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Abstract

I n  th is paper, m ost o f  the F eller 's  boundaries are extended to abstract spaces, and a 

general expression o f  ^-processes satisfing the K olm ogorov backward equation is  obtained  

w hen q {(o )—q {x , A )  is finite. • ■ ' : ■ V

Introduction

The Feller’s boundary theory on oountable state spaces was established by W. 
Feller in 1966. It has played an important role in the constructions of Q-prOcesses. 
In this paper, most of Feller's results are extended to abstract spaces. Firstly, the 
basic Lemma in [2, § 6] is extended to abstraot spaces, but the proof is simpler than 
Feller’s. Secondly, a general expression of ^-processes satisfying the Kolmogorov 
baokward equation is obtained and it is a preparation for constructing potential 
q -processes which satisfy the Kolmogorov backward equation when q(x) —q(w, A) is 
finite. Finally, the criterion for honest ^-processes mentioned above is established.

I would like to thank Prof. Yan Shijian for his guid ance and Ohen Mufa for his 
groat help.

§ 1. Operation on Lattices

Let (E, <o) be an abstract measurable space, and assume that all the singletons {a?}
(p(zE) belong to S. We use the same notations as in [10, § 1], such as bd?, b r

'

Let funotion m(ae, A) satisfy that 
i ) sr(*, A) £  &«?+for A, vc(x, •) for oe, 
ii) 0<atr(cc, A )< 1, A £ $ .
The operator % is defined by

» / ( * ) “ {■ *»)/(*>) (/€&<?). (1-1)

Olearly, for each fixed n, wn is a bounded linear operator with norm less than or equal 
to 1.

Manuscript received‘March 6,1981.
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Put
^ = { / б Ц : ® / = Л 0 < / < 1 } , (1.2)

38* -  { / £  b<S+j гг/> /, 0 < / < l } , (1.3)

^•-{/€& <0+; е т /< /, < K /< 1 } . (1.4)
Obviously, 38 is convex and closed.

Definition 1.1. We call g the least upper bound of { /«£ b$, a £ I } in £8 i f  
sup f aK g££8, and i f  sup f a<fj3z38, then g<fj. We call h the greatest lower bound o f
aei ael
{ fa G b<f>, a^_I} in 38 i f  inf f a> h £ £8, and i f  inf / а>Л.££8, then h^h. Here I  is an

as/ «6/

arbitrary index set.
Lemma 1.2. For any fixed f  £ 38* and x £ E ,  the limit

g (x) =  lim (гг" / )  (x) (1.6)

exists and g is the least upper bound of { /}  in 38.
Proof From (1.3)it is easy to prove that гг” /<гг"+1/ <  1, n—1, 2, •<•. Then 

lim (я;”/ )  (x) exists and we denote it by g(x) . By the dominated convergence theorem,
ft-> oo
g£38. If £ 38, g i> f , then by induction we have gi>t f f ,  n = l ,  2, •••. Letting 
n-^oo, from (1.6), we obtain g%>g.

Similarly, we can prove
Lemma 1.3. For any fixed f  £  38* and x £  E, the limit

h (x) = lim (гг”/ )  (x)Л-»оо .
exists and h is the greatest lower bound of { /}  in 38.

Theorem 1.4. Let f lt f 2^.38. 38 contains a unique least upper bound / i l l /2 of 
{ / 1, / 2} and a unique greatest lower bound f t  П/2 of { / 1 , / 2}.

Proof For each x, put f (x)  =max{/i(aj), /2 (x)}. Olearly / £38* and the 
funotion g defined by (1.5) has the properties required b y / i l l / 2- Put

h (as) =  m in{/i (as) , /2 (as) }, 
then from Lemma 1.8 the assertion follows.

In the rest of the section, we assume that all the functions / ,  g, f + g ,  f \Jg  and 
so on, whenever they appear, belong to 38.

Using the method in [1, Lemma 4.1], it is not difficult to prove
Proposition 1.5. I /

f i + g i ^ f a + g s —hj (1.6)
then

f t  U/2+<7i П ga—h.
Particularly, we have

/ 1+ /2—/ 1 U/2+ / 1 П/2.
Using the method in [l, Lemma 4.2], it is not difficult to prove

(1.7)

(1 .8)
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Proposition 1.6.

I f  / Л 0 -О , then 

I f  O ^ k ^ l, then

( f f \g )  U A < ( f \ jh)  n (g\Jh), (1.9)
( / и ^ ) Л А > ( / П А ) и ( ^ П А ) , (1 .10 )
( / Л $ ) + А < ( / + А )  n (g+h), (1 .1 1 )
( / U f l ) + A > ( / 4 - A )  U (g+h) (1 .12 )
( f + g )  П A <  ( / D  h) +  (g Л h), (1.13)
( f + g ) {J h <( f [ J h )  +  (gUh). (1.14)

(fA-g) Л h=  ( f  Л h) +  (g П h) , (1.16)

К / П р )  = (Л . / )Л (^ ) , (1.16)

A ( / U ^ ) - ( A / ) U ( V ) . (1.17)

§ 2. Sojourn sets and sojourn solutions

Obviously From Lemma 1.3 we know that for each cc£E the limit
SE (ж) =  lim (я;" 1 ) (ж) (2 .1 )

П~»оо

exists and SE belongs to 38. From the fact that 0< / < l  for every f  £.38, by induction 
we have /<яг” 1 , и = 1 _, 2, This proves

Lemma 2.1. The function SE defined by (2.1) is the maximal element of 33, that 
is, Ee£ 38and f<;SE for each f£ 3 8 .

If <w(% E ) = l ,  then SE=1.  Conversely if SEz==l, then 1>яf  1 j  1 (те->оо)̂  
therefore sr(*, E ) = l .  This proves

Lemma 2.2. SEs= 1 i f  and only i f  <w(>, E)  =1,
Now let A be an arbitrary set in S  and let <̂ Л A — {BczA: B £ $ } .  Applying the 

above argument to the restriction of ov to (A, $T)A) and letting %пл {х, A) 1 
we know that the limit function

Pa  ( p )  =  lim + a  ( to, A ) , (ж £  A)

exists and satisfies
Pa  bs WaPA)

Obviously pa is the maximal element of 38Ai where
M A ^ i f e b ^ O A ) :  m j J - f ,  0< / < l } .

Put
, s f Pa(p )> ®€A, 

lO, x£ E\ A ,

(2 .2)
(2.3)

' (2.4)

For ж £  A
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U (», dy)aA(y) -  of(®, dy)<jA(y) +  ет(®, dy)aA(y) = nA(®, dy)aA(y)
J J A J E\A J A

=  Ра ( х ) = сга ( о>), ;
and for x £ E \ A

Jw.(®, dy)aA(y) >0=aA(a),

therefore Applying Lemma 1.2 to f= crA, we see that the limit function
8 A(a) =1пп(я;”сг4) (iv) (®£Е)  (2.5)П~»оо

exists and is the least upper bound of (oxj-in Partioulary Ge= S e.
Definition 2.3. A set A £<£ is called sojourn set i f  8 АфО (or what amounts to the 

same, i f  рАф 0).
‘ Obviously, for J. to be a sojourn set it is necessary and sufficient that there exists 

an x G A and an r)>Q such that
uvA(x, A )>ri (2.6)

for all n.
Definition 2.4. Two sets A and В are equivalent i f  8 A—SB.
Definition 2.5. The set of all functions 8 A and 0 is be denoted by <£ . The elements 

of are referred to sojourn solutions.
Using the method in [1, Lemma 6 .1]it is not difficult to prove 
Lemma 2.6. I f  A and В are non-overlapping, then '

8 a (]8b=0,  (2.7)
8 a U 8 b~ 8 aA-8 b~ 8 A[Jb. (2.8)

Let A be a sojourn set and B id A, A, B£<o. It is easy to prove that the limit 
function lim mnBpA(co) (ев £ I?)exists, where

<pA(co), ioxx£A,
. . : ^ ( ^ " l o ,  for a>eB\A.

lim мврА(сс), x £ B ,
7l-> oo

[о , ® еж \в.
(2.9)8BA(x)±

Obviously 8 a= 8 a, ca—8 a and
<ta< 8 ba< S a. (2.10)

Lemma 2.7. We have
8 a(cc) =  lim (mn8 A) (a), (AdB,  ® £ E) t (2.11)

П-ьоо '
I f  A<~B, C a B  and S1=S%, then 8 A= 8 C.

Proof Premultiply (2.10) by ocn. The right side remains unchanged, and (2.5) 
leads to this lemma.

Lemma 2.8. Let A€<p andf€.&«. For each n and each a £  A we have

f(oo)>otnAf(a )  +  [ S ^ f  <fy)f(y) 1(®). (2.12)L*»=o JE\A J
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I f  f f z 38, then the equality sign holds in (2.12).
Proof For n = l  the relation (2.12) reduces to f>mf .  Assume that (2.12) holds 

for some n. Using the fact that / > я / ,  we have

' ( ® ) > [ < * i (•>% )/(?/)](«)

=  [ | 4 ® ( % % )/(i/) +  sf (•, di/) /  (i/) ] (a;)

“ etf’VC®) + [< w i| d y )/(y )](« ). (2.13)

Substituting this into the first term of the right in (2 .12), we get the assertion
(2.12) with n replaced by n+ 1. When / = яг/, each of the above inequalities is 
replaced by an equality, and the lemma is proved.

Choosing in particular / = 1  we get
Corollary !. For со 6  A

A) 4- 2  я&*яг(», (2-14)

I f  err is strictly stochastic, Йен the equality sign holds. 
Letting n—>oo we get 
Corollary 2. For m£A

о-А(я )+  B \A )](» )< 1 .L v=0 -i
Using the method in[l> Lemma 7.2], it is not difficult to prove 
Lemma 2.9. Let f  be a bounded solution of the equation

(2.15)

щ - я ,  g z b s ’i.
and let 1/(1 > 0 . For fixed 0< t7< ! / | |  put

(2.16)

Then FT( is a sojourn set. I f
(2.17)

8/r)<8, 8 > 0,
then

(2.18)

’ ’ > 1  -  8у for os €  FSm 
Using the method in [l, Lemma 7.3]it is easy to prove 
Lemma 2.10. I f  A is a sojourn set, ihenl<yA\ =1  апйЦЯлЦ =1, 
Using the method in [l, Lemma 7 .4], it is easy to prove 
Lemma 2.11. With the notations of Lemma 2.9 one has

(2.19)

Using the method in [l, Theorem 1.8] it is easy to prove 
Theorem 2.12. For any sojourn set A and 0 < r]< l put

(2.20)

. An=={w£A: 8 а ( св) > 1 — г)} (2.21)
a n d
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A n= {x£A: crA(oj)>l-7?}e (2.22)
Then

Definition 2.13. A sojourn set is called representative set if  there exists some rj>0 
such that SA(%)> 1 —rj for each x£ A .

From Theorem 2.12 we have
Lemma 2.14. Each sojourn set A contains an equivalent subset A which is 

representative.
Using the methods in [1, Lemma 8.2] it is easy to prove 
Lemma 2.15. Let A be representative, and AczB. Then

Sb- S a+S;b\a. (2.23)
Using the methods in [l, Theorem 9 .1 ]it is easy to prove
Theorem 2.16. For an element / £  SB to be a sojourn solution it is necessary and 

sufficient that
/ Л № - / ) = 0 .  (2.24)

Equivalently it is necessary and sufficient that for any sojourn set О
f^ tS c , t> 0  implies f&zSo. (2.25)

Using the methods in [l, Theorem 9 .2]it is easy to prove 
Theorem 2.17. I f  A and В are sojourn sets, then

SAaB= S Ar\SB. (2.26)
Using the methods in [1, Theorem 9.8], it is easy to prove 
Theorem 2.18. Let X,  Y  and X n be sojourn solutions (elements of & ), then
i) X f lF G ^ ,

ii) 7 - J G 1?provided X
iii) X U Y € V ,
iv) X + Y  G provided X  f| Y —0,
v) i f  either X n \ u  or X n f  u, then и £  <£,
Using the methods in [1, Theorem 10], it is easy to prove 
Theorem 2.19. In order that an element X£ S B  may be a sojourn solution, it is 

necessary and sufficient that the relations
X  = t U + ( l - t ) V ,  0 < t < l ,  U, V € @ ,  (2.27)

imply TJ = V  =  X .

§ 3. The exit boundaries

Let q (x )—q (x, A) (x £  E, A^S*) be a totally stable g-pair [10, Definition 1.1]. 
For each A>0 put

<m(X, x, A )  = q ( x ,  A ) l ' k + q ( x ) 2 ~ 1{ x ^ E ,  А £ £ ) ( 3 J )
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and

Put

S, = | /66*?+: jw(A, *,

H={a>£E: q(so)>0},
( A, r?(®, А)\й(р),  отгГаг. л ) ==i 
4 ' , 10, <с£Е\Л}

(3.2)

and

(3.3)

(3.4)

Obviously, for each A>0, /  £  ,#Л

/(®) % )[^+?(«)3"1/(2 /)< J'r1WS'(^ % )/(2 /)< l 0»€Я )

/  (ж) =  0 = jw (m, dy)f  (у) (x £  E \ E ) .

Therefore 38%cz 38*. From Lemma 1.2 we know that there exists a function g such
that

(3.5)g (a?) =  lim <wnf  (со), \fx £  E

and g is the least upper bound of{/}in  38. Olearly гг"+1/>гсп/ ,  n= l ,  2,
Definition 3.1. The canonical map of 38% into 38 is the map which sends the 

dement f£ £ § \ into the element g£38  defined by(Z .5).
Lemma 8.2. The canonical image f 0 of the element f% £  38% is given by

/ . ( • ) - / . ( • ) + > .s  [« ■ (•, Ш Ш / я Ш .  (3.6)a-0 JH
Proof If a}£E\H,  then both sides of (3 .6)vanish. We want to prove that for 

aj£ H

f M  S  f ™a(®, dy)My)q~\y )  -  f y ) M y ) . (3.7)
0=0 IH  J

From the fact that f% £  38%, we get

ш + * х ш .  (з .з )

[Regarding жа(%, »)as a measure in A and taking integrals for both sides of (3.8), we 
obtain

f dy)f%(y) +  a [ %a(cc, dy)lf%(y)q-1(y)l *={ ova+1(<e, dy)f%(y),
j h  J h  Jh

Summing for a from 0 to n—1, we obtain(3.7). Letting n->oo in both sides.of (3.7),
we know that(3.6)holds for а?£Я,

Lemma 3.3. Let f^£38. For each A>0, put

/ . ( • ) = / » ( • ) •, * / ) / . w , (3.9)
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where pmiD(X, x, A)(X>0, x £ E ,  A£<o)is defined by[10, Lemma 1.4]. Then f \  is the 
greatest lower bound of{f0}in -

Proof From the faot that f 0 £  3§, for eaoh x ^ H , we have

0<|яг(А, x, dy)f0(y) <|зг.(®, dy)fo(y)=M®)> 

and for each x ^ E \ H ,  we have

j^(A x, <Ly)fo{ y ) = 0 = f o(x)i 

hence From Lemma 1.3 we know that the limit

lim f?rn( X  % dy)f0(y) (3.10)
П-*оо J

exists and it is the greatest lower bound of { / .}  in Put
: ' P*(x, % A) -#<»,' А)[*+г(»)эЧ

P*(K 4  A) = S  \™a'(h dy)P° (K  y, A) . ■a=0J

n — 1 ,  2 ,  ■

It follows that

(3.11)

8(x, A )= ^P n(X, x, dy)tX+q(y)r\8(y, sc, dy)q(y, A)

’ . =  ̂ Pn~ \K  x, dy)lh+Q(y)^8(y, A)

x, dy)[X+q(y)]~1j8(y,  dz) [X+g^J^Cz,  A)

- j p ”"1^  x, dy)q(y, A)

=APn_1(X, x, A ) + ^ P ’>~1(h) x, dy)q(y) x, A)

~ f  Pn~Kl, x, dy)q(y, A),  " ' ' 4 (3.12)
J h

Regarding both sides as measures in A and taking integrals fo r /0, from the fact that 
/o G ^ w e  have

/o(®)=^JP"_1(^ «r dy)f0( y ) + ^ P n-1(X, x, dy)q(y)f0(y)

+ J  ovn(h, x, dy)fo(y) - [ BPn-1(l, x, dy)q(y) ..

\<l~Ky)<l{y, ^ ) / 0(z)=A x, dy)f0(y) +  J*«7r”(A, xf dy)f0(y). (3.13)

Letting n-roo, from[4, Theorem 4 .1 ]and[6, Appendix, Lemma 11]we obtain(3.9).
Definition 3.4. The typical map of &  into is the map which sends the element 

f o £ @  Mo  the element f % £ defined by(3.9).
Lemma 3.5. Let / 0£ ^ .  Then the typical images f^(k>0)satisfy

/* (•)  - /„ ( • )  =  (v-Я.) [РтЫ(Х, *, d y ) M y ) - ^ ~ 4 \ P mla(v> °> ^ Ш у) (К  v>6) .
~ ^  S (3.14)
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Proof From(3.9) and the fact that Pmin(X, x, A) satisfy the resolvent equation, 
we get the first equality in (3.14). Exchanging A, and v, we obtain the second equality 
in (3.14).

Corollary. / лг=0 for some A>0 is .equivalent to 0 for each X>0.  For each 
fixed x £ F ,  fh(x) (fi>Q)is a continuous function on(0, °o) .

Definition 3.6. A function f£ . 08 is called 'passive i f  for some, and consequently 
for each X>0

f ( x ) ^ P ^ ( X ,  », <kj)f{y) (ccGP). .. (3.15)

Lemma 3.7. Let f?, G 08% and let f о £08 be the canonical. image of f%. Then

M ' ) = M ‘) - l \ P nin(.h •, dy )Uy) .  (3.16)

Proof Put

From Lemma 3.3 we know that / л is the greatest Upper bound of { / 0} in 
From(3.6)we get/ л< / 0, hence/A< / A. By induction

|я;й(*, dy)f%(y)<^vcn(',  d y ) f i ( y ) < f 0.

Letting 9i—>oo we obtain that / 0 is the common canonical image of f% and f[.  Thus 
/ а~f% €  and his canonical image is zero. From (3.6) we have f  % —f%.

Lemma 3.8. For cm f о (z 08 to be the canonical image of

/* (•)  ^ /o ( - ) - ^ P mia(K % dy)My) ,

it is necessary and sufficient that there exists no passive non-null g££% such that # < / 0.
Proof From Lemma 3.3 we know that f  % is the greatest lower bound of {/q} in 

08%ч Let /о be the canonical image of f%. From Lemma. 3.7 we have

(/о-Л )( .) - а|р - ( а, .,*/)(/„-/»)(у).
Clearly /о is the least upper bound f  % in 08, and fo>f%. Hence 0 < / o—/ 0< / 0. This 
proves that/о - /q  is passive. If there isn't any non-null passive g such that g < f 0) 
then / о - / о =0, thus f 0 = f 0. Conversely, if there exists a passive non-null g£08  such 
that p < / 0, then'we have

/.(О -(Л -«г)(-)-4 р”“(л-
hence fo—g>f%> We. will denote the canonical image of Д  by /'0. From the fact that 
fo is the least upper bound of {f?} in 08, we obtain that f 0~g>fo-  From the fact:that 
дф 0, we know that/o^/'o, that is, / 0 is not. the canonical image off?,.

Corollary. The range of the canonical mapping from 08% to 08 is independent of

Л. ■ ' '' '
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Put
./13). (3.17)

n-W®
We will denote the canonical imago of X % Ъу X . From Corollary to Lemma 3.8, it is 
not difficult to prove that X  is the maximal element in the range of cononical 
mapping, therefore it is independent of X. We will denote the set of sojourn solution

y^ C S f).
Theorem 3.9.
i) For each X>0, the range of the canonical mapping of 38%, coinsides with

W = { f £ & . f < X } .  , (3.18)
ii) # ( # П  &)is the isomorphic lattice of £8%(f<o%).
Proof i) Let /  be an element in the range of the canonical mapping. From the 

fact that X  is the maximal element of the range of the canonical mapping, we obtain 
that /  £  ̂ .  Conversely, le t /£ ^ ? n o t be canoniosl image. From Lemma 3.8 we know 
that there exists a non-hull passive g suoh that <?</, hence (/<X. This contradicts 
that X  is a canonical image, therefore /  is a canonical image.

ii) From (3 .16) and i), it is easy to prove that the canonical mapping is a one to 
one mapping. Denoting the canonical images of f l ,  f t  £  £8% and fl\J f t  by f l ,  fo and f 0 
respectively, we have

/o(v) = lim L n(*, dy)lim [<w*(X, y, dz) • [max(/i, f t ) }  (?), . . . m-*oo J

> lim f jf”(«, ^)1тЛягт (А, у, dz)f{(z)
n-*ooj

= Ит|я:й( ‘, dy)f{(y)  =/&(•), 2,
. 7 n-*oo J

hence
fo > n u fo .  (3.19)

Conversely we have

jwn(K •, dy)m ax{/i, f t }  (2/)<jrcn(*, dy)max{/J, f t }  ( y \

Letting n—»oo we obtain
f l U f K f l U f l

From the fact th a t/0 is the least upper bound of {fl\}fl}v& &, we obtain/0< /oU /o- 
Denoting the canonical image of f l  f)ft  by f 0, from(l .8) we obtain

Л - ( Л + Л ) - ( Л и Л ) = Л П Д
. From Theorem 2.16, (2.25), it is not difficult to prove that is the isomorphic
lattice of

Theorem.3.10. (Basic Lemma). Let f o€&( t£T)be  a family of non-mil sojourn 
solutions. I f  for tj=s f l O f b —Q, then for every fixed i£ T  and ?.>0 there exist xln, n— 
1, 2, ••*, such that
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Ж S , l J n-*oo, (3.20)
10, s¥*t,

where f{  £  ^  is the typical image of f 0.
Proof Prom Theorem 2.12, we know that for every t£ T  there exist n=

1, 2, •*', such that
fn(,«i)>n/(n + 1), n -1 , 2, •••.

From Lemma 3.6, we know that for Л>А/. Hence for every fixed X>0, for
every positive integer n>% we have

1 > Л  (<*4) > Д («£) > » /  (» + 1 ) n->oo.
From Theorem 2.18 iv)and the fact that for /оП /о=0, we obtain that for s^f, 
fo+fo  is a non-null sojourn solution. Therefore for every A>0 we have

0 < Д (а £ )< 1 -/£ 0 4 )-> 0 , Иг-*»
From the fact that P mln(A, a), J.) satisfy the resolvent equation, we have

2 > (-)-■£,.(•)+  d j / ) Z M - 0 ,  (3.21)

where
., F ). (3.22)

Hence for every fixed x ££}, Л Ртп(к, •, F) <A/ P min(A/, •, F) for A>A/>0. By the 
norm condition we have 1 >APmln(A, ж, F) > 0 , therefore the limit function

Z ° ( ‘) = l imhPmla(X, E)  (3.23)A40
exists.

Letting n-»0 in (3.21), from (3.22), (3.23) and the dominated convergence 
theorem, it is easy to prove 

Lemma 3.11.

xjp*“ (x, •, d»)X »(K )-Z »(.)(X >0). (3.24)

Lemma 3.12. Let fo€f%, for each A>0, denote the typical image o f  / 0 in 38 by
/ л. Р/геп

A t /о  (Ц О ). (3.26)
Proof From (3.14) we obtain f x f  (A. j  0). From (3.9) we have

/o=Iim  /л < /о . (3.26)

Obviously 0 < / 0< 1  and for x £ E \ H

| of(®, e^)/0(y )-0 - /o (® ).

From the dominated convergence theorem and the fact that f x £  we have for a; £  i f

f«(®, %)/o(3/)=lb»C^+?(®)]^~1(a;) • «, dy)f>(y) —/о (®).J UO J
Hence /о  $  ̂  is an upper bound o f{ /?,}in FrOm (3.26) and the fact that f 0 is the 
least upper bound of { / A}in 38, we obtain fo—fo.
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Lemma 3.13. I f  /x, [xn£J?+} n = 1, 2, •••, /хп f  /л, /  €  then

lim f*n (dx)f  (») =  (dx)f (ж).

Proof Put Vo=n>0} vn=*/jun— From [6, Appendix, Lemma 9]we have 

lim f/л» (dx)f (x) =  lim 2  fv$ (dx) f  (x) =  f 2  v9 (dccjf (x) = U  (dx)f (®).
tt->oo J n->co P=0 */ , J P=0 J

Put

• ) - J p - O ,  dy) lq(y) ~q(y, m .  

Theorem 3.14. 0< Х д < 1  (A>0)andj the limit function
X^C*) =lim Xj}(»)/UO

(3.27)

(3.28)

(3.29)
(3.30)

exists. Furthermore

X ?.(a>) +XPmln(X, x, X) +  |р т1п(Я, x, dy) lq(y) - q ( y ,  P ) l = l ;

. ; ' . ; (Я>0, x £ E ) ,  . . . ; ;
X + X ° + X J=1.

Proof From(3.11)we have

hPXK x, P)+JP"(A, x, <%) [g(y) -?(</, F )] + ^ +1(Я, a, X )

=гси+1(Я, E),+ 2  (®ЧЯ, */) [A -f- g (2/) ]
p-Oj

Js(2/, Й 2 ) [Л + д (2 ) ] - |2 ^ (^  ®, * /) [Я+д(«/) ] -1g (я/, ■#)
......... n+1 " n+1

= 2  тр(Х, x, E ) — 2 ® 4 ^ , я, E)=:8(x, E) =  1.
p=0 p=l

Letting w—>00, from[3, Theorem 4.1], Lemma 3.13 and (3.17) we obtain (3.29). 
Letting Я j  0, from Lomma 3.12 and(3.23)wo obtain (3.30) and(3.28). From (3.29) 
we know, that 0 <  X |< 1 , • . .

Lemma 3.15.

X * ( 0 - X « 0 - ( / * “ *)J ^ ( V %  dy)Xi{y)  (Я, f*>0), (3.31)

- Х « . ) - Х “( . ) л л| р - “(;а,, dy )X‘ (y). ......................... (8.32)

Proof From the fact that Р тШ(Я, x, A) satisfy the resolvent .equation, we have

: - _j[P«i"(A, •, *;)-> '•-> , •, %) + (».-#) I ( f e ) P “ "(p, г, %)] :

• 1я(у) -*'•?(& x ) ]  “ 0 {x, tx>o)\ :
This proves (3.31). Lettingj№ j  0 on both sides of (3.31), from (3.28) and the 
dominated convergence theorem we obtain (3.32).
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Theorem 3.16. I f f G ^ * . ,  xn(~E, n = l ,  2, such that
f ( X n ) ~ >  1, П~>OO, (3.33)

then
P mln (X, xn, E)->0, n-*oO' (3.34)

Proof From Lemma 2.1 we know that if(8 .38)holds, then Х ?,(жге)-»1 (n->°o) . 
The assertion follows from(3.29).

§ 4  Expression of ^-processes satisfying the 
kolmogorov backward equation when q(x) —

<7 Or, ^4)is finite

Definition 4.1. A q-pdir q(xj — q{x, A) is called finite (да) i f  for some and 
consequently for each X>0, the dimension of $ b is finite (m) .

Lemma 4.2(Substitution Theorem). Let f lt ••*,/«. be a family o f  linearly 
independent real functions and let a±, am be a family of real numbers.

m ' ,
i) I f  g ^ ^ d i f i  and оцф 0, then f  г, g, fie+i,"’, fm are linearly independent.

i-1

ii) For l < i ,  &<m, i ^ b , f i ,  •••, f i~fk,  fu, fm are linearly independent.
Lemma 4.3. I f f i , f 2^.(̂ ,%(fi>0),then

( / 1n / 3) n  ( / i - / i n / 2) =  0 (4= 1 ,2) (4.1)
I f f ,  9, h € ^ x , f < g ,  g j\h = 0 , thenffth^O.

Proof For each 4=1, 2, we can take A{ such that there exists a representative 
set В suoh that BcJLifl As an d /jQ /a—$ b- By Lemmas 2.15 and 2.16, we have 

: ( А Ш п ы - л ш - З в П в л л з - о :
The second assertion is obvious.

Theorem 4.4. I f  the dimension да of £$% is finite, then there exists a family o f  
sojourn solutions X \, •••, X f  such that they are a basis for £8%, X \ft X { = 0  for i¥=j 
and

■ X x ~ ± X l  .......  (4.2)

Proof Let / i ,  •••, / й(п<да) be a basis for From the faot that is a 
bounded closed set in a finitely dimensional subspace of the Banach space b <f, we 
obtain that is compact and convex. By Theorem 2.19 and Krein-Milman theorem, 
we know that 38h is the closure of the convex hull of Therefore each elemant of

can be expressed by a linear combination of / 1, /„. This proves n>m, hence
п=да.

We want to prove that without loss of generality we can assume that /< Л/? = 0 
for iФj.
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Firsts we want to prove that tinder proper adjustment we can assume / 1 П/2 —0. 
If f i  Л/гт^О, then there exist real numbers a1} •••, â , such that at least one of them is

m
non-null and / 1  Л/a —S  «j/j'If ахф 0, then substitute f t d f b  / 2- / 1 Л/2 for f 1} f 2i—1
respectively. By Lemma 4.2, we know that / i f ] / 2, / 2—/ 1 П /2, fs, •••, f m are linearly 
independent. From Lemma 4.3, we have ( / 1 П /2) П ( / 1 —/ 1 П/2) =0. By the same 
reasons, we know that if at = 0 but as Ф 0, then the assertion is proved by substituting 
/ 1 — / 1 Л /2, / 1 Л/2  for f b /2 respectively. If a1= a2==0, then there exists some 
such that ссцФО, The assertion is proved by substituting / 1 —/ 1 Л/2, f idfn,  /2  for/*, 
/ 2, f b respectively.

Secondly we want to prove that if there exist f t ,  •••, f n(n<m)such that /« Л/* =  0 
for i¥=j, i, j^n ,  then under proper adjustment we can assume that /« Л/? =  0 for 
i i=j ,  i, j < n + 1. If f t  Л/n+i Ф 0, then there exist real numbers«1, •••, am such that at

m
least one of them is non-null and / 1  Л/n + i= 2  <hfi If «1, an+1 are not all zero, we«=i
can adjust them referring to the case of / 1  Л /2=0. If ai=a»+i—0, then there exists

some w+2<&<m such that а^Ф0. If it is not, then / 1  Л/»+1 = S  ««/<• Put M =«=2
max { I ctj 1, 1}. Obviously Ж- 1 [/ 1  Л/я+j] < 2 / i .  From (1.16), (1.15) and the fact4=2, n 1=2 .
that f i  Л /3— 0 for i  Фу, i, j<^n, we have

(К М -Ч Л  Л/я+i) < / 1  л ( s  /«) -  2 Л  Л /,=0.\i=2 / 4=2
This contradicts the fact that / 1  Л / я + i =£0. Substitute / 1 - / 1  Л/я+i, Д Л /.+ 1, /я+i for 
fi,fn+i,  /» respectively. Under the above adjustment,/! does not increase an d /2, •••,/» 
remain fixed. Hence, under substituting for 1, the assertion remain true. Thus 
passing through the finite steps of adjustment, we can arrive at our purpose. We 
denote these sojourn solutions by X\ ,  •••, X “.

Particularly there exist real numbers at, •••, am such that
_ m
* * ( • ) - 2  « .* !(• ) . (4.3)£=1

By Basic Lemma, for fixed positive integer we can take xi£E,  n = 1, 2, such 
that

Г1 !_
X{(xi)-+ \ * 3_ *  (n-+ 00) . (4.4)

10, уФг
Substituting a>i for os in(4.3)and letting n->oo, we obtain a{ — l. (4.2)is proved.

For fixed ^>0, we can take X \, «••, X™ satisfying Theorem 4.4. Let X \, •••, 
Xo be their canonical images respectively. We denote the typical images of X \, •••, 
Xo in by X \, •••, X™ respectively. From Theorem 3.9 they are sojourn solutions 
satisfying Theorem 4.4.



Theorem 4.0. Suppose that q (x)—q(x, A) is finite (m). P(k, x, A) (k>0, xQ 
E, A G S )  is a В q-proem\ll.%  1 2 i f  and only i f

m
P(k, x, A )= P ™ \k, x} А ) + ^ Х { ( х ) £ { { А )  (k>0, x£ E ,  AGS3),  (4.5)

«=i
where £XG^+(i—1, ••*, m)satisfy resolvent condition

а  ( A ) - a ( A )  =  (p -k) f e ( . dx)P(p ,x ,A)  ( k , v > 0  ,AG & )  (4.6)

and norm condition

* & № < ! .  (4-7)
A В q-process is honest i f  and only i f  q(x) — q{x, A) is conservative and the equality 

m  (4.7) holds for some A,>0 and each i —1, •••, m.
Proof i) If P(k, x, .4.) is a В g-process, then P(k, x, A) — Pmin (k, • , A) G&% for 

Л>0, AGS.  From Theorem 4.4, we know that there exist real numbers £\ (-4), i = l ,
• ••, m such that(4.5)holds. By Basic Lemma we can take yi satisfying(4.4). For fixed 
i, substituting yi for go in (4.5) and letting n->oo, by Vitali-Hahn-Saks theorem we 
know £i€<£P+.

ii) Substituting P(k, cc, A) in (4.6) for P(k, x, 4 L )  in the resolvent equation,, 
from the fact that Pmia (k, x, A) satisfies the resolvent equation, Xj„ • ••, X™ are 
linearly independent and for each i, X {  is coordinated, we obtain that P(k, x, A) in 
(4 .5)satisfies the resolvent equation if and only if £{, • ••, satisfy (4.6).

iii) By Basic Lemma and Theorem 3.16, we know that P(k, x, A) in (4.5) 
satisfies the norm condition if and only if(4.7)holds.

Combining i) —iii), we know that P(k, x, A) is а В -̂process if and only if (4.5) 
- ( 4 .7 )  hold.

iv) Suppose that q(x) —q(x, A)is conservative and k£{(E) =1  for some k > 0, each 
i —1, ••*, m. By Lemma 4.4 and (3.29), we have

m _
kP(k, X, E) =APmia(A, x, E ) + ' 2 X { ( x ) ‘=kPmia(k, x, Е ) + Х ь ( х ) =  1 (<c£E),i=i

Conversely, suppose that the В ^-process is honest. From [11, Theorem 1.6] we 
know that q(x) —q(x, A) is conservative. Obviously for each b>0 we have

m
KPmi*(k, X, E) + k  S  Xi(x)£l(E)  = 1.i=X

Taking xi, n = 1, 2, •••, i = 1, •••, m satisfying (4.4), substituting x*„ for x in the 
above equality, letting n->oo, from Basic Lemma and Theorem 3.16 we obtain 
k£{(E) = 1  for each i —1, •••, m.

Definition 4.6. We call that Marhov process P(i ,  x, A)is honest for x0QE i f
P ( t , x 0, E ) =  1 ( y t>  0). (4.9)

From the properties of Laplace transform, we know that this is equivalent to that for 
some and consequently for each k > 0  the Laplace transform P(k, x, A) of P(t,  x, A)
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satisfies
XP(X,x0, E )  =  1 (4.10)

Put
D(I)  =  {x£E:  X 40(® )>0,V *€I, - 2 В Д -0 ,  V j£7}, I c { l ,  - ,  m},  (4.11)

D(K I ) ^ { x £ E : X{ (x )>0 ,  \ / i e I ,  X { (x )=0 ,  V j$ I } ,  X>0,  (4.12)
Lemma 4.7. For m y fixed Icz {1, •••, m}, in order that x£ D(I )  it is necessary 

and sufficient that there exists X>0(X dependent of x) such that
x£D(fi ,  T),\/fb<X. (4.13)

Proof By Corollary to Lemma 3.6 and Lemma 3.12, we know that for fixed i  — 
1, •••, m, x £ E  X{(x)(fi>0)  is continuons on [0, qo), and X{(x)  f  (X |) .  Suppose 
x £ D ( I ) ,  then there exists X > 0  such that

O-^X^Qv)^.5Го(а;), fx<Z.X, i £ I ,
Х*Хх)=0, /х>0, i $  1.

This proves that there exists A,>0 such that (4.13)holds. From the fact that X{(x)  f  
X\,(x), we know that the suffioienoy holds.

Lemma 4.8. Suppose the conservative q-pair q(x) — q(x, A) is finite (m) . For 
any fixed Icz {1, •••, m}, дь>0 and x£D(/j,,  I ) , we have that aq-process P(X, x, A)is 
honest for x i f  and only i f

, fjb£(E) =1, \ / i e i .  (4.14)
Proof Let (4.14) holds, From Theorem 4.5 and (3.29), we have that for each 

x£D(}jb, I )
m __ .

/иРО*, ®, J0 ) - /* P mtoO*, х , Е ) + ^ Х 1 ( х Ш Е ) ~ р Р т)л((*, ®, Щ + 2 * i ( ® )
i=1 «6Л

= /хРтЫ(/A, X, E ) + X li(x )= l .

Conversely, let P(X, x, 4)he honest for Some x£J)(ji,  I). By(4.12), (3.29) and 
(4 .6 )we know that

> P min0*, x, E ) + ' 2 X ifl( x ) = l  =  fiP(pt,, x, ВО-рР^Ол ,  ®, Е) + ^ Х ; Х х ) ^ а ( Р ) .
i e i  t e i .

Hence

«61 «6/
From (4.7) and the fact that Х^(х) > 0  (Vi £ I ) , we obtain (4.14).

Theorem 4.9. Suppose q {x) —q(x, A) is finite (m) and conservative, P(X, x, A) 
is a q-process, I  cz {1, m}, then

i) either P(X, ®, 4 )  is honest for each x£D(I )o r  P(X, x, A)is dishonest for each 
<c£D(I).

A) put
0 ( I ) = U W ) ,  ■ (4.16)

j <=i  -

P(X, x, A) is honest for each x£0(F)  i f  and only-if P  (X, x, A) is honest for each
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ж £В (1).
Proof i)Taking fixed «/£D (2), from Lemma 4.7 we know that for any fixed 

z£ D(I) ,  there exists some X>0 such that
«/, z£2>0n, I ) , Vfi<X. (4.16)

Suppose P(fi, да, A) is honest for y. From Lemma 4.8, we have

Р < К
By Lemma 4.8, we know that P(fi, ж, Л) is honest for z. Similarly, if P(X, со, A) is 
dishonest for y, then for each f i<h  there exist i £ J  such that /пЦ(Е) < 1 . From 
Lemma 4.8 and(4.16), we know that P (А, да, Л)is dishonest in z.

ii) Necessity is obvious, we want to prove the sufficiency part. Let P(A, со, A) be 
honest for eaoh ж £ В (2 ). From Lemma 4.7 and Lemma 4.8, we know that for any 
fixed ж6 В (L), CL there exists some A,> 0  such that

^ % E ) ^ l , i £ J ,  y><K  (4.17)
For any fixed « /£0(1), there exists uniquely J  c l  such that y£D (J). By Lemma 
4.7, we know that there exists some p>0 such that

« /£ lh > , J), VO</^min{A,, v},

From (4.17)and Lemma 4.8, we know that P (А, ж, J.)is honest for y.
Corollary. (Criterion on honesty) Suppose q(co) ~q(ca, Л) is finite (m). For m y  

fixed non-empty В (I) defined by (4.1) we take ж£2)(2), then a В q-process P(K, ж, A) 
is honest i f  and only i f  q(co) —q(oo, A) is conservative and P(h, со, A) is honest for every 
да chosen above.
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