Chin. Ann. of Math.
-3 (5 1982

SOME CHARACTERIZATIONS OF A
FINITE SUPERSOLVABLE GROUP
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(Xz'nom Normal Gollege)

Much of the characterizations of a finite supersolvable group has been derlved
- by a number of former authors In 1941 Iwasawa proved that a ﬁmte group is
: supersolvable if . and only if every max1ma1 chain of subgroups has the same
length™. In 1954 Huppert proved that a ﬁnlte group is supersolvable if and only if
‘every maxnnal subgroup has a prime index ([2], or [6] Th. 10.5.8). In 1957
Melain obtalned that a finite group @G is supersolvable if and only if there exists a
. subgroup of order d for every factor d of order % of every subgroup H of G™. The
present author proved that a finite group is supersolvable if and only if JGhe 1ndlces
- of every maximal chain of subgroups are all square free.
However, the proof of Huppert’s ’cheorem is complex and has wused the

“representation theory (as [5]) or Gasohutz 8 theorem (as [6] Th 9.3.8). The first
part of this note gives a proof of Hup pert’ s theorem without usmg knowledge of that
- kind and extends a little the sufficient condltlon of this theorem. The seoond part is
. an extension of Maclain’s resuls.

§1 Another Proof of Huppert’s Theorem
and Extensmns

Lemma. If N is @ minimal normal subgroup of order p* of a finite group G and
G/N is supersolvable, then either 1) there is @ mawimal subgroup M of G such that
G’=MN: MON= E, or 2) G has a normal subgroup of a prime order.

Proof N is an elementary abelian group of order p*. Since G/N is supersolvable,
G"'has a normal series ' A
G= G0>G1> >Gk—1>Gk>N Gk+1, . . (D
. whose indices [G::Gis1] =i, p: being a prime and pi<piss, =0, 1, -, k, ‘
"~ a) [G4:N]+p, then the order of G is pxp®. Let Py be a, Sylow pk—subgroup of G‘k _
" and the normahzer of Py in:G be N (Pk) Since GMQG by Frattini argument
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G =N (Py) G, ([8], p. 129, IV. 2. £). Furthermore, Gy=P,N will imply G=N (Py)N.
If N (Py) =@, then Py is a normal subgroup of order Py and 2) holds true. If N (Py)

<@, then there exists a maximal subgroup M of G, such that N(Py)<M<@Q..
Evidently @=MN. Now set MNN=D. If D+E, then D<N, since M>AN. D is

normal both in M and N, therefore D< {M, N)=@, conirary to the minimality of
N. “ ' : :
b) [Gy:N]=p, then Gy is a p-group, p is the largest prime factor of |G| and
the Sylow p-subgroup P<@, P>G. Let Z be the center of P. NNZ #H, since
N<P. Z>N by the minimality of N. Since G4=<b, N), Gy is abelian. If G;, is not
elementary, then the order of b is p. From this, the characteristic subgroup 04 (Gw)
(subgroup consists of the p-th poWer of elements of G4) is a normal subgroup of
order p generated by b?. Now suppose G is an elementary abelian group. Then every
‘subgroup of Gy is normal in Gy. If these subgroups are also normal in @, then @ has
a normal subgroup of order p. If not, there exists G; in normal series (1), such that
every subgroup of Gy is normal in @1 bub not so in G,

1) [G4:Gial =D, then @, is a p-group. Since every subgroup of @3 is normal in -
Gis1, Gy is contained in the center of Giua. Lot Gy=<a, Gir1>. [Gi, Gi] is generated
by the elements [ga’, nb*], g€ Gisa, nEN Slnce N is contained in the center Z of
P and G4 <Z(Gis1), We obtain - o

Lga", nb*] = [ga", b°] =_a"'g*1b“ga'b’=a"'b‘sa'b‘=-[a', 5. Evidently G/N is a
normal subgroup of order p of G/ N, hence G3/N is contained in the center of Gi/N. -
Therefore[Gy, Gi]<N<Z and [a, b] € N. Since [a b] #1, the order of [a, b] is p.
[a", 8] = [a, b]™, since [a, b] € Z. Hence [, Gyl = ( [@, 8]) is a normal subgroup
of order p of G.

i) [@i:@Qipa] =pi#p. Since G;=<a, Gi;1), we can choose an element a whose
order is a power of p;. Transform Gy by a, the subgroups of order p of N transform
- $o subgroups of N also, and the subgroups of Gy outside N is also a subgroup
of G;, outs:uie N. The number of subgroups of order p of @y outside NV is

pa+1 1 P 1
_ p—1  p-1 ; .
The numbers of conjugates of these p* subgroups of order p under transformations

p‘i

by @ are powers of p;. Since p;#p, there exists a class which contains only one
~subgroup of order p. That is the existence of a normal subgroup of order p of G:
outside N. Let this subgroup to be (b). Now we shall prove that <b) is normal in G.
If <b) does not, then the number of conjugates of <) in G is grea’ser than 1 and all
of which are normal in G%. They generate\a normal subgroup B of G. Since B<Gy
and N is a min\imal normal subgroup of G, B=Gy. Let @; be a conjugate of <b),
{b>Q, is normal in G. Since @, and <b) are outside N and[Gy:N]=p, <BXQNN=Qs -
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is a normal subgroup of order p of ;. Take ¢ to be a generator of @, such that b¢ is’
a generator of Q,. Then @ *ba=10", a‘ca=c*, a *(bc)a= (bc)!, Comparing above
three expansions, we have r=s=¢. Thus, we have proved that all conjugates of b
transformed by @ are their powers and the exponents are the same. Since all the
conjugates of b generate B=G, it is possible to choose a basis for G in the conjugates
of b. Therefore every element of Gy transformed by @ is equal to its power and the
exponents are the same. Hence every subgroup of G is normal in G, contrary to:
the assumption, so that (8> is normal in G. And G has a normal subgroup of order
P. | o
Proof of Huppert’s Theorem We proceed by induction on the order of G. It is
known that G is solvable. Let N be a minimal normal subgroup of &, |N|=

@G/N is supersolvable by induction. If case 1) arises in the above lemma, we have:
[G:M] - p%, 50 a=1 by the assumption. N is a normal subgroup of order p. Hence
G. has normal subgroup P of order p in any case. By induction on @/P, G is.

~ supersolvable.

The following ﬁheorem is an extension of Huppert’s theorem in the solvable
case. _ '

Theorem 1.1. A finite solvable group G is supersolvable if the index of every'
mawimal subgroup in G is square free.

Proof The proof may be obtained as the previous one by the lemma Now we
prove this theorem by Huppert’s theorem -as follows. Let N be a minimal normal
subgroup of G. Then N is an elementary abelian group of order p®. If G has a
maximal subgroup M=#N, then M N N=D<N and D is normal in M and N. Hence
D<{M, N)=@G. By the mihimality of N, D=E and so [G: M]=p". Since the index
is square free, =1 and G has a normal subgroup of order p. By induction on G/N,
@ is supersolvable. o

Suppoes that every maximal subgrou pMof@ contalns N.G/N is supersolvable‘
by induetion. Since M/N is a maximal subgroup of G/N, the index [G:M]=[Q/N:
M/N7] is a prime. Hence @ is supersolvable by Huppert’s theorem. -

A little extension of [2] Th. 10 may be given here: If a finite group G has a .
normal subgroup N<& (@), where (&) is the Frattini subgroup of &, then G is
supersolvable if and only if @/N is supersolvable.

The assumption “G is solvable” is necessary for this theorem. For example, the
simple group 4 of order 60 has no subgroup of order 15. If not so, 4; would have a
permutation representation of degree 4. The representation is faithful since A4; is
simple. A; would be isomorphic to a subgroup of S,. This is impossible. The Sylow

_ 8-subgroups ‘and B-subgroups are not maximal subgroup of 4; otherwise their
_normalizer should be themselves. Therefore 1+3% =20 or 14-5k=12 by Sylow theorem
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: , T ,
which is impossible too. Henoe the index of every maximal subgroup is square free
in As. V

§ 2. ‘Extensions of Melain’s Re'sult

Theorem 2.1. Let h=|H|, (where H is a subgroup of a finite group G.,) P;;_ be
the smallest prime factor of h and g, be the largest If there ewist subgroups of indices py -
‘and ¢ in H for every subgroup H of a finite group @, then is supersolvable. ‘.

Proof We use induction on the order of @. By induction every proper subgroup
of @ is supersolvable. If G' is not supersolvable, then @ is an “inner supersolvable
group”. G is Q2 or £’ ordered solvable group, where £ is the set of all primes ordered
by their natural order and the order of &' is in an opposite manner ([4] Th. 2 20).
Suppose ¢ is the last prime factor of |G'|. Then the index [@: M] of every maximal
subgroup M which contains the g-complement of @ is divisible by ¢*, contrary 0
the assumption. Hence @ is supersolvable.

‘We shall prove a further theorem:. .

Theorem 2.2. A finite group G is supersolvable if and only if there exist two
chains of subgroups _ e _ | o

' : L G@=Go>G >G> >G>H, €))

G=Ho>Hi>Hy>->H>H, : - (3
such that the indices [Go, G411, [G1.Gal, -+, [Gs: E’] are primes from small ones to large
_ones and on tha contmry, [Ho: Hy], [Hy. Hal, -, [H,: E] are primes from large to
small ones.

Proof The necessﬂ:y is derived by reﬁnemem’a theorem of supersolvable groups,

(f5] Th. 10.5.5).- We proceed by 1nduct10n on the order g of G to prove.the
sufficiency. Since [G;: Gi.1] is the smaliesi_: prime factor of |G;|, Gi1<t@; ([7] p. 77,
Ex. 5), 4=0, 1, ---, s. Therefore @ is solvable and (2) is a composition series of G.
Hence G has'a normal Sylow g-subgroup €, where g is the greatest prime factor of
g. G has a minimal normal subgroup N contained in the center of @. N is an
- elementary abelian ¢-group. Now we.shall prove that the order of N is g.

Consider the.subgroup H; of G, [G H]=gq. H; had the series of subgroups
H,>Hy>--->H > H, their indices are primes from large ones $o sma,ll ones. Again,
consider the series of subgroups of Hy ,

| Hi= HiNGo>HiNG>HiNGa>->HNG>E, . (@)
Since @ <1Gioy, HyN Gha/ HN G (HyN) Gi—1) UG,/@;. Because [Gi_y; @] is a prime,
[HiNGi—1: HiNG:] = [Giy1: Gi]or. 1. We may derive a series of subgroups of Hy by
deleting the multiple groupé in. (4), such that the indices are all primes from small

~ to large ones. Hence Hj is supersolvable by induction.
\
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If HHNN=D=+E, then D is normal in H;. Since H, is supersolvable, H; has
a minimal normal subgroup M of order ¢ which is contained in D by the refinement
theorem for chief series. Since N is contained in the center of @, then so also do D
and M. Hence M<Q and so M<I{(H;, Q. Since [G.H]=¢g and Q is a Sylow
g-subgroup, G=<H,, €. Therefore N =M is a normal subgroup of order ¢ of G by
the minimalibty of N.
If HHNN=E, then G@= HiN [G H]l=|N l —¢. Oonsider the factor group G'/N.
Tt is easy to show that \
' [HN/N,KN/N1=[H.K(HNN)]
where H>K are any two subgroups of G. If [H, K] is a prime, [H K (HN N )]1=
[H. K] or 1. Deleting the multiple groups in follow series of subgroups of G/N '
G/N>G1N/N>G2N/N> ->G,N/N=>E,
G/N>H.N/N>HoN/N>- >HSN/N>E,‘
we geb two series of subgroups of @/N. The indices of one are primes from large to
small ones; while another from small to largé ones. Hence & is is'u'peisolvable by

induction.
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