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§ 1. Introduction

'A% first the Markov processes with inﬁnite-particle systems were proposed as
models for the temporal evolution of such systems™. Then several concrete models
were disoussed™1%15) In this paper a general model which includes most of the
known models is proposed. It may be regarded simultaneously as an extension and
generalization for the probability model of the multwanate 11near Mas’oer equa’slon
for non-equilibrium systems™. : ; '

In general, people agree with: the reversibility of Markov processes ‘which depiots
the detailed balance (or Gibbs state) in statistical mechanics, where the reversible
measure is just the defalled balance state. Therefore these are quite important
problems: When does a reversible measure exist? When does only one ex1s’o‘? How
does one get the construction of all reversible measures?

For diserete state spaces, there are a lot of mvestlgahons in [6]. Hou and Ohen
have established an abstract field, they, discovered that po’centlah’ay ‘desoribes the
essential character of reversibility, and they. solved po’cen’uahty and reversibility for
Markov chains by using the field. There are also a lot of investigations for the
roversibility of the Markov processes with infinite particle systems, but the known
results are so limited even for the s pm-ﬁlp processes or the exclusion processes (See
[10]). Recently, Ding and Ohen™ use the method of the field to investigate
revers1b111’cy for the spin-flip processes with the nearest-nelghbour speed functions,
and give a neoessary and sufficient condltlon for'the ex1s’uence and uniqueness of ‘vhe'
reversible measures. : ‘ : '

In §2 we first extend the field - to abstraot state spaces, then we dlscuss i
localization of a field with producd; state spaces. In § 3 we m’sroduce both the concept
of the speed functlons with finite range and Jvhe oenoept of quas1-rever31b111ty We
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show that quasi-reversibility is an extension of reversibility. In § 4 we investigate
the relation between potentiality and quasireversibility for the speed funetions with
finite range, and prove that b quasi- revermbllﬂ:y implies potentiality, and under (4. 3)
and (4.10) we prove that {4 C%( 7"), where & is the closed convex hull in weak
topology of all measures constructed by a specification 7 , and (%) is the set of
all Gibbs states for 7. We also prove that each element of (%) is a quasi-reversible
measure. We give a construction of all quas1—rever31ble measures, and from this we
“obtain a necessary and sufficient condition for existence and uniqueness of the quasi-
reversible measures. RS . : ‘
- We are glad to thank Liu Xiu-fang for her discussion with us.

§ 2. Extension of field "thécry

‘Hou and Chen have established an abstract field theory for countable state
spaces. In this section, we will extend the theory to any state spaces and give some -
of its local properties. - . . L

Let X be a non-empty set, T’ be an mdex sel; and functlon a(- . -) T X X XX
—>R 2 (—o0, +o0) satisfy the following two hypotheses,: - -

(1) Vo, zEX, w+7z, VIET, a(t, &, £)>0;

(2) Va,. xGX V¢ €T, a(t, », &) = 0sa(t, , w) 0,

- Given g, z€ X, a#z, zis called reachable directly from # at time tand dencted

t o~ ¢
by >, 1f a(t @, £)>0, 7 is called reachable from g at time ¢, and we write &~ z,

1 i i T~
if Jaherc is a number of m‘” e, ™ in X0 such tha’o z — P> x(2)—-> s w"')-—>a: And
L) 2 (2, 2@, -, m(’", a:) is called a path from %o % at time ¢

Let .7 (¢) = {a (t @, a;) @, z€E X}, tET. ‘The set of all paths of Ja? (t) is deno’ued

by Z(t). It is clear thatw—»x(:)x—t»w mL5®xLx

Define
(3) (2, @; ) =log a(t, u, z)—loga(t, 7, @), if m——)x,
(4) L (L (t)) = 2 gv(t w"" m("“’) if L(t) (w a:“” m‘” . m"‘“’—-w) €eZ®).

@(t) {p(t,2,z). #,2E€ X} where o, @, z) is undeﬁned when z is not reachable '
directly -at time #, Then (X, 2/ (t), L), ®(t)) (simply, &7(%)) is called a field
- and p(L(%)) is called the work done by .7 (t) along L(#), /(%) is called a po’senhal
field (or'.o7(t) has a potentlal), if there is a real-valued function V( p ) '« X—
_ R-such that .

" (B) Vo, 5EX, o5%, ot o, 7) = V(t zv) V(t 9. .
Then V () ={V (4, w), z€ X }, tET is called a potenhal functlon of the
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po’ventlal field &7 (). We say that o7 (¢) is 1ndependen1; of the path if for any cloqed
path L(t) (. e., a;(o)—a;("”’) (L)) =0.

For and fixed t€T, we define a relation “~” as follows

(6) Vo, 1€ X, w~w(ﬂ)miﬂworm .

It is an equivalence relation. Thus, we may divide X 1n’so equivalent classes
{X,(t).1€D(®)}. For each I€ D(t) , we choose 4,=4,(¢) € X,(t) at will; for each
z€ X,(t), o+ 4, we also choose arbitrarily a pa’ch L, A,, a;) (4, 9, =, 2®, z),
and pub - ‘ ‘ '

) {a a(t, 4y, ©) 2a(t, 4, #P)a(t, o®, a®)--a(t, 2P, O

at, w, &) =a(t, ©, e)a(t, a®, e*P)-a(t, @, 4).

Finally, o7 (¢) is called weakly symmetrizable, if there isa famlly of real-valued
functions U () 2 {u(t, #). v€ X}, t€T such that

(8) Vt€T, VwEX u(t, ) >0;

(9) VEET, Vo, z€ X, u(t, ©)a(t, o, z) =u(t, a:)a(t z, w)

'Then U (#) is called a symmetrizing function of 2/ (¥).

(109 Thebrem. The following four statemenis are _eqm}/ualent:

(I) £ (%) is a potential field;
(II) Z(t) is path-independent;
(I1L) =7 (t) is weakly symmetrizable;
(IV) Vt€T, VIED(), Vs, z€ X,(8)., : :
(A1) a(t, 4, »)a(, o, DaG, z, 4)=a(, 4, w)a(t z, w)a(t @, 4). When. one
of the statements holds, A(+, *). T X X—> R,
1, Ry

‘ m , oF 4, WGXt(t):

is @ weakly symmetrizing -function, and log ?\.( , +) is.a potential of o (%).
Furthermore, ‘if N (-, +) is another weakly symmetrizing function,. then there-is an
a;(t) >0 for each L€ D (%) such that ‘
N (t, @) =a()A(, w), Vo€ X;(f,) .

Finally, </ (t) is @ potential field if and. only if o (t) 'rest/rq,ctecl on X ;(t) s a'
potential field for every 1€ D(2). ‘

Proof (I)=>(II). Let V' (+, +) be a potential function of 2/(%), Lty = (:v=‘a;(°’,
g, eee, ?v‘”’; #™*P =g) be an arbitrary closed path, then

¢’<L(t>)= S"Jq»(t o®, g®+D) = 2 7 @, ) =V G, w(”’)] -0,

K (II)=>(IV) VteT, VlGD(t), Vzv a:G X (11) is frivial if x +> z. Suppose a;l>
z. For an arbltrary but fixed path L(¢, 4, ) from 4 o « and a path L, A;, z)
from 4, to a:, it follows, on account of (II) that
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o(L(, 4, 2))+o(, o, x) ¢(L(t Az, z)).
So by (8), (4) and (7),

a(t, 4, @)  a(t, 2, ) a(t z, 4)
1Og[a(t @, A,) a(t, z, x) aG, 4, w)] 0"

hence (11) holds.

(IV)=>(III). Since a(t, @, z) =a(t, z, ) =0 when # and z do not belong to the
same X;(¢), A(+, +) is a weakly symmetrizing function of .oz @) from (11) and (12).

(IID)=(I). Let u(+, +) be a weakly symmetrizing function. We take Vit )&
log u(t, ©), t€T, «€ X. Then (5) follows from 9.

This proves the main part of the theorem, and it is very easy to check the tru th
of the other assertions

In the rest of this section we want to discuss the localization of a field with
product state spaces. . . e

Let S be an arbitriry set, .% be the set of all subsets of 8, S be the set of all
finite subsets of S. Let ¥, be a non-empty set for every u€S. Write X = 1};15 Y,, and

let ([[ Y., L@), L), D(t)) be a field which is called a product field. Simply, we
will call .7 (%) a product field. .« (%) is called a field with local oharacter if

(18) VieT, m—>w=>{UES x(u):;éx(u)}E.S’,
Let A€, z€ H Y A () resiricled on II Y, x {2} is denoted by 75 () &

(a(t, 4, 7). 2, TE IIY X {z}). Similarly we have Z"’ () and @i(t) We will call
the field ( H Y,x {z}, o5 (8), L5@), D5() (snmply, (4 (t)) a local field of 27 (%),

A product field is called a local potential field, if V.AE s, V2€- H Y,, and 7% (t)
is a potential field.

(14) Theorem. A product field </ (8) withlocal character is a potentwl field 4 f
and only &f it is a local poteniial field.

Proof Let V (-, +) bea potential of .« (%), then V' (-, *) restricted on 7 x (H Y.

ueA

x {z}) is a potential of .o75 (¢), and Z(t) is a local potential field. Conversely, it is
enough to show that o/(¢) is path-lndependent Let L(t) = (z=a®, a®, . g®,

2™V =0) € L (8) be a closed path, then 42 U {u€S; «® (u) #a®+ (4)} E &% from
(18). " We write z__a;,g\ 4 (i. e., the projection of & on H Y,), then L(¢) is also a path

of 7% (t). Since the work done by the field .o7 (t) alone L(t) is Jshe same as the work
done by .27%(¢) alone L(t) , and 7% (%) is a potential ﬁeld S0 gzz(L (t)) 0. The
assertion is proved.

From this theorem, the potential problem of such .o (t) reduces to one about
countable state spaces when every ¥, is countable, and we can use[4].



NO. 5 POTENTIALITY AND REVERSIBILITY FOR GENERAL SPEED FUNCTIONS(I) 875

§3. Reversibility and Quasi-Reversibility

In this seobion, we will discuss the relation between the reversibility of the
transition function semigroup and the reversibiliiy of its generatoi‘. Then we will
pr()pose“ a quite géneral stochastic model for certain physical systems. The model
includes spin-flip processes, exclusion processes and others. We will introduce a
‘concept of quasi-reversibility for a semigroup generator, and shown that quasi-
reversibility which is easily described is an extension of reversibility, and that they
are equivalent under some conditions. -

Chen™ has proved that the reversibility of a stationary Markov process with
stationary transition function P(t, o, A) (t=0, s€E, A€S&, & includes all
singletons {#}) is equivalent to that

(W) Vf, 9€b8, [ FPugiu= |, oP:sfdn,

where b& is the set of all bounded &-measurable functions, y, is a stationary

measure, - and

@ Pif @) =[ P, o a)F ).

When (1) holds we say that P(3, z, 4) is revers1ble Wl’sh respeh to s and p is

a reversible measure with respect t0 P(t, w, A). Perhaps, what we can know ﬁrs’ﬁ is

neither Markov processes nor their transition functions, but their genera’uors.

" Therefore we will first discuss the relation between the revers1b111’ﬁy of P(t, o, A)
and that of its generator '

Let (E &) be the metrlc measurable space and & its Borel o—field. b & is a

.|.“5” and “s-lim” denote strong convergence
and strong limit respectively. We define the generator 2 of {P;, ¢=0} as follows:

2 @) e{fe b, L1215 ge b@@},

3
fAs—hm_(Ptf -1, f€2@).

We will say that Q is reversible with respeot to probablhty measure w if

@) Y, 9€2(Q) jfagdu [ 9fdu.

(5) Proposition.

(i) If a (contraction) semigroup {P, =0} on b& s reversible with respect lo -
probability measure w, then so 4s its generator. .

(ii) Suppose that a linear operator Q on b& satisfies the conditions of the Hzlle-
Yosida theorem (for dissipative case), then it generates unigue contraciion semq,group
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{P:.t=>0}. If Q is reversible with respect to probability measure W, then so is {P;, t>0} .
Proof (i), (3), strong convergence and dominated convergence ﬁheorem imply
. | | R |
~ (ii). From Hille- Yosida theorem, we obtain
(6) Vf€ds, Pif= s—hm I—(t/ n) ),

and. for every A>0, and every f, g€b& there are f, gE@ () such that f==
(I —A2)7Yf and g= (I —AQ)~1g. It follows from.
“ that.

[ Fa-12 g | -2 71 G [ta- m)g]f«m
= [eT-10) ", |
By induction, it follows that '
j FUI—A2)"gdu ~ jg(z m)*"fd,u,, v, gEbéa VASO0, Vn>1
- Taking AL and Tebting n—> oo, We obtain (1) trom (6). |

) Remark An analogue of proposition (5) is also true if b& is replaoed by
a proper subspace of b& (for example, the followmg &).

@) In our model @ is described with some speed funotmns Now we mtroduce -

soveral notations which will be used ’shroughout the rest of this paper.
"Let Sbea countable set, so be ¥, for every u€ S. But lY |>2, Yu€S. We write
X (./1) H Y,, in particular X X (S) The projection of & on X (4) is denoted by

#4. We write z, instead of w, for every u€:S. We topologlze X by giving Y, the
diserete to pology and X the resulting product fopology. Fo (4) is the Borel o—field
on X (A4), it is also the product o—field on X (A4). We erte F (/1) 53' O(A) XX _
~ (8\4) which is a sub-o-field of F & .F o(8):

Let Z(4) be the set of all bounded Z (A)—measurable functlons ,%’ @(S)
and .% and 5’, be the same as in § 2. For each integer N, let Sy={A€ Y, | 4| =
where || is the number of members of /1 . We denote by .o/= U #(A) the set of

bounded continuous cylinder functlons on X and by €= CK(X ) the set of all
bounded continous functions on X. Olearly &/ ¥ 2. We denoto by Z#(X) the
set of all probability measures on (X, % ). For every A€, u€ #(X), Hea ‘denotes
the projection of w on (X (4), Fo(4)), i. . '
: pwa(F) & IJ'(FXX(S\A)), VFng—o(A) :
Finally, we write o=y X x4 for every A€ .7, yeX (4). From. now on, N is fixed.
(9) Definition. We call c( s % 0): axX (/1) X X—>Rt= [0 oo) to be @ speed
. functwn, if :
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(10) YyeX (4), c(4, y, *) is F —measurable;

U (11) Vo€ X, ¢4, v, a;) 0 if there is @ u€ A such that wu=yu. If cCey vy )
also satisfies : ‘

(12) Co-zero, c(/l Y, w) 0ec(4, w4, Yo) =0, then we set

13 ¢, 7= {3(/1 y, ©), AAE€ Ly, Jy€ X (4) such that ’,’Iw a:,

otherwise,

and as in § 2 define a field @= {q(=, x) ;€ X} which is called a speed function field.
Clearly the field has local character pa"ope/rtyfand from Theorem (2.14) we obtain.

(14) Proposition. A speed function field has a potentwl if and only @f is a local

© potential field.

(15) Definition. A speed functwn ﬁeld Q s swzd to be with ﬁmte range, &f its speed -
function sa,t@sﬁes . '

(16) VAGS’N, EL/IDA Aéyf such that VyE X(./l), c(4, v, ) is F(A)-
measurable. )

The minimal 4 satisfying (16) is denoted by fr(/l) Clearly every speed function
with finite range is continuous. For every #, z€ X from (16), we have ¢(4, y,») =
c(4, y, z) whenever o3="27. So we often use ¢(4, y, #3) instead of ¢(4, y, w) and

the cast of ¢ (@, ), can be treated similarly.

P

_ an Definition. Let Q be a speed functfbon field with finite mnge If there is
wE P(X) such that .
(18) Y4€%%, Va:EX(A), /.o,i(x) >O ;
- (19) VA€ Fy, _VAD/r(A), yEX(A) x€ X(A), and we have
L (W)C(A, Y, @) = Wi (Am)c(/l, X4, Aw)

w1 (@) (@, 4oy =pz(4e)q(ie, ©),
then we say that Q s quasi-reversible with respect to and ,u, is @ quasi-reversible
measure for Q. : .
(20) Definition. Let Q. bea speed functwn ﬁeld sat@sfymy
(21) VA€ Fn, Ve€ X, 2 c\(/l, y, v)y<c(4),

@2) Yu€S, 3 c(/l)<oo

i. e.

‘We define a 11near opera’uor Q. Q(Q)eﬂ as follows,

@) 0f@ & 3 | 3 o4y, U@,

Where 2(Q)D, and 44 f (@) 2 f ( Aw) —f (w)
The closure 2 of Q is called reversible if Jnhere is uEP(X) sueh that (18) and

(24) Vf, 9€9 @), jf@gdu= [odfan

hold. Then p, is sald 10 be a reversﬂole measure for O (01' 0, or o(s, ))
Remark “When 9 is a core for (1 o., 2 res’ﬁrlc’sed on 2 and Q have the same
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olosed extension), we can use 2 instead of & (Q) in (24), In particular, we can use
9 (Q) instead of @ (2) and Q instead of Q. For reversibility there is‘condition (18)

in addition to 4). From now on, reversibility for speed funotion usually means
Definition (20). ;

(25) Theorem. Let Q be a speed SJunction field with ﬁ/mte range. If Q is re/ue'rszbla
with respect to w, then Q is quasi-reversible with respect o .

Proof Let A€ Sy, A> fr(./l), 2€ X(A), YyeEX (), Yu€A; 2,4y, ’l‘akmg
= I(z)xX(H\A); g= I(VZ)XX(S\A): for every o€ {2} x X (8 \/1) we have

Qf () = MZ% wEXE(A,)O(A.', w, @) [I{z)xX(S\_A_) (G2) —Ixzema (@)]

. =c(4, 24, @)1 @xxevd (24 X Tg\4),
hence

[ 90ray- o4, 24, &) (o) =0(4, 54, %) pa(sa). |
Using %z instead of z in the preceding discussion, we obtain,
[ragiu=cd, y, Hua.

So reversibility for @ implies quasi-reversibility for Q.

{YRIXX(8\A)

§ 4. Potentiality and Quasi—revefsibility

In this section, we will discuss the relation between potenhahty and quasi-
reversibility for Q. '

(1) Theorem. Let Q be a speed Junction field with finite range. I f Qs quasi-
reversible, then it has a potentml ‘ v

Proof Let w is a quasi-reversible measure for Q. We want to prove that Theorem
(2.10) (iv) holds Since field @ is 1ndependent of §, we can use—, ~, D and X,

1ns’uead of—> ~, D(t) and X,(t) respectively, _

From § 2, it is clear that ¢ (s, a;) 0 whenever a;4—>§ and in this oase- (2.11)

holds. It suffices to prove that (2. 11) holds when o7, Therefore by Definition

(8.9), we may suppose g(w, z)>0. Then there are A€.%y, y€ X (A4) such that
YuFx, for each u€ 4 and v=4%a. Hence (e, #) =c(4, y, #).From quasi-reversibility
we have

@) walen)q(e, ) =paEne@, w), VA>r(4),

In §2 we have taken and fixed: the pathes L(A;, z) = (4=a, oD, , ™,
eV =g) and L(4, z)=(4=29, 7, e, T, a:(”‘“’—x) Using the precedmg
“discussion for each segment (z® —>z®*+D galled a segment of the path L(4, 2)), we
can always take a A€ s such that (2) and the following equatlons all hold.: .

’ ma (w“)) q(w(” w(‘“’) =i (a;(“'l’) q(a;““’ w(t)) i=0, 1, -
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7% (m(.i)>q<w(1) m(a+1)) =wx (xg+1))q<x(d+1) w(i)) j,_.o) 1, e, m,

pa((4)D)§(4, &) =pa (WA)Q(W 4y),

pa((A) D44, ) —pa@D (@, 4).
From this and (2), we obtain

34, 2)q(@, B)d(@, 4)=4(4, )¢, DG, Az)
This is Theorem (2.10) (iv), hence @ has a potential.
Until now, our hypotheses for the speed functions are (8.10), (3. 11), (3.12),

(3.16), (8.21) and (38.22). Conditions (3.10) and (3. 11) are certainly necessary.
Condition (3.12) is also necessary for potentiality. In order to make the closure of

Hence

Q be a semigroup genera’sor Conditions (3.21) and (3.22) are necessary, oo (See
the example in [10; II, § 1.1]). Therefore, the essential condition for Jf:he. speed
functions is (3.16). :

In order to discuss the converse of (4 1) we have to use another hypo’chesm for
the speed functions. ‘ ' ’

(3) Hypothesis. For every A€ &, ;, there is a de .7 t A> A such that for every
z, € X, whenever {u. wy+ T} C A, there are ¥, 4=1, 2, +--, m such that z2& 240~
gD > oo > g™>g™ D 2 g and {u, 2P £V} c . Olearly, if /1 satisfies the above
condition, then every A3 A satisfies (3) too. So there are minimal sets satisfying
(8). But the minimal sets may be not: umque S0 we ohoose arbitrary one of them and
write it as 8(4). It is clear that 6(./1) oA.

(4) Remark. If there is 4o € #y-1 such that |¥,] >2 for each u G/lo, then (3)
may hold. For example (8) is true when the condition “yGX (4), |A| =N, Vu€e
A, y,#w=c(4, y, #£)>0" holds. :

However, (3) does not certainly hold when |¥,|=2(u&S). For example, we
take ¥,={0, 1}, N=2; for every {u, v} <=8, y€ X ({u, v}) we suppose c({u, v}, v,
) >0 whenever yu# s, y,ﬁém,,, B, taking »= (0, 0, 0) Xz, z=(1, 1,1) Xz, 2€ X (8\
{ul, Ua, Us}), We have @, 50 (3) does not hold. But la’ser we will discuss this case ‘
-again in another way. :

() Remark. Let @ be a speed functlon field, which sa.tlsﬁes 3, Wl’sh finite
range, then for every Aeyf, z€X, wEX (A), w#kwa, there is cerfainly a path
L(z®, 2@, ..., o) from 2@ =g t0 m(“+1)_wxw,g\4 such tha’a {uES a; >aéw<‘+1’}
C8(A) 0<i<n. Put

q(w(O) m(n+1)) A H q(w(i) w(¢+1))

©)

q(w(n-f-l) m(O)) A H q(m(€+1) w(:))

and A= |J r(A). Smce Q has finite range q(@, wXze4) and ¢ (waa;s\A, w) are

S (A
409

G (A)—measurable,‘ i, e. .
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s {VwEX VwEX (4), q(=, WX Bgya) = q(a:A, w><a;z_4),
(WX aora, @) =q (WX o204, 7).
In addition, if @ has'a potentlal then it is clear by path- 1ndependence that

©® Vue X (4), Me)-LE LX) ) 00y
q(wX g4, )

(9) Corollary. Let Q be a speed funct@on Jield which sat@sﬁes (3) and be quasi- rrefuefr;. .
ible, them we have
' (10) V'Aeyf, 2 h(wa,g\A)<oo ‘ : : N .1

P'roof Unsing the notatlon in' Remark (5), from (2) we obfain
pa @)@, ) =) g @4, ), 0<isn.
So, for every w€ X (A) we have ' '

. pi(@5)q (2, wx ws\A) = wz(wx “?A\A) q (’w X %‘\A, a;)
hence from Theorems (1) (2) and (8) we obtain

Alw X =A(z 9("’ 'mes\A) =A MZ("I)X%Z\A)
we;(/i). ( ms\%) ( )weg(/i) q(wx Tg\a,. %) (@ we%:i) wi(zz)

‘_}h(w) [1%1 (X (/1) X B3\ 4) <oo
A(m
(11) Lemma Let Q be a speed functfwn field, which has a potentwl and, satzsﬁes

(8) and (10), with ﬁmte range. For every AEYf we put
(12) f4@) =A@\[ 3 Mwxens)], 2€ X,

Then {f4, AE.V,} has the following propertws
(13) Vo€ X, f4(a)>0; e
(14) VA€, VyEXS\), X Frexy)=1;

. (15) VAC-AEyf, Vee X, f’l(w) f‘(w) 2 fA(wwa\A)

(16) VA€, 3A€S,, Aor(A) such that fA is F (A)-measurable.

Proof First, we note thab fAis mdependent of theé selection of 4, and L(4, ) (See
§ 2) In fact, if we choose another ‘and (4, w), and define A’(2) in the same
Way, then from potentiality for Q and Theorem (2 10) there- 1s an a;>0 such that
?»(w) al}»’ (@) for every z€ X, So from (3) we obtain

VA €Y%, V'w EX (4), s~wXwg 4,

hence ?\,(w) and (m) define the same f4. : : ;

Next, (18) and (14) arc trivial. For every Ac A€ 5”, and every wE X we have

fA () = A(w) — A(z) M X a)
we%( Mw X @6\7) Z 7\-('10 X @g\a) weX(A) E;( A (w X {E,g\Z)
. _fA(“’) XZ fA(’wx%\A), »
.- weX(Y) . )

50 (15) holds
Flna,lly we will prove (16) We use the nota’mon and result. in Remark (5) to
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prove that f4 is F (A)-measurable for every A€ 5%, i e
A7) V2€X S\ 4), f4(@) =f*(@wax2).
For fixed #€ X there is an 1€ D such that #€ X;. Sinoce f* is mdependen‘v of the
selection of 4;, we can suppose o= 4, without loss of generahty, ie. AM@)= A.(A;) =1,
"Let a3 x2€ Xy. From path-indépendence, (7) and (8), we obtam :
q(4y, WX Tha X 2)
qwXonaxz, dr)
q(4y, ax2) | q(@5X2, WX B4 X 2)
g(mAXz A;,) q('an;A\sz a;AXz)

MwXzzaX2) =

X
: S\A;

[OINET ) h(wx ws\A) .
hence ' :
" ~- . _ h(wd X Z) 1 . — f4

" thus the proof is bermmated ~
18) Corollary v4e y,, 4 €E(X ).
Now, we discuss how to co nstruct the quasi- -reversible measures for Q. '
(19) Definition. The family ¥ = {f*; AE S} of the functions satisfying (13)—
(15) is said to be @ specificateon. u € P(X) is called a Gibbs state with specification ¥,
if -
(20) VA€, V’yE X(A) /w({’y} X X(S\A) |3’(S\A)) =f4(yx ¢ )sm) p—a.e.
The set of all Glibbs states with specification ¥ is dented by g(V ).
Tor every 2€ X (§\4), FE€.F, we define
(21) pa,e(F) 2 2 FAlyx2),

EF(2)

where F (z) {yE X (A).yxz€F}, and let ZL (AEF) be the olosed - convex
hull of all p4.., 2€ X (S\4). Finelly, lot

92) G2 {WEP(X); F4nE Sy, 4n/'S, ap,,,.e 9 1., such that o 15}
Where om 5 w means that M, 18 weakly convergenls to .

(23) Prop051t10n Let Q be a spesd funemo'n, ﬁeld ‘which satisfies (3) and (10) ,
with finite range, then ¥"={f* A€ S} deﬁned by (12) ds a spea@ﬁcatwn, every f" is a
continuous function on X and

(24) G<9(7¥).

 Proof Lemma (11) and Corollary (18) 1mp1y the first asser’clon It is clear. that
pEG(Y) is equwalent to the following

(26) VAE S, VY€ X(A), VFEFo(B\A), p(fy} x F) = jF F4(yx2) poa (d2).
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hence it remains only to prove that (25) holds for _
(26) F={y} xX(8\1), 4>4, A€ %, ;e X(A\4),

Let u€ &, then there ate 4,€.%;, A48 and pw€ Y, such that > p. In
order to prove that u€ ¥(%"), we first prove that (25) holds for F in (26) and

7)) p=pisy s dm>A, 2w € X (S\4n).

From (21) and (15) we obtain that the right hand side of (25)

FAWX2) (ayy o) iva (02) = FAWXZ) (g ) va ()

.[ W)X X (B\X) : WIXX (Ap\D) X (Zm)
= 2V _fAlyxyixy sz)wegwf'i”' (WX Y1 XY X 2)

VeX@AmD

= 3 fAmYX Y XY X 2m) = s e (U Xy} x X (S\ D).

. ¥ eXUm\D) _
- Furthermore (25) holds for F in (26) and the convex linear combination »,, of

Keas 5m (A is fixed). Because f4(y X «) is a bounded continuous function on X (S \4),
50 (25) holds also for F in (26) and w=u,€ %,, ane hence for 4 € . Thus we have
proved that u€ Z( 7 ).

(28) Proposition. Let Q be a speed funct@on [field which satisfies (8) and (10) , with
finite range. If G (V") #¢, then Q is guasq,-revers'i/ble and every p,E 1¢2 ) s a quasi-
reversible measure for @,

Proof It suffices to prove that every u& g("// ) is & quas1 reversible measure

for Q. ' '
‘ First, we want to prove (8.18). Take AE.V,, yEX (/1) from (16), there is a
. A>r(A), A€ .S, such that f4is F (A)-measurable. We may assume A A4 without
loss of generality. For every A4, applying: (25) to Fl={w}xX (S\Al) weEX
(45\4), we obtain’ '

(29) wa,(yxw) =fA(yXwXz) prapa(w), w€EX (4:\4), where 7z is an arbitrary
but fixed element in X (8\4;). Since A;\A+#( and Mana is a probability measure,
there is a w€ X (41\4) such that pays (w)>0, hence (yxw)>0 from (18),
Taking the summation for w in (29) over X (/11\/1) we obtain 4 (y) >0.

Next, we wankb to prove (8. 19) ./1 remains as above. From (29) we have, for
everyd, o4, 4,€.S;, o€ X(Ay), yEX (/1) that '

. 4z x :
e~ P o E X E\4.
Hence, by the potentiality for @ and Theorem (2.10), @ is weakly symmetrlzable
and A(+) is its symmetrizing function. Therefore, we have

VA€ %, _./113{1, Vo€ X (4y),

,u,A,(m) _c(4, o4, 42)

pa(hw)  o(4, y, @) ’
whenever ¢(4, y, m) >0. For every 4;€.%, ADAlDr 1), z€X (Ai) by the above
equalﬂry (taking A;=4 there), we obtain
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(@) XE”\ )pz(wa) XE”\ ¢(4, s, harxw)
Ay — _WEX(\4; — _weX(@\4y)
e, () > pa(heXw) 2 o4, y, axw)
weX (4\41) weX (A\Ay)
A Y
- c((;(/’l @;, ;‘;;) , o€ X(4,),
b )

whenever ¢(4, ¢, )>0. Hence (3.19) follows from the last two ‘equations. The
proof is terminated, | , '

From Propositions (28) and (28) we know how to construct some quasi-reversi-
ble measures for @ from a specification 7". But wé do not know until now whether
these are all such measures, We Will_ construot all quasi-reversible measures for Qin
another way, and give the necessary and sufficient conditions for the existence and '
uniquensoss of quasi-reversible measures.

(80) Definition. Let Q be a speed function field, which satisfies (8), with finite
range. For every A€ S5, we will call 842 ( | r(4))\4 the bounda'ry of A.

Acd(A)1AI=N

" Tt is olear that A=A U a4 from Remark (5).
We define ¢(-, +) acoording o Remark (5). We ohoose an a.rbltra.ry but fixed
9 € X, then from (7) we have
VyE X (A), y#04, V2€E X (04), VwEX(S\(AU&A)),
q@saxzxw, yXzXw) = q(@axz, yx2),
qlyxzxw, 0axzxw) =q4(yxz, 04%2).
(81) Proposition. Let Q be a speed function field, fwhfwh has a -potential and :
satisfies (8), with finite range, and lot Ap€ Sy, Am=An-1U04n 1, Ap# Ay, m>1,
| 4o| =N and ANS. If the equations

R g0, xXw, «9,1,,__,><z><fw) - o 3
(32) om,. ‘ wEXE(Q:Am) 404, . %zxXw, 04, Xw) i1,y M1, 2€ X (04m-1)

have a positive solution Tm,.(m=>1, 2€ X (04p-1)) and

(83) ma 3 Onos X2, Y'XZ) 7 oo,
JeXCm qy' X2, 04,.,%2) ,
where ¢ (z, ©)\q(z, z) =1 when = ZTasa confvent@on wn,d for every yE X (Am_1),
zE X (0A4p_1), we define
60 pnlyxe) st Lam Xt U ‘3 Z
. then {;w,,,},,.>1 determines a unique quasi-reversible measurs for Q, such that each um U8
‘the projection of w on X (4y)-
Proof Olearly, ju, defined in (84) is a positive probability measure on X (An).

‘We want fo prove that

m. [ 7]

1° {y,,,.} m>1 are consistent, From the poten’alahty for @ and (8) we have.
Vy €EX (Un-1), V2zEX (8/1,,._1) Vwe X (3/1,,.) s
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q(szXw 04, Xw) = q(@Am_,Xsz 04, Xw)q(yx 2, 04,., xz)
so form (3) and the fact that z,,, satisfies (82), by simple caleulation, it is not
difficult to obtam
, Zm.,.l—Zm, m=1,
From this equation;, (84), (85), and the fact that z T, s sahsﬁes (82), we obtain
g0, xw, yx2xXw) =

mi1(YX2XW) =231, md,
WEX%AM)M +(y , w) wefGam qlyxzxw, O, xw) ™
—Z:1 q (B4, Xz, ?/XZ) ,me(sz)

q(yxz, 0,1,"_ ><z)
2° Let o2 U F (A,,,) then .,q/o is a field and a(.sa!o) Z, by Kolmogorov

cons1stenoy Joheroem there is a unique measure on .#, denoted by w, such that ,w,,.
is the projection of w on X (4,,).

8° u is a quasi-reversible measure for Q. :

For every AE€.%y, A>r (4), since /1,,, /'S, there is an m>1 such that 4,54,
A1, Let ye X (/1), z€ X (Apia). Clearly, (3 19) holds when ¢(4, y, ») —c(A
Y, &%) = =0. Thus We may assume that @ m xwu ~ME—> Y, From (34) and the path-
independence, we obtain

Mmsr (@) -9 (gAm XBop,, & q (0/1,,, Xos,, Y X Bppra)
Hom1 (%) q (@, 0 4y X @4,,) / q (y X6 gty 94,,. X&4,,) -
=4 (Y X Bapra, @) _ q 7 2))

q(z, yx L 4 pi\a) q(ez, Yax)’

hence _ o .
' ' .Ufm+1($)q (%1, BT = My (Am)Q(giwA, 7).,

Takmg the summation for & A\ OVOT X (A,,.+1\/1), ‘we obtain (3 19). Therefore ,Ui
is a quasi-reversible measure for Q. .

(36) Theorem. Let Q.be “speed functwn Jield with ﬁmte range, satisfing (3)
Suppose that there are A,€.%; such that A= Ay U Oldpi, Ap#tdps, m >1,
| do| >N and A,, /8. Then : ’ :

() Every quasi-reversible measure ,u, Jor @ can beobtained in the same manner as in
Proposition (31), '

(i) If there are two positive solut@ons {ol),, m>1, zE X (311,,,_1)} of (82) satisfy-
ing (38), i=1, 2 then the two quasi-reversible measures obtained in the pa”eced’mg manner
are the same if and only if there is an >0 such that : '

(37) s =aw®,, m>1, 2€ X (@dp-1); _ ‘

(iii) A mnecessary and sufficient condition of the ewistence of a. quasi-reversible
measure for Q is that there ewists a positive solution of (32) sat@sfymg (38); @ necessacy
and sufficient condition of the ewistence of a unique guasz—rewrs@ble measure for Q is tha
there is a unique linear- mdependent pos%we solut@on of (32) sat@sfymg (33)

Proof '
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1° Let ,u, be an arbilrary quasi-reversible measure for. @, tm(m=1) be the
projection of p on X (4,,). Then from (8.19) and (7), we have
,u,,,,+1(64,,,_1><z><w) ;1,,,,+1(0Am><fw)q(0Ame 04, X2Xw)/q0 4n
XzXw, 04, Xw),
Vm=>1, V2€ X (3/1,,._1), Vwe X (3/1,,,)
' Takmg the summa,tlon for w over X (6/1,,,), we ob’cam

(04 Xw 0/1 1 XZX’U)) ~. 6 : .
_ weXamw (04, X2XW, 04, XW) s (0.4, %)
hence y,. ;u,,,. 024,.%2), m=>1, 2€X (a/l,,,_l) 1s a posmve solutmn of equatlions -
(82). It is easy to check (83).

Next, from (8), (8.19) and (7), we have °
Fom (Y % 2) = o (0 4 X2) 4 O 40 X 2, yxz)\q(sz O Xz)
for every y€X (Ap-y) and 2€EX (04p-1). Taking a:,,,,z instead of Z,. in (33) and
(84), we obtain..

: Mm<0Am_l_X ) =

Zn=1, pm= P"m;
S0 b is the same as the measure obtained from Proposition (31)

2° Let {a$),. m>1, 2€X (04,m-1)}, =1, 2 be two positive solutions of (32)
satisying (88). We define Z®, u@i=1, 2, m>1 as in Proposition (31).

If o), satisfy (87), then ZP=aZP from (33), hence p=pP from (34), so
they determine the same quasi- -reversible measure for @ from Proposition (81).°
Oonversely, if 2%, (¢=1, 2)' determine the same quasi-reversible measure w for Q,

then p®P=p@, m>1 since u{P and uf are the projection of uw on X(4,), In
. particular, from (84), we have
(Z@) 20500 = i (O 4, X 2) = M‘” (HAM-‘XZ) (Z2) ’100(2’
for every 2€ X (0Am-1) . Moreover, we know from the proof of Proposition (31) that
Z% are independent of m, so (87) holds, '

Now we can conclude that there is an in]ectlve mapping between the Se’ﬁ of all
quasi-reversible measures for @ and the set of all equivalent classes of linear-
1ndependent positive solutions of equations (32) sa’slsfymg (88). This oompletes the
~ proof, :
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