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Tn this part of the paper, we use the methods and results developed in part Im
to the case of compact state spaces. ‘ P :
In § 5 we show that quasi-reversibility for a speed function satisfying (4.8) in
[1] with finite range is equivalent to potent1al1ty, g & (¥"), and quasi-reversibility
implies reversibility under certain condltlons In § 6 we discuss mainly the
preeedmg problems for the exclusmn prooesses and obtain some ideal results. First
we g1ve ‘the simplest criterions for’ potentiality, then we. prove that for- the exclusion
processes there ig always a_rteversible measure, If. _the speed functions have a
potent1al then the revers1ble measures can be described by the canonical Gibbs
states constricted by the speed. funotions. Gonversely, if there ex1sts a positive
reversible measure, then it has a potent1al and the set of all positive reversible
measures coincides with the set of all positive canonical Gibbs states. - The
_correspondlng results for the spm-ﬂlp processes have been obtained in. [3]. We also
show that these results can be obtamed by our methods.- - -
We are glad to thank L1u Xiu-fang for her d.1.scuss1on Wlth us

§ 5. For Compact State Spaces

In this section, we Wlll suppose that Y is ﬁmte for every uE S, henoe X = 1'_[ Y,

becomes a compaet ‘space. In thls case the results of precedmg seotlons can be
“improved. ' _
(1) Theorem. Let Q be @ speed functfbon ﬁeld 'wh’bch swmsﬁes (4 3), ’w’bth ﬁmte rrange,_
then Q is quasi-reversible if and only if Q has a potentml

Proof The neceSS1ty follows from Theorem (4 1) in [1] We want to prove the
sufficiency.

Since ¥, is finite for every u€S, (4.10) in [1] holds. hence gc Gﬁ(V ) from
Propos1t1on (4.28) in [1]. Taking 4, 6.7 g, n=>1, A,,TS and WEX (S\A,,), We have_
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Yosen€ P(X) from (4.14) and (4.21) in [1]. Because X is a compact space, from
[6] there is a subsequence of {i 4,z } o1 converging t0 u in weak topology, so we:
bave u€ Z from (4.22) in [1]. Thus 9(¥") + @ and from Proposmon (4. 28) in [1]
this 1mp11es that @ is quasi-reversible. . o

The followmg theorem may be regarded as the construction deﬁmtmn for Glbbs
. states. » ,
(2) Theorem. Let Q be a speed function field, 'whfich has a potentiwl and satisfies(4.8)
with finite range, t]wn we have
3 o G- g(’V) , ..

Proof - Proposﬂuon (4 23) in [1] and the fact that Y, is ﬁmte imply (4.24) in
[1]. Conversely, if u€ Z(¥"), then from (4.20) in [1] for every A€ .7 ‘we have

® WX, wxXED) JXS\A)fA(yXZ)Ms\A(dZ) .
For each n>1 we put ‘ ‘

~ L=, 2 o }XW
) ' . ' AMiwe];f[(A)A." )y

where 1= {i(w), wE X(A)}, 4240 a,{zexw\zl) M< FA (o)< @gj’)} it
1<i(w)<n—1, and 4%, A{

(wx z) <1 } We choose an arbi-

trary but ﬁxed z,.,EA,,,, i€ I,. From (4) (5) and (4 21) in [1] we have
(6 Vye X (11) w({y} % X (8\4)) = Lim % e (Aa,).

Ha, z,({y} X X (S\4)). Put wsn2 2 tisna (A pose, € Gy Since X isa compaot spaoe

from [9] we know that there exist ,LbAE Z and {nk}such that w4, 5 w*. So for every
yE X (A)we have w({y} XX(S\A)) wt ({y} x X(S\A)) from (6) henoe
) w(AX XS\ 4)) =u*(4Ax X(S\A)) VAc X (4),
Therefore, for every /L,E.Vz, ,,TS, we have u»¢g g./l,,; and for every AC.%;, y€
X (4), we have
lim M""({y} ><X(S\/l)) M({?/} XX(S\A))

from (7) Th1s fact 1mp11es that ,u/‘" 5 w, Vhenoe wE g The proof is completed

" What can we say more for N=17 First we have =~ :
(8) Theorem. Let Q be a potential Jield which satisfies (4. 3) in [1] and 18 deﬁned by
dspeedfmwtzon c(u 0, m)(uGS yGY,,, mGX) and .
(9) VYu€S, VyEY,, ¢y, Y, )E(K(X) o

Then ¥ = { f" AEVf} deﬁned by (4. 12) in [1] 8 @ speci ﬁcatzon, and both (4 18) and
(8) hold. .

' Proof The ﬁret assertlon follows from the proof of Lemma (4 11) Now we
want to prove (4. 18) VAEY;, fA€ € (X), ) '
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 Let ™ —> g(m—>o0), then there is an my such that (2™)y=2, for every m= -

mo and u€ A. 8o f4 (&™) =f*(@a % (@™)s\4), and it suffices to prove that
(10) Ve X (4), f"(fwx *) c (X (S\4)).
Tix € X, wEX (A) From (4:8) in [1] N=1, 6(4)= — A and Remark (4.5)
in [1] we can choose n, wieX (4), =1, 2, -, n such that
wo X220 4 X z—->fw1><z—> —>w,,><z—->fw,,+1><z wXz
for every 2€ X (S\4). From (9) we know that -

(9,1><z wX2) "II q(fw,Xz 'w.,+1><z) and q(fwxz O,%2) 2 II q('wH.le w$><z)
are continuous functions, so from (4.8) in [1] we obfain . o .
FA(xz) = Mx2) gz(gAXz, WX 2) ‘ g(ﬂ,ixz, wXz)
2 A(fwxz) q(@xz, G4%2)/ wT g(wXz, 04%X2) ’
hence f4 (W x2)is.a contmuous function in z, and (10) holds., ‘
 Finally, we can prove(3)in “the same way as the proof of Theorem (2)
(11) Remark. :

(i) In fact, Lemma(4. 11) in [1], Corollary(4.18)in[1] and Proposmon(zi 23)
in [1] excep’ﬁ (4.16) in [1] remain valid for countable ¥, (VuES) and N =1, if we
use Condition (9) instead of the hypothesis of “finite range in Lemma (4 11) in [1]
and Proposition (4.28)in[1]. The proofs are just the same as that of Theorem 8.

(ii) In §6 we will discuss the case of N=1. and Y,={0, 1} (»€S), which
concludes the spin-flip processes.

When will a quasi-reversible measure be a reversible measure? ‘An answer is
obtained for V=1,

(12) Lemma. Let N =1, the speed function ¢(u, v, ) € ¢ (X ) s umformly bounded
for w and Y. we define a linear operator 2 on € (X)as follows,

{Qf_ 3 S o, v, VLS, FED@),
2@ 2 C(D), 53 47]<e0).

Supposs ﬂmt the closure o of Q generates a umgue erkov sem'z,group, then o7 is a core
for Q.

Pfroof It suffices to prove that for every f G 9((2), s>0 there is a gE M such
that |g—f| <e and |Qg—Qf| <s. We write M"sup {c(u, v, w) uES yEYu, @€
X}, choose a T' € S such that

Y &
pap3) ”Af”<<4M/\4> |
and choose a T1€=7f such that op, =ah, = |f (&) —f (&) [<<4MK A 8) ~where k= ‘.
2 |Yal. Putt.mgg(w) A f (mnxa) whers HEX (S\Tl) arbltrarﬂy, we have [[ 9- f [[

<4MK /\-—), and for every wGX
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|Qg(@) —0f (@) | < 22 lou, 9, @) (9@ - 2tf@]
+33 ey, y, o) <Azg<w>—Azf<w>>| |

uET YEYy

<23 S lg—fl+H3) 3 L4l +14f11

<MK |g—f|+2MZ 3 |4f| <+ L=,

(14) Theorem. ILet c(u, y, +) € %(X ) (uE S, yEY )be a speed function with finite
ramge which is uniformly bounded for u and y. Suppose that there are An€ Sy, AmlS
such that _/1 =4 UaA,,,_i, m=1, and the closure Q of Q defined by

(18) generates @ Markov semigroup on € (X). Then is guaswewrs@ble if and o'ﬁly of it
s reversible. In detail, u is reversible for Q @f tmd only if it is @ quasi-reversible measure
for Q. ’

Proof From Theorem (3.25) in [1] we know that reversibility 1mphes quase-
reversibility. Conversely, let & be a quasi-reversible measure for Q, from Lemma
(12), it suffices to show that

Vi, g€, ffagdu [9afin,

and this is equwalent to
(15) V4, BE | F(4), j QT = IIBQIA du.
To prove this we first consider that

(16) A= {2} x X (8\dp_1), B= {22} XX (S\Ap-1), 21, 20 € X (./1,,,-1)
The equality in (15)is trivial when #; =2,. Moreover

4N [LeLiu= 3 [ S, v, 2) La@) Is() — L@ Tu(ds),
9 [BeLiu= 3 [ 3o, v, 2) La(0) LuCa) — Lua(e)]e(d).

If there are w;, ua€ A,_1, Uy #us such that (zl) w? (22)u, then for every u€ Ay, €

X, we have
.IA(a;)IB(w) IAB(a;) IB(w)IA(uw)—IAB(w) 0.

Hence from (17)and (18) the equality in(15)holds for 4 and B in (16) in this case. If '
there is only a e € A,_y such that (21)4,+ (23)4, and 21=(21) uo X (29) A\ then from
(17)and (18) (write ju4,,= ftm) We obtain

[TaTadu= [ oo, Gou @)u(d0) = SV 0o, (erduey 225 0) 10m (axw),

WEX (P Apm-1)-

fI BRLadp= > (o, (21w, 22X W) (22X w),

WEX (2 Ap-1)
Since w is a quasi-reversible measure for 2, for every wC X (84m-1), we have
Hom (22X )6 (o, (22) ey 21X W) = i (22 X W) 6 (o, (21) a2 X ),
thus the equality in(15) holds too. Furthermore, the equality in(15) holds for any A
and B in(16). |
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In the general case, it suffices to consider
A={m}x X (8\T41), B={za} x X (S\T9), T;E <%, z,GX(T,)

Take A,DT1UTs. Since both 4 and B.are finite disjoint unions of the sets taking
the form of {2} x X (S\4m), and the equality in (15) is olosed under linear combina-
tion, the equality in (15) holds for these A and B. Therefore (15) is proved.

When does @ in Lemma (12) and Theorem (14) generate a Markov semigroup?
‘We have a. sumple result as follows, -
(19) Theorem. Suppose that for every AE.V ¥, YE X (A), the speed function c(4d,y,

) € €(X). If there is c(4, v), A€ Sy, yEX(A)such that

(20) - VAES N, Vye X (A), o4, v, - <ec(4, y), -
@1) sp 3 S o(4, g)=L<oo;

u  ucAcSy Y€X(4)

(22) IM >0 such that

S o, )| o4, 5, HI<HOM, v),

Nesy Yy EX(A)

then by defining @ linear operator Q on ‘K(X Yas follo'ws
{Qf S S o4, y, VAT,

A€SnyeX(4)

9@ ={f€ZX): > 20(/1 Pl xS <o},

€ESNY
the closure Q of Q generates a unigue erlco'u semigroup on € (X).
Proof An outline of the proof is, takmg an arbitrary subset &% of ¥, and
putting ‘

(23)

‘Qof= 2 2 G<A: Y, ')Agif:

AESLH YEX(A)
we can prove that|f| <|f—2AQof|for every A>0,
Then by using the notations in [7], and setting
U, 9)f 245,
M4, g)f 204, 5, DS,
it is § very easy to prove that ‘
o, )rT AL, ¥, U4, ))<2NL,

ALy Y EX(A)

> o, MU, ¥, M4, I|<Me(4, )

ATeSy YV EX(AN)
for every A€ Sy and y€ X (A). Clearly, 2 (Q) D7, 50 Q has a dense domam
Moreover, we have
29 : - VfED(Q), VA>O, f— mf>0=>f>0
and 21=0, hence['7]is applicable.
(25) Remark condition (22) in Theorem (19) can be replaced by the followmg
condition

(26) VAEYN, VyEX(A) | A
[ 3 |220(4, y, I+ sup  [4e(4,,)]]<o(4, v),

2NL A’ﬁiy‘ y'eX(A' A€ Pw Y €XCATY, Ay 1 Ak
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where ¢c& sup ¢(4, y)

AESy, yeX(A)
§ 6. Potentiality and Reversibility for Exclusion Processes
The spin-flip processes and the  exclusion’ precesses““ are two kinds of ‘Markov
processes with infinite particle syst‘ems Many of the results in the preceding sections
are appli-cable to these Processes, but the exclusion processes don’t satisfy condition
(4.8)-in [1], so there are some difterences. Since there were d1seuss1ons for spin- ﬂlp
processes in [8]. we will emphatically discuss the exelusmn processes 'in this seotion.
We take ¥V ,= {0, 1}, Vue s, and let e(e, o, +). SXSXX—->.R ‘be non-negative
and satisfy '
@) e(u, v, )>0 if and only if @y #w, for u vES, uaéfv
@ oy, 9, ) =c(v, v, ) EL(X), u, vES,
If we put

c(u, v, w) w,ﬁéw,,, (C’lu; fyv) (mv; mu);
0, otherw1se

o(tu, 0}, 9, 2) 2]
then ¢(u, , @)is a partioular form of e(4,y, m)for]/l] 2 but it does not satlsfy

(4.8)in[1]. Then Q defined in § 8 reduces to
®) 2f @ =5 3 oy v, 2) duwf@),

where S
e, 02 f (@) = f (cu,0) ;f (@), ‘
o, W=,
(cu,0®) = azu, w=wv,

a;w, fwaéu 'v
In order to generate a unique Markoy semigroup for the closure of 2 defined as above
we need some conditions(for example see Theorem (5. 19)) If there are ¢(u, v) =
¢(v, w)and M such that o SRR
(4) Vo€ X, Vu, v€S, o(u, v, 2)<o(y, v);"
(6) sup 3o(u, ) <oo; _
(6) Yu, v€8, 2" dye(u, v, -)

then by writing
1) D@ & LFEEE), ol 9l Aol <o, |
we attain that the closure of Q defined by (8) and (7) generates a umque Markov

<Mo(u, Iv)l;

semigroup, the corresponding process being called an exclusion process.',
Again we let X ={0, 1}%, ¢(+, +). X X—R be non—negatlve and satlsfy'
(8) YuES, Vo€ X, ¢(u, w)>0 R
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9) Yues, c¢(u, )G%”(X), . ' .o : LAt
then - ST : R - SRR
o({u}, ¥, ©)= { P Y= wES, yEY,, s€ X
c(u, ©), y=1—a4,

defines a speed function as in[1;§ 8]for N=1 and Y ,= ={0, 1}. 80 Q deﬁned in[1;§ 3]
determines a unique Markov semigroup under appropriate conditions(for example,
see Theorem (5.19)), the corresponding process being called a spinflip process.

Clearly, both ¢(u, v, «)and ¢(u, )satisfy the co-zero condition; so we ean define
" their respective speed funotion fieldsas in[1; § 3], i.-e., ‘
10) ¢, ;> _ {c(u, f'v,i'w), .jf 5=£;,,1,)w, Ty F Ty,

"7 0, other cases of £+ a;
o ~ c(u, @), T=u2,
(D ¢z o) é{O, other cases of Z £,
where (u@) - {ww, 1f,w%u In both cases,
1—a,, fw=u -

~ we need not define ¢(z, #)in the following discussions. -

"We will give the criteria for potentiality of the fields. . v
(12) Theorem. Lei ¢c(u, ») be @ speed fwnctzon Qatwsfy'mg (8) Then its ﬁeld Q hws a
potential if wnd only if T
18) b e(uy )e(w, w)e(w, wr)o(v, W) o
. =c(w, a;)c(u ,,:v)c('v, w)e(u, ), Yu, vES, VmEX
- where = ut=u(sT).

Proof For the convenience of provmg the - theorem, we 1ntr0duce several -
notations. . ‘

_ Define a transformation C(u) X->X . as-follows:

wl(u) =, s€X, u€S,
then for every path L= (z=a®, &®, -, &™), we have
& = (ur) L (Ua) »+-L () = nans®, 1SR, -

In the proof we also use a{ (ut) +++L (un) t0. denote path L, where = denotes the start and
C(u,) denotes the segment % P—>x®, By definition(2.4)in[1]we have '
 (14) (@ (ua)++L (u)) =@ (@ (ur) -+ (ur)) + (&L (um) C(un)), 1<k<n—1,
Using these notations; we:can rewrite (13)as
“(15) 'Vo€E X, Yu, vES, usv, pal (W (v)) = q)(wC(Iv)C(u)) Glearly, '
(16) Vo€ X, YueSs, <p(u§(u)§(u)) =0,

Now we want to prove .
A7) @@ (ug) +-L{ua)) =0
. for every closed path(l o., #™ =g for the above L), .
Since every closed. path-consists of an even number. of segments, n=2m, m bemg a
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positive integer. We use induction on m. When m=1, then 1, =4y, henoe (17) follows
from (16) Suppose that (17) holds for n=2(m—1). Then, when n— 2m, there isa k
such that 2<Sk<m, wy=wy and aé wy for 2<<I<k—1. Applymg (14) and (15), we
obtain
@@l (ur) L (W) = (wZ (ui) Z () +9 ( (u.u,w) L(ua) -+l (un))
=@l (u) (1)) + @ ((un®) L (1) +++L (ur)) -
=@ () +((u2) L ()L (us) oL (un)),
Slmllarly, applymg repeatedly (14)and (15), and applying (16) and w,=wu,, we obtain
@@ (ur) L (ua)) =9 (oL (12)) +P( ()L (U8)) + 9 (upis®) L () CARTAUR) I
=g(@{ (ua) (us) )+¢( (o) T (ur) £ () -+ £ (ua)) =
=@ @L () L (U-1)) +P( (i) E ) € () +++L () )
=@ (@l (u) **+L (U-2)) +0 ((upora®) L (ur) L (1) )
+@ ((ustnerma®) { Wern) - ()Y -~ -

=@ (@ () *+-L (U-1) L (Ws2) +++{ (uw)) =0,
So(17) holds for every closed path, and the condition is ‘sufficient.

Clearly, the condition is also Tnecessary. _ . : ‘
(18) Theorem. Lot c(u v, ‘w)be a speed funct@on sa,tfz,sfymg (1) 5 then s’ ﬁeld Q has @
potential tf and only if L ; . :

A9 0, 3, 2)0(w, 1, @e)oW, 4, @) |
=c(u, w, B)e(w, v, @w,w2)e(V, U, our), sEX, Yu, v, wES, .

Proof 1% As the preceding proof, we define # {(u, ) =,n@ for uskv, @,%a,
But where {(u, ) is not a transformation on X because it is only defined on{w € X,
@uF2y}. We also use af (uy, v1)- C(u,,, ®,) to-denote the path L= (w229, D ...,

&™), which consists of 2= and ® = z*—» {(u, v), k=1, ---, n, and we. regard
{(u, w)as the k'th segment of the path. By using these notatmns it is very.easy to
prove that(19)is equivalent to,

(20) p(af (u, v) (v, W)) ¢(wC(u w))Vu, v, wES,

: u, v, ware pairwise different, Vo€ X, a;uséa;,,—mw.

Moreover clearly we have {(u, v) ={(v, u), u%v and :

(21) Vu, v€8, utv, Vo€ X, v+, ¢(af(u, /v)C(u 2)) =0,

(22) el (u, v L, 0a)) :
=@ (@l (u1, v1)++-{(u, %)) +@(@® (uk+1; V1) *++{ (un, ’Un))

2¢ Under the conditions in(20), we have of (4, v){ (v, w) =al(u, w), 50 clearly
(19)is necessary. We will prove its sufficiency. For this; we first: ‘prove
(23) @@l (w1, v1){ (ua, 2)) =@ (@l (s, 2)E (us, v1)),
where wi, w1, ua, s are pairwise different and Py # By, $=1, 2." We may and do
assume that @y, =y, %y, =,,. S0 & (4, vs)is well-defined. Note that

ol (v, v1) L (g, )L (v, v1) L (tta, va) =,
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wC (us, )L (ua, v2)C (U1, V1) =(un,o0®,
and from(21), (22), (20)we have . '
@ (-’”Z (u, ’”1) (us, v2) (ua, ’01) 4 (uz, vg)) - .
=@ (w1, v1){(us, v2) (1, 92)) +9( (<u.,v,)w)z (uz, ’02)5 (ui, ’”2))
+ @ (@) L (U1, 2)) .. . :

=g @ (w1, 1)L (v, ’02) 4 (ui, _’01)) +o ( (<u,,1;,)£v) 4 ("42; u1)) +<P ( (nson®) { (s, ’”2))

= 91’(%5 (us, 1)L (ua, v2)T(us, v1){(ua, w1)) +¢(((u,,v.)m) ¢ (u, ’va))
In fact, the last three steps reduce Z(uz, v2) { (v, va) 0 L (ua, us) m terms of (20).
Similarly, the right-hand S1de above reduces o zero, hence (28) is proved

8° We now prove that condition (20): is sufficient, i. e., for every closed path
L= (a®, +, 5™, ) =af (us, v1) «+:{ (s, v4), We have ' Yo :
4 o @l (us, )l (U, va)) =0,

‘We use induction for n. When n=2, (24) reduces t0(21), and when n=3, from
(22), (24)reduces. to (21)100. ‘Suppose that(24) holds for n<<m, now we want o prove
that (24) holds for n=m. ‘

Since L is a olosed path, eaoh u and v (1<k<m) appear an even number of
times, and there is a k such that a<<k<m and :

(25) A, v} 0w, i} # D, {ug, 23N {uz, ’Uz} @, 2<l<70

Sinoe ¢ (u, v) = Z(fv u), We can assume that .
(26) ui"uk

without loss of generahty At the moment we wnte za wZ (w1, v1)L(ua, v2), then
" applying(22)and (23) again and again, We obtain
e @@l (ug, v1)+*-L(Um, Vm)
‘ e ”?’(“’Z (us, g) -+ Z(uk—ly ’Uk-:L)C(ui, 'vi)Z(uk; V) C(um; ’Um))
If vy=1y, then from (26) and (21), we obtain (at the moment we write £ = w{ (ug, V)
¢ (ug-1, vp-1))that the right- -hand side of (27) ‘
—¢(w§ (ug, 3)- C(Uk—l, ’Uk—1>C(uk+1; 'Uk+1) C(um: ’Um)), Coe
50 (24) holds for n=m from the hypothesis for n= m—2. If 'vﬁéka, then from (26)
and (20) we obtain that the right- hand side of (27) '

=@ (s, v2)---{ (w1, Vu-1) (21, vk)C(um, Wuiz) -+ (U, W),
0 (24) holds also for n=m from the hypothesm for n=m— 1 Hence (24) holds for
any n and the proof is completed.

We have an analogue of Theorem (5.8) for the spin-flip processes. Now we
consider the similar case for the exclusion processes. By the equivalent relation
(2.6) in [1], and from (1), the field determined by ¢(u, v, ) divides X into the
equivalent classes{X ;. I € D} as follows,

(28) X;={s€ X, A2 {ues; o+ (Al)u}eyf; 2-% 2 (Al>u};
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~where 4 is an arbitrary but fixed element of X,. Letting -
(29) Xu() ={ye X (). |y|2 - 2 9u=k},
and choosing an arbltrary but ﬁxed y‘k)e X, % (A) (we add the Suﬂ-ix A if necessary)

we have
(80) VAE S, VyG Xk(/l) Fyi, ya, - s Un such that
Yo Xz y""><z—>y1><z——> —->y,,><z—>y<"+1’><z yxzforeveryzEX(S\A)
Put - : : : S o
(81) q(y"”xz yxz) HQ(?/iXZ Yer1X2),

V?/EXk(A)
, Q(yxz, y®xz) = Hq(y.+1><z y;xz'>
then we have e
(82) Lemma. Let Q have a potmtwl For efuefry AG 7 ,«,lcE {O 1 oo, | 4| }we put
Vye X (4), Vz€ X (8\4), S
q(® %2, yxz)

@) R @K, 5 DLl e
gy®xz, wxz)

K4, %8 Awexk(A)Q(’wxz y®xz)
then ¥ 2 {fi, A€, O<lc<[/1[} satisfies,
(84) . 0<fk€%(X) fk(m)>0 if and only if a;AEX,,(A), 7
(35) ViEX(S\A), 3 Fx)=1; |
(86) SR VA(:AGS/’,, 0<I?<|A] VyJ.EX(A)

¥ € X (A\A), zEX(S\A), _
Ry xyax2) =flu@axyax2) o JE G XUaxe),

Proof Since @ has a poten tial, fi (yxz2) is 1ndependent of the selectlon of y""
and the path from y®xz to y Xz, hence the deﬁmtlon of f is justified.. It is clear
that (84) and (85) hold except fRET(X) Whloh follows from the proof of Theorem

- (6.8). Now we want to prove (36) :
(86) is trivial when |y1X y2| k. Suppose |y1 xyzl —/o and erte lyi | —lc then
from the potentmhty of @ and (33), we obtain ' ‘
FExgaxs) =K, 5, HIWE x2,31%92%2)
q(y1}yax2,9% x2)
KA 5, 5 1WE xz y""xygxz) TP Xyaxz, yyXgsxz)
q(y‘”’xygxz y® x2) 4@ xyaxz, ¥P xyaxz)

< AP Xysx2, yXyax2)
fk(?llxy2>§z) yexz,,@ (Y xyaXz, YO xy;xz)

9@ 2, ?/"”xym) KA, 5 B
4P xyaxz, §7 x '
=fi (yixysxz>”é§‘4)fﬁ (yxyaxz),
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(87) Definition. Let o7 (8\4) =0 {X,(4) x X (S\4), 0<k<|4|; F@®\D)}. p€
P(X)is called a-canonical Gibbs state co'rfrespondmg to c(u v, @) (or ¥5,), if for every
A€y, ye X (A), we have -~ - SR .
(88) w({y} x X (S\4) | (8\4)) f,( Sal yx ( )S\A),u,———a e. and the set of all cwnomcal
G1ibbs staies corresponding to ¢(u, v, ) (or ¥,)is denoted by G,(7V7). ' : 7

For ¥, we define G, (AE ;) to be the closed convex hull in weak topology of all the -
Following pa,.e, € X (S\A), 0<k<|4|. |
@ o VFEF, ma®a 3 o),
and put - : ‘ ' v . v
(40) G2 {WEP(X), A4nE Y, mTS and’ El,bbme gAm Such that ;,z,m—>,u,} '
(41) Theorem. If Q has & potential, then : e

. L GN)=9.

Proof Just similar to the proofs of Prop081’010n(4 28)in [1] and Theorem’ (6.2).

From now on, we will call a measure satisfying (3.18) in [1] a positive
measure, and denote the seb of all positive probability measures on X by £.(X),
Similarly we have the set % of all reversible measures and the set 2. of all positive
~ reversible measures. Olearly Z,=ZNZ(X). We will establish the relation between
X and G,(¥) when @ has a potential. '
- (42) Lemma. u€ Z if and only if
48) VfEX(X), Yu, vES, 5 | |

fotw, v, )f @n(@)= fo(w, v, ) (wom)u(dn).

Proof See[5 Lemma2.15], -

(44) Lemma wE AR if and only @f
v4e s, VyEX(A), V{x, 'D}CA a

@5) o, v, yX (Va)p({g} x XS\ ) |L(S\4)) .,
| =0, 9, woyX (Dna) B({wog} X X S\D) | LB\D). p—a. 6.

Proof It is eaSy to prove that if Ji1S 2, then (48) holds for F=Iwyoxeanxr, AE
s, yeE X (A), 0<k<|4]|, Fcfo(S\A) So from (43) we have

jxk(A)XF o(¥, 9, yx (f)sm) Iﬁy)XX(s\A) dw

= j e ° B @0 X (D) Lz B

for every u, v€ A, hence -

fx,mm“(“ % y><< >m>u<{y} X X (8\4) | &2 (8\4))dp

=Jxk(4)xp 0:(” '”: (u ”)yx (e )S\A):u’<{(u oY} X X (8\4) [M(S\A))d/,b,
- and so (45) follows.
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Conversely, if the condition is satisfied, then, taking F2 X (S\A4) in  the
preceding equations and deducing these equations inversely, we obtain that(48)holds
- for f=1T uxwa), 4E S5, yEX(A), u, fvEA U=, Now if u€ 4 and /vi./l then ',

JG(“ v, ‘)waxwwdl" Z c(u, v, )wa;;ﬂxw\uum»d/ll

= v 20 ) J cu, v, +)I om u)(yxyl)>xX(5\(Aucv>))d,lb
1=0, . ,

=J’0‘ (u, v, o)1 WIXXE\ L) ((u,v,:;:),u,(dw) .
So(48) holds for f € o7 and u, ¥E€ S, hence(43)holds, i. e., u € 4. _
(46) Lemma. If Q has a potential, then for every A€, ye X (4), z€X(S\4),
{u, v}cd and k€ {0, 1, ---, | A|}we have v
(47) - oy, v, yx z)fk yx2)=c(®, v, wunyX z)fk (m oY X Z)
Proof fi exists from Lemma(82). (47)is trivial when ¢, = Yv-0r|y| # k. Suppose
y(k)XzN’sz then from the path-independence and (88), we have

filyxz) _ g(y®xz,yx2) qy® %z, yx2)
Silwoyx2) qyxz, YO %x2)/  q(u,ny X 2, y® X z)
- 9 (.Y X2, sz) c(u v, w,v)cI/M)
qYX2, w,olyX?) 6(u, v, yXz)
(48) Theorem. If Q has @ potential, then B=G,(¥?). _
Proof If p€ %,(7), then from (88) and (47) we know that for every AES’,,
yEX (4), {u, v} <4, the left-hand side of (45) _ '
=o(u, v, yx (- )S\A)f!(-m(?lx (*)sa)
=0(¥, v, @0 %X (Dna) i (0¥ X (*)va)
=the right-hand sied of(45); p—a. e.
So u € Z follows from Lemma (44)
Conversely, if u€Z, then for every AE.V,, IcE {O 1, -, |4}, yEXW(A),
{u, vy, from (45) and (47) , We obtam _ .v -
u({y} X X (8\A) | (8\4)) _ /w({w o} X X (8\ 4) |&/(S\!1)) .
fla WX (Dsa) L S Cwny X (Daa) #ae
Since y X z~1y X 2 for every y € X k(/l), zE€X(S\4), from the "above- equation and
(85) we obtain Vy € X;,(A4),

p({} x X S\ 4) | (8\4)) _ M({y} XX(S\A) |8\ 4))

Fe@x (Do) o fG% (D)
LA XXM | LED) o
D SGx e () pmee

Hence, for every 4€.%%, y€ X (A) we have Lo S
u({y}XX(S\A)[%(S\A)) ~fn@* a) Iz, ((4))

=fitouyx (- )S\A) u—a. e.
Therefore u € Z,(¥,).
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(49) Remark. Theorem (48) is obtained in [4] for some special ¢(u, », ) (See [6;
II,§ 1.8]). The analogues corresponding to Lemma (42), (44); (46) and Theorem
(48) (taking ¢(u, @), o, F(S\4), f* and F(¥") instead of ¢(u, v, ), w,n%
H(S\A), f&and G,(7,) respectively) are obtained also for spin-flip processes ™.
But our. proofs are simpler. In [3] Tang has proved. that an infinitesimal generator
of a spin-flip process is reversible if and only if the corresponding field has a potential.
But the condition of potentiality is not necessary for an exclusion process. We will
discuss these problems.

(50) Theorem. Any speed functzon for an exclusion process s refuefrs'bble (even condition
Q) is not required). In detail, if we put ‘ ‘

0.=0, 1,=1, Yucs

Vo(O) ;V1(1) 1 .- Voy V_-LG Q(Z)
then vo and vy are reversible measures for the speed Sunction.
Proof It suffices to consider »o The theorem follows from.
[ 70gdvo=7 ©)29©) =5 F O T o, v, 0) [4(w.n0) ~9(®)] ~0- jggfdu
Theorem (50) can be generahzed Suppose that the field @ restrlcted on X,,

is symmetrlzable[‘”, i. e., @2 {q(=, z), @, z€X i+ has a potentlal and
' P2y 3(4, %)/q(e, Az)<+°°

and

Put

A Q(Az, %) g4, =)
(ﬁ) (w Al) [‘,Ex,q(w Al)] ’

then {logm(s); *€ X ;} is a potential for Q..

(51) Proposition. If Q, is symmetrizable, then

(52) pEPX), w2 X m), A€F

is @ reversible measure C’onfuefrselfy, if n€EZX tmd /w(X 1) >0, then Q s symmetmzwble
Proof. - Slnce W (m) (wEX ;) isa symmetrlzlng d1str1but10n for @, from (52) we{-

have SRS S : Aot

e, v, Df @)= 3 o, o, 2)f @) o)
= 2 c(u Y, (u,v) (‘”)f(“’)l"l(w v)“’) = 2 c(u v, w)f((u v)w).u'l(“’)

= fo v D (wedntdn)

for every fEZ(X), o p,e.% follows from Lemma (42). ; .

Conversely, since X is countable, /.L(X 1) >0 implies that there is an wEX Is
assume that =4 without loss of generality, such that.u(4y) >0 But from:Lemma
(42) and the monotone class theorem, we obtain

o(u, v, m),u, (@) =c (’“ 2, (u,v)w) M ((a,.,)w)
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for every u, v€S, € X,;, hence 4~ for every & X i - Therefore u(2)>0(z€ X;)
and @ has a potential. Furthermore @; is symmetrizable from the fact wu(X;) <1.
The proposition can be improved also. we can construct a reversible measure;
even if @ hasa potentlal but it is not symmetrizable. '
(53) Lemma. If @, has a potential, then '
: Q) 2{g(yx (A) s\a, Y () S\A) Y, Y G X, (/1)}
s symmetmzable, where X,(A) ={y€ X (4), 2 Yu= Z‘, (L)}, AESS, .

 Proof By the hypothems there is {v(z), v€EX i} such that 'v(w) >O VwE X, and
o(2)q¢(s, 2) —v(w)q(w %), @, 8€ Xy,
In particular, taking s=yx (A,\ a4 and =17 % (A,) s for y, y€EX l(/l) - we know
that @,(4) has a potential and : ‘
@ (Y X () sa) =0(y X (At)sm) L 213( K @ % ( A)pa)]™

is a symmetrizable distribution for @, (/1)

Novv we set
w1, 4(y) & VF(Z/X (AZ)S\A) yE Xz(/l)

Ih 4(F) &m, A(F((AZ)S\A) NX;(4)), Fegr

Clearly w1 € P(X). Taking 4,18 suoh that ,u,z i 5 ,u,l (m——>oo) we have B
(54) Proposition. 1€ % and w,(X;) =1, ' ’

~ where X , 4s the closure of X, in X.

. Proof From Lemma, (53), ;1: is clear that -

fos, 5,9 L ot ~F @ ym. . (a) =0, fe%’(X)

- when 4,5 {u, v}, Since ¢(u, v, *) [f (w,v( )) —f ( V1€ (K(X ), 4, .-->,u;;, from Lemma
(42) we obtain ;€ %, and | : .
m(X2) >11m L SUD fy, 4, (Xt) >11m SU—P T, 4, (Xz(/l)) =1,

(55) Theorem. If Z.+(, then Q has a potentwl and Ro=P(X) NG(70).
Proof From the hypothesis and Lemma (44), we know that for every A €S
there is an N4 such that (V. 1) =0 and
(45)’ e(u, o, waS\A)M({y}XX(S\A) IM(S\A))(W)
=0(u, v, w0 X@s4) 0 {w,ny} XX(S\ A |2 (8\4)) (»)
for every s N4, yEX(A), {u, 'v}C./l Moreover, for each £€ {0, 1, --, |A|} and
9o € Xy(4), there is an #“4®¢ N, such that ,u,({yo} XX(S\A) [M(S\A)) (w(“ ")) >O
because w€ £, (X). So from (45)’, we have
_ ey} XX (8\A) | LS\ 4)) (249) >0, yEXk(A)
So from this and (45)’, we know that (we write 24® = (g@®) 4 ,) -
c(u, fb, YX 24 e (0, W, w my X é“‘"”) c(w, U, qo,wy X240
=c(u, w, yX2“4P)e(w, v, wwy X24P)e(v, U, @ uy xz4P)
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for y€ Xy (A) and u, v, wE _/1. This equality implies (19), because U U Xpd)

A€Ps O<k<|A|

X {#4®} ig dense in X and c(u, v, *) E % (X). Then @ has a potential from
Theorem (18), and #. =P, (XY N #=P(X) N Z,(¥,)follows from Theorem (48). -
(56) Remarke. Using these proofs, we can easily prove that Z+0=>Q has a
potential® for the spin-flip processes. In fact, that @ has a potentlal implies that
.@ G(Y) = G40 Conversely, if Z+@, then we obtain ‘

e(u, yX (Daa)p({y} x X (8\4) | F(8\4)) _ _

- =0(u, WX (s w({y} x X (S\4) Ig"(S\A)) p—a. e,
This 1mp11es that there is an #* such that '

p({y} x X (S\4) Iﬁ'(S\A)) (wA) >0, Vy€ X (4),
S0 (13) holds, and a potential.
Finally, we discuss the relation between reversibility and quasi-reversibility.

(57) Theorem. Suppose that ¢(u, v, «) has a finite range. r({u, v}) is the same aé
(8.15)in [1]. For every A€ S, we put 042 (\_/1 U r({x, fv})) (See definition(4.30)in

[17). Also suppose that there are {Am}cy + such that A Am_iuaAm_i, A A,
m=1, A 1S, Then p€ .. if and only if w is & quasi-reversible measure for ¢(u, v, *).

Proof From Theorem (3.25) in [1], positive reversibility implies quasi-
reversibility. (But it is more simple if we use (43) and the proof of Theorem (3.25)
in [1] to check the condition for quasi-reversibility.) -

Conversely, suppose that w is a quasi-reversible measure for ¢ (x, v, +), then we
have : s S -
(58) e, v, PpaW) =0, v, woy)ilwoy), yE€X (L)
for every u, v€ S and A:)r{u fv} (here we use ¢(u, v, y) instead of c(u /v YXxXz),
z€X (S\A) arbitrarily). '

Take m>1 L, va ./1,,,_1, yEX (_/1,,,_1) and f=TIgxx@a, then rr({u fv}) CA,,,,
and -

{PIXX (Am\Am—1)

ot w)f(w)u_(dw)#[ e, yxwmm(d@xw))

=3 oy v, yxXxw)un(yxw),

WEX (0A4m=1)

Where W2y, Similarly, we have

o, v D (odn@ =51 6@, 0, oy xw)in(ioyxw),

€X(@Am-1)
so the equation in (43) holds from (58) .Note that for every A€.%}, thereisan m>1
such that A= A,,_;. By the preceding proof, it is easy to show that the equation in
(48) holds for f =1 gxea, YEX(A), u, vEA, usv. Henoce (43) holds (See the
last part of the proof of Lemma (44)) Therefore /u,E R, and p€ Py (X) 1mplles

. IJJEQ+
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