uemﬁed Then

(1. 6)

f(s) q,s oforder (R—H) p(l/a)(=)11m tn ~j. ’ ' | ‘ (17)
wheafe'  . i _{log?»,./logU(A /log{a,,[) (]a,.[>1),

o (lal<).
Proof Tirst we prove that if im- ty=1, then “

N> +foo
- log logM(o-) <
- ﬂ’?o Tog U (L) L e (18)
For any 77>O there exists an integer N>0 such that for n>N and . [a,,] >1

ool

Let =T (u)’ and’ u= q)(/u) be two reclprocally mverse functlons Then for n>N and
laa| >1, |
e
7&1‘*" <
P (OT) —l-ogl o

-and consequently

2) This theorem was stated in [14] W1thout the condltmn (1 4) But m order to pzove it, we must have
Ze"-nw =O( )(s>0 a—>+0) for which the condmon . 2) is not suﬁlclent ([14], p 102) the condmon
: (1.4) must be added in other related theorems in [15] ' : ‘ '
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[a Ie—hn0'<exp [__&‘___——}\‘ g'] o - o
. 1 " 1.9)
B (}\, T+ ) *

Ev1den’s1y (1.9) holds When |aa| <1. Hence we have (1 9) for: n>N
Fix >0 and take A such that e R

1 1 —'—1—— ':4,'( . ‘
(1+ 10gU(1/cr)> ‘p(mﬂ )' ‘
Then , U I: (1+W>] 7\. 1+"7
and conSequently = [U (1/ or)]“”““'(") (c—>+0),
By (1.9), when As> A, and n>N

|ay|6<exp [M(-_;_ll-_;_‘(;’)];éx'?[ __:x_q___ ]«

' Let S m(o)= max[a,,le“""" :
and n(cr) max{kl lakle""‘"——maxia |e"””"}

For suﬂ’mlently small o, we have )u,.(,)<7» Since ECR
1ogm(a)=A+j Mo do (0<0<1)
where a (>>0) and A are constants, we ‘obtain Py e
log m (o) <[U (1} a)]1+”"+°(1)(o-—>+0) o
On the other hand, for any s>0 there ex1sts an m’seger N1>0 such thah for
anyn>N1, B ‘ T RO R T ’
: ?»,.>n/ (D1+ 8)
Suppose that o is fixed such that n(c) >N, Then
PO 1< S lanlotet Sanlae
< (D1+ s) [U (1/0-)]1+”+°‘1)exp{ [U (1/0.)]1+2ﬂ+o(1)}
Fas T i [)1+s§
4 B el m]} Tt
Hence for sufficiently.small >0, ST S
M (o) <oxp {[U A/} + ?_@i’fl [1+10gT (/)]

<exp {[U (1/)1***7}
.and consequently (1.8) holds.

- n-b+°°

Now we prove tha’q if Tim t,, 1 then we cannot have

o 1og 1ogM (o) _ :
Im B Ty o<t (1.10)

Suppose that (1.10) would hold, Choose >0 and that c+2¢ <1 Then there would
: exist o‘o(0<cro<1) such that for 0<o <o’ ‘ ‘ ¢ :

log M(o) <[U1/ o)]°te
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and conseqnently for n=0, 1, 2, _ :
-- logla,.l—- ,.a<[U<1/a)]c+s’ (1.11)

On the other hand, thers exist arbitrarily large,mtegers n such that. - ‘
| > [UOw/loglan|)I** “(Jaa|>1), = 00 0 0 o (2.12)
Take such sufficiently large n and take 0'(0<0'<0'o) such that
' 1.18)
/o eV Tog U g ey 9

[0/ o) 17

Combining (1.11) and (1 18), we see that for any 77>O there are arbltrarﬂy
large n and o € (0, o) such that - T S

o %_< log}nnl [=1+, logU(?»jloglanl)]

and consequently LES T . _

. U@/o) U (kf/log | an}) 2+ - @.14)
By (1.18) and (1. 14) we have for those. suﬂ’lclently large n for which (1 12) holds

1< LU (ha/log ] )] 310 mg’”—l 1og U (1a/ 108 )

and, for the other sufficiently large n,. t,,<1 —¢&, whenoe Iim ta<<1l, contrary to the

N> oo

hypothesis. The sufficiency of the condition - (1 7) is proved

We can prove easily the necessmy of this cond1t10n

" The proof is completed. . A e T
2. The order in a horlzontal half-stnp Let %o be a real mumber and @ be.a
positive number. Denote the horlzontal half-strlp {s|0'>0 lt-—tol <a} by 8=
S (to, a). Let : :

Ms<a)< max | f(o-+zt)l(0'>0)

where f(s) is.definéd by (1.1), (1. 2) bemg verified. Replaomg M(o) in (1 3) and
(1.6) by Ms(c) we obtain the definitions of the orders (R) and (B-H) of f (s) in
S§=8(t, a). In order to study these orders we establish a lemma.

Inspired by the idea of Anderson, J. M. and Binmore, K. G. m, We suppose that

inf Tim N((aa—i—l)q) N(wq) =D<Hoo, o 2.1)

g>0 o>+ : q

and

]-Og(}"n+1-7\‘n) i : o
-I;J%T> ~oo, ey

where N () denotes the number of A, less than (> 0). Evldently if
r hm ()»,,,,1—7»,.) +o0, _ (2.8)
‘:then (2.1) and (2 2) hold .with. D=0. We can prove D;<<D, .

Lemma 2. 1. Suppose that the series. d.1) satifies (1.2), (2.1) and (2 2). Then
for any £>0, for any real number ty and- Jor any 0>0, we have
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Iak|<AhBMs(a)e"“’ (=0, 1,2, ), L (2.9)

.whefre S=8 (to, m;(D—l— s)) and A and B are posth/ue constants dependmg only on & and

{1}, g : 5
- The proof of this 1emma is similar to that.of The0rem 7 in [1] ‘In Vlrtue of (2.1)
for any &0 there exist a positive real number qo and a posntve mteger M such that

#the number of A; satisfying

nqo<7»j< (n+ 1) do (n>M )
does not exceed (D+¢)go. Suppose that - '
: e o S | Appy=min{}; |7»¢/ (M+1) Go}. [ R
For the ﬁxed k construct i@, J (@), h(t), He(x) as in [1]. Oorrespondmg to

and

A1, Mg, =+, Ay, there exist™ functions g;(¢) and G¢ (=) such: that g, (¢) € L(— o0, +o0)

-
1) @@ =|_eg @,

2>gxe=0(|ﬂ>ﬁﬂli+p0;-?'”
3) for the ﬁxed value & " .-
o CG (R =A) =0 (j 1 2, --i-,”p)‘l -

'elm@@—nmﬂﬁ,w_
L,

5 [lg: lar<t.

,We define L () =G () H; (w)J (@) and Z(t) ( g;*h;* 7) (#) similar to L(m) and
Z(t) in [1] and define

fu(8) = 2 a6 - (0>0),

Then . ' . . . J’i 1() 6™y (5) di = are~L(0),

whenoce _ ay e"“""L (O) J' 1) e“"t f v (8)dt,

_where n= arpS +'r;;,,+2hp§+ (mwp/ 27»;0) +pé; P 8 'a',,, h and P bemg the same as in [1]

Reasoning as i in [1] and takmg account ‘of (2 2) to estlmate

I (o0s 5 20 <cos°; ﬁ::,)

We come to the ¢onclusion in Lemma 2.1.®

"If (2.8) holds, we have a more preciseﬂre's;ult : ' 7
|au| <AMs(0)e™  (k=0, 1, 2, =), - (2.5)
where §=38 (%o, &) and A is a positive constant dependmg only on € and {?»,,}
‘The proof is similar to that of Lemma 2.1
Now we apply Lemma 2.1 to prove the following theorem:

8) Below the formula (5.13) in [1], there isa misprint. We must have 7,=2"T% (hp?»;i +:+hj?\;1).
: e : =F+
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{+ Theorem 2.1. Suppose that the series (1.1) satisfies .(1.2), (2.1) and (2.2).
:Then the order (R) or (R—-H).of f(s) in >0 s the same ‘as that in any half-strip
S (to, @), where ty is an arbitrary real number a is an arbitrary number>mwD,

- Proof 1) Suppose that f (s) is of finite order (R) p>0. Then in: any "half-strip
8=8(,, a) (¢>¢D) f(s) is:of order -(R) pr<<p. If f(s) wereof order (R) p*<p in
a half-strip 8*=8(%;, a*) (a >avD) for any >0, there would exist >0 such that
for o€ (0, oo) : : _
long*((r) <(1/o‘) othe :
By the above 1nequa11ty and Lemma 2; 1 we would have for o€ (0, 0o) and IcG {0
L, 2y e} S : : o - :
log[akl <10gA+Blog}wﬂ+ (1/0)"“'3—!—7& o, - Lo (2.8)

( P *+ e )1/(P‘+1j!-s)
/3

Substituting for o in (2.6), we would get

= loglog| ol _p P
kl—ﬂl; log Ay S P +1 <p+1’
contrary to (1.5). The case p=0 or p=-co can be S‘ﬁ'lldled in the same way.
2) The case that f(s) is of order (R—H ) p(o-) in a>0 can be studied sm:ularly

The proof of the Theorem is then oompleted

We have similar results for proximate orders (R) r14] . In particular we can prove
Theorem 2. 2. Suppose that the series (1.1) satisfies (1 2), (2.1) and . (2 2).
Then 1 f

N T R . <o v |
Tim alogM<a)‘=+oo,4> e
o—>+0 R R
we have ' - o
lim O‘lOng(O'> oo (2.8)
o->+0

for any half-sirip 8=8(to, @), where ty is an arbztmfry real number and ais an
arbitrary number>wmD, . o
3 Plcard pomts a.nd Borel pomts Now we study the d1str1but1on of values of the
certain point s, every finite complexvalue 1nﬁn1tely many tlmes Wlth one poss1ble
point of f(s) ‘We have the fo]lowmg theorem: ‘exception, then s, is called a Picard
Theorem 8. 1. Suppose that the series (1 1) satisfies (1.2), (2.1), (2. 2) and
(2.7). Then in any interval of length 2mD on 0 =0, there ewists at least @ Picard point
of.f (s). . , . ,
Proof By Theorem 2 2 for an arbltrary real number to and for an arbitrary
" number e>mwD, (2 7) holds, where S8=8(to, a). Divide the horlzontal half-strip §

4) This condition is equivalent to

Tim 10g1an| log lanl oo, M41 ¢ ¢ -

oo
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into two ‘horizontal half-strips S® and- 8 of the same breadth. Then
lun O'].Ongw(O') +°0 g A o T (3 15

must be true for at 1east one of the half—strlps SD(j= 1 2) Denote one half—stnp
for which (8.1) holds by S;.
. +Pivide S, into two horizontal half-strips S{” ‘and S and repeat the above
process indefinitely. , )
We obtain a sequence of harlzental half—stnps {S;} in a>0 (l 1 2 ) for
which we have .
hmo-logMS,(O') +oo, - - (3.2)

the breadth of S;,1 being half of that of S Hence on the line _]omlng z(to a) and
4 (to+a) there exists a pomt it* such that for any 5>0, A

hmcrlogMS.(O') +oo
where S*=8 (¢, n). : ' i
Now we can prove t* is a Picard point of f(s) as in the proof of Theorem 4.3
in [14]. Since the above reasoning is valid for any a¢>mD and since a limiting point
of Picard pomts is 1tself a Plcard pomt we ' can easﬂy oomplete the proof of the
Theorem. . ' ’
We consider at present Borel (R) pomts Suppose that f (s) is defined by (1. 1)
and that (1. 2) holds. Let 4ty be a point on o= O and n be a positive number For any
finite complex number {, range the points s to sahsfy F(s)=¢, |s—it,) <n, Re s——a>0
in a sequence {s,({, ’Ilt_'_, n)}, where Re s,, (&, ’btl, 77) =0, (§ ity, 1) is non 1noreas1ng.
‘We have . EE : :
. Theorem 3. 1. Suppose that the sefrws Q. 1) sat/z,sﬁes (1 2), (2 1) and (2 2)
and that f (s) s of order (R) p(0<p<+<>0) in 6>0. Then in any 'mterwl of length
2:n:D on o= =0, thefre exists at Zewst a Borel (R) pomt of O’I”de’)" at least p and. at most

P+1.

“ That is to say, in any interval of length 27D on o =0, there ex1sts a pomt Gty such
that for any sufficiently small positive number 1>0 and for” any finite complex
number {; the series 2 [ow(l, 481, n)1™ converges if > p-+1 and that for any posmve

number n'and for any finite complex number C, with a poss1b1e exeeptlon the Series
2[09(5, i1, )17 diverges if T<p.

In order to prove Theorem 3.2 we show ﬁrst as in the proof of Theorem 3.1,
1hat there exists a point 4ty in any,ln’perygl-of length greater ,than_ ZavD, on o =0 such
that for any 7>0 -

7 loglog Ms(o) _ -
01_13) “log(1/o)- TP e
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where S=8 (to, m). Then we can.complete the proof as in the proof of Thearem 4.4
in. [14] and in that of the previous Theorem.

We study now the case of infinite order (R) Suppose that the series (1 1)
satisfies (1.2) and (1.4) and that

» -—.—,.—‘logloglogM(a) — O Lo ; >.
Tim T p1(0< py < 400), o (8.3)

) o->+0 .
Constructm' 141 g differentiable funetion p;(r) (r>0) such that ,
‘ - lim pl(T) =pr, Impi(rlogr=0 " (3.4

and that _ } _
. o loglog M(c) ,
ST T Tt TR (85
Where U, (fr) fr”*<’31s a strlctly increasing: functlon Let Ic(r) be a continuons function
defined for >0 such that o , S
lim k(r) =k(0<k<--o0), ' _ . (3.6)
r=>4oc0 . 3 . " .
We can show ™ thst S e ‘
: Ul(lc(fr)'«r) - SRV 3
lm Sk, e
Put U(fr) —exp [Ul(fr)]and p(r) = Ul(fr) /logr. Then U(fr) fr"“) and’ p(r) is evldently
an order (R-H) of f (r).in o>0, : S :
. Theorem 3. 3 Suppose that, the semes (1 1) satq,sﬁes (1 2), (2. 1), (2 2) and
(3. 3) and that f (s) is of order (R——H) p(1/o-) as deﬁned above. Then in any fmte'r'fual
of length 2avD on o= O there exists at least a Borel (R—H) pofmt of order at least

p(61)<1+iﬁéi)m“tmﬁ(“)@ 29).

That is to say, in'any intérval of length 25D on o= 0. There emsts a pomt ity
such that for any sufficiently small number 77>0 and for’ any ﬁmte complex number
¢, the series 2[U(6/o~,,(§ iy, 0))1" converges if #>1 and that for any posfalve

number 1 and for any- ﬁmte complex number L, Wl‘bh a poss1ble exceptlon the series
EEU 1/ 6 (C, ity, ?7)]'7 diverges if 7<1,_

~.Proof As in the ‘proofs of the previous theorems we. show that there exists a point
, zto in 1 any 1nterva1 of length greater than 2avD on o' =0 such that for any 17>0

log long(cr) e s '
| Mo logU/o) =1 &8
where S§=8 (to, ). R o
" Let & be such that 0<&<z. The apphcatlonsm '

o < Z2-1+27

— p—8+ifo — ~T/28, _

z=g %t Z‘—‘z and W=y

transform the domain ¢>0, |¢—1|<é¢ into the domains |2| <1, |argz| <s; |Z| <1,
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larg Z | <—g—— and |w|<1; s=@(fos) and +oo cdi:ne's'po_nd -reSpectiveiy to z=e** and

0; Z=+4and 0; and 'w—i'i' -1,
Under the above applications we obtain e

f(s) fl(z) fs(Z) fs(’w) ] ‘
Put Ms(a)— sup lf(o‘—i—’bt)l, Ms(o-)— sup If(a;+zt)[(w¢cr 0'>O),

Ml(fr)——sup[fl(z) |(|argz|<s 0<'r<1)
My(R) = sup |£2(2) |( lare 2| <%, 0<R<1),

My(R) = sup |£2(2) |( e Z| <3 (<%), B>0),
-.,-Ms(s) maxlfg(fw)l(0<5’<1),

where S=58(to, ¢). We have
Ms(a) <Ms(0') <M(cr)

Henceﬂ.ﬂ, 141

1— Tm 1og log Mg(o) _ h—ﬁ log log Ms(o-)
o->+0 ].Og U (1/0') o’->+0 ].Og U (1/ (1 6—0') )

B el 1oglogM (s) 2¢ loglogMg(R)
= Jm 10gU(1/(11 ) ( ) Rlino Tog U/ A— R))

Since (3.8) holds for any n>0, we deduce as above

A g U@/ (A-R)). \2s JR N U

- By (8:11); when |w|<S, ‘the correswndmg 7 satisfies IZ [ <(S+1) /2 By :

(8.10), when Z satisfies | Z|=35—2, |argZ |<8 and 0 <88 —2<1, thecorrespondmg :

w satisfies |w| <S. Consequently we have S '
' M;(388— 2)<M3<S) <.M2((S+1)/2)

Tm 10g10gM2(R) . (. >m"

and

(a,);u = log log M4 (35 —2) <Tm log log M ()
S oo T (3/ [1— (B8 —2)1) =10 Tog U (L/(A—8))

< T - 1og'10gM2((S+-'1)/2) . ‘=<_:7_v_)"‘_
S logUA/2[1— K8 +1)/2)) \e/ *

Hence by (3.7)

— loglong(S) _
I e U= (3.12)

where ky=Fkw/2¢e and 1/3<k<<2,
Let T5(S) be the Nevanlinna characteristio function of fa(w) (|'w| S). By
(8.12) we have v R .
o T loglogTs(S) 1 R _
B L LY} S R (3'.:13).2

In fact, we have by an mequahty of Nevanlinna ', for any a,>1
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(A1+(a—1)S (14 (a— 1)8’ 1-8 .
'IOgM‘O’( @ )>T3( a )>1+(2a l)S logMa(S’),-

whence

. log log M, (“1+(aw—1)8> l _ | log T, (h—“'(“ l)S)v )

§-1-0 logU(aIcl/(a 1) (1 S)) s_.1 0 logU(a/cl/(a 1) - S))
_—  log logM3(S) a—1
>s]—"1>fno log U (aky/(a—1) (1— S))>( @ ) ¢
Since the above inequalities hold for any a>0, we get (3 13)
Hence™ f3(w) has a Borel point ‘wy(Jaws| =1) of order (H)
10g‘701' 9 m
plea/1= [w])[ 1+ 1B TS ],-. : |
By the applications mentioned above we can complete the proof of Théorem 3.3,

1=
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