FELLER'S BOUNDARY IN ABSTRACT SPACES

ZHENG XIAOGU (郑小谷)

(Beijing Normal University)

Abstract

In this paper, most of the Feller's boundaries are extended to abstract spaces, and a general expression of q-processes satisfing the Kolmogorov backward equation is obtained when q(x) - q(x, A) is finite.

Introduction

The Feller's boundary theory on countable state spaces was established by W. Feller in 1956. It has played an important role in the constructions of Q-processes. In this paper, most of Feller's results are extended to abstract spaces. Firstly, the basic Lemma in [2, § 6] is extended to abstract spaces, but the proof is simpler than Feller's. Secondly, a general expression of q-processes satisfying the Kolmogorov backward equation is obtained and it is a preparation for constructing potential q-processes which satisfy the Kolmogorov backward equation when q(x) - q(x, A) is finite. Finally, the criterion for honest q-processes mentioned above is established.

I would like to thank Prof. Yan Shijian for his guid ance and Chen Mufa for his great help.

§ 1. Operation on Lattices

Let (E, \mathscr{E}) be an abstract measurable space, and assume that all the singletons $\{x\}$ $(x \in E)$ belong to \mathscr{E} . We use the same notations as in [10, § 1], such as $b\mathscr{E}$, $b\mathscr{E}_+$, $r\mathscr{E}_+$, \mathscr{L}_+ .

Let function $\pi(x, A)$ satisfy that

i) $\pi(\cdot, A) \in b\mathscr{E}_+$ for $A, \pi(x, \cdot) \in \mathscr{L}_+$ for x,

ii) $0 \leq \pi(x, A) \leq 1, \forall x \in E, A \in \mathscr{E}$.

The operator π is defined by

$$\pi f(\cdot) = \int_{\mathcal{B}} \pi(\cdot, dx) f(x) \quad (f \in b\mathscr{C}). \tag{1.1}$$

Olearly, for each fixed n, π^n is a bounded linear operator with norm less than or equal to 1.

Manuscript received March 6, 1981.

 \mathbf{Put}

$$\mathscr{B} = \{ f \in b\mathscr{E}_+; \pi f = f, \ 0 \leqslant f \leqslant 1 \},$$

$$\mathscr{B}^* = \{ f \in b\mathscr{E}_+; \pi f \geqslant f, \ 0 \leqslant f \leqslant 1 \},$$

$$(1.2)$$

$$\mathscr{B}_{*} = \{ f \in b\mathscr{E}_{+}, \pi f \leqslant f, \ 0 \leqslant f \leqslant 1 \}.$$

$$(1.4)$$

Obviously, \mathscr{B} is convex and closed.

Definition 1.1. We call g the least upper bound of $\{f_a \in b\mathscr{E}, \alpha \in I\}$ in \mathscr{B} if $\sup_{\alpha \in I} f_\alpha \leq g \in \mathscr{B}$, and if $\sup_{\alpha \in I} f_\alpha \leq \overline{g} \in \mathscr{B}$, then $g \leq \overline{g}$. We call h the greatest lower bound of $\{f_a \in b\mathscr{E}, \alpha \in I\}$ in \mathscr{B} if $\inf_{\alpha \in I} f_a \gg h \in \mathscr{B}$, and if $\inf_{\alpha \in I} f_\alpha \gg \overline{h} \in \mathscr{B}$, then $h \gg \overline{h}$. Here I is an arbitrary index set.

Lemma 1.2. For any fixed $f \in \mathscr{B}^*$ and $x \in E$, the limit

$$g(x) = \lim_{n \to \infty} (\pi^n f)(x) \tag{1.5}$$

exists and g is the least upper bound of $\{f\}$ in \mathscr{B} .

Proof From (1.3) it is easy to prove that $\pi^n f \leq \pi^{n+1} f \leq 1$, $n=1, 2, \cdots$. Then $\lim_{n \to \infty} (\pi^n f)(x)$ exists and we denote it by g(x). By the dominated convergence theorem, $g \in \mathscr{B}$. If $g_1 \in \mathscr{B}$, $g_1 \geq f$, then by induction we have $g_1 \geq \pi^n f$, $n=1, 2, \cdots$. Letting $n \to \infty$, from (1.5), we obtain $g_1 \geq g$.

Similarly, we can prove

Lemma 1.3. For any fixed $f \in \mathscr{B}_*$ and $x \in E$, the limit $h(x) = \lim (\pi^n f)(x)$

exists and h is the greatest lower bound of $\{f\}$ in \mathcal{B} .

Theorem 1.4. Let $f_1, f_2 \in \mathcal{B}$. \mathcal{B} contains a unique least upper bound $f_1 \cup f_2$ of $\{f_1, f_2\}$ and a unique greatest lower bound $f_1 \cap f_2$ of $\{f_1, f_2\}$.

Proof For each x, put $f(x) = \max\{f_1(x), f_2(x)\}$. Clearly $f \in \mathscr{B}^*$ and the function g defined by (1.5) has the properties required by $f_1 \cup f_2$. Put

 $h(x) = \min\{f_1(x), f_2(x)\},\$

then from Lemma 1.3 the assertion follows.

In the rest of the section, we assume that all the functions f, g, f+g, $f \cup g$ and so on, whenever they appear, belong to \mathscr{B} .

Using the method in [1, Lemma 4.1], it is not difficult to prove **Proposition 1.5.** If

$$f_1 + g_1 = f_2 + g_2 = h, \tag{1.6}$$

then

$$f_1 \cup f_2 + g_1 \cap g_2 = h. \tag{1.7}$$

Particularly, we have

$$f_1 + f_2 = f_1 \cup f_2 + f_1 \cap f_2. \tag{1.8}$$

Using the method in [1, Lemma 4.2], it is not difficult to prove

Proposition 1.6.

· .	$(f \cap g) \cup h \leqslant (f \cup h) \cap (g \cup h),$	(1.9)
	$(f \cup g) \cap h \ge (f \cap h) \cup (g \cap h),$	(1.10)
	$(f \cap g) + h \leq (f+h) \cap (g+h),$	(1.11)
	$(f \cup g) + h \ge (f+h) \cup (g+h)$	(1.12)
•	$(f+g) \cap h \leq (f \cap h) + (g \cap h),$	(1.13)
	$(f+g) \cup h \leqslant (f \cup h) + (g \cup h).$	(1.14)
If $f \cap g = 0$, then		· · · · ·
· · ·	$(f+g) \cap h = (f \cap h) + (g \cap h).$	(1.15)
If $0 \leq \lambda \leq 1$, then		• •
	$\lambda(f\cap g) = (\lambda f) \cap (\lambda g),$	(1.16)

§ 2. Sojourn sets and sojourn solutions

 $\lambda(f \cup g) = (\lambda f) \cup (\lambda g).$

Obviously $1 \in \mathscr{B}_*$. From Lemma 1.3 we know that for each $x \in E$ the limit $S_{E}(x) = \lim_{n \to \infty} (\pi^{n} 1) (x)$ (2.1)

exists and S_E belongs to \mathscr{B} . From the fact that $0 \leq f \leq 1$ for every $f \in \mathscr{B}$, by induction we have $f \leq \pi^n 1$, $n=1, 2, \dots$. This proves

Lemma 2.1. The function S_E defined by (2.1) is the maximal element of \mathcal{B} , that is, $S_E \in \mathscr{B}$ and $f \leq S_E$ for each $f \in \mathscr{B}$.

If $\pi(\cdot, E) = 1$, then $S_B \equiv 1$. Conversely if $S_B \equiv 1$, then $1 \ge \pi^n \quad 1 \downarrow 1 \quad (n \rightarrow \infty)$, therefore $\pi(\cdot, E) \equiv 1$. This proves

Lemma 2.2. $S_E \equiv 1$ if and only if $\pi(\cdot, E) = 1$.

Now let A be an arbitrary set in \mathscr{E} and let $\mathscr{E} \cap A = \{B \subset A : B \in \mathscr{E}\}$. Applying the above argument to the restriction π_A of π to $(A, \mathcal{E} \cap A)$ and letting $\pi_A^n(x, A) = \pi_A^n 1$ we know that the limit function

$$\rho_A(x) = \lim_{n \to \infty} \pi^n_A(x, A), (x \in A)$$

exists and satisfies

$$\rho_A = \pi_A \rho_A, \qquad (2.2)$$

$$0 \leqslant \rho_A \leqslant 1. \tag{2.3}$$

Obviously ρ_A is the maximal element of \mathscr{B}_A , where

$$\mathscr{B}_{A} \triangleq \{ f \in b(\mathscr{E} \cap A) \colon \pi_{A} f = f, 0 \leq f \leq 1 \}.$$

Put

$$\sigma_A(x) = \begin{cases} \rho_A(x), & x \in A, \\ 0, & x \in E \setminus A, \end{cases}$$
(2.4)

For $x \in A$

269

(1.17)

$$\begin{aligned} \int \pi(x, dy)\sigma_A(y) &= \int_A \pi(x, dy)\sigma_A(y) + \int_{E \setminus A} \pi(x, dy)\sigma_A(y) = \int_A \pi_A(x, dy)\sigma_A(y) \\ &= \rho_A(x) = \sigma_A(x), \end{aligned}$$

and for $x \in E \setminus A$

 $\int \pi(x, dy) \sigma_A(y) \ge 0 = \sigma_A(x),$

therefore
$$\sigma_A \in \mathscr{B}^*$$
. Applying Lemma 1.2 to $f = \sigma_A$, we see that the limit function

$$S_A(x) = \lim_{n \to \infty} (\pi^n \sigma_A)(x) \quad (x \in E)$$
(2.5)

exists and is the least upper bound of $\{\sigma_A\}$ in \mathscr{B} . Particulary $\sigma_B = S_B$.

Definition 2.3. A set $A \in \mathscr{E}$ is called sojourn set if $S_A \neq 0$ (or what amounts to the same, if $\rho_A \neq 0$).

Obviously, for A to be a sojourn set it is necessary and sufficient that there exists an $x \in A$ and an $\eta > 0$ such that

$$\pi_A^n(x, A) > \eta \tag{2.6}$$

for all n.

Definition 2.4. Two sets A and B are equivalent if $S_A = S_B$.

Definition 2.5. The set of all functions S_A and 0 is be denoted by C. The elements of C are referred to sojourn solutions.

Using the method in [1, Lemma 5.1] it is not difficult to prove

Lemma 2.6. If A and B are non-overlapping, then

$$S_A \cap S_B = 0, \qquad (2.7)$$

$$S_A \cup S_B = S_A + S_B = S_{A \cup B}. \tag{2.8}$$

Let A be a sojourn set and $B \supset A$, A, $B \in \mathscr{E}$. It is easy to prove that the limit function $\lim \pi_B^n \bar{\rho}_A(x)$ $(x \in B)$ exists, where

$$\bar{\rho}_{A}(x) = \begin{cases} \rho_{A}(x), \text{ for } x \in A, \\ 0, \text{ for } x \in B \setminus A. \end{cases}$$

$$S_{A}^{B}(x) \triangleq \begin{cases} \lim_{n \to \infty} \pi_{B}^{n} \bar{\rho}_{A}(x), x \in B, \\ 0, x \in E \setminus B. \end{cases}$$
(2.9)

Obviously $S_A = S_A^E$, $\sigma_A = S_A^A$ and

$$\sigma_A \leqslant S^B_A \leqslant S_A. \tag{2.10}$$

Lemma 2.7. We have

$$S_{A}(x) = \lim_{n \to \infty} (\pi^{n} S_{A}^{B})(x), (A \subset B, x \in E).$$
(2.11)

If $A \subset B$, $C \subset B$ and $S_A^B = S_C^B$, then $S_A = S_C$.

Proof Premultiply (2.10) by π^n . The right side remains unchanged, and (2.5) leads to this lemma.

Lemma 2.8. Let $A \in \mathscr{E}$ and $f \in \mathscr{B}_*$. For each n and each $x \in A$ we have

$$f(x) \ge \pi_A^n f(x) + \left[\sum_{\nu=0}^{n-1} \pi_A^{\nu} \int_{E \setminus A} \pi(\cdot, dy) f(y)\right](x).$$
(2.12)

If $f \in \mathcal{B}$, then the equality sign holds in (2.12).

Proof For n=1 the relation (2.12) reduces to $f \ge \pi f$. Assume that (2.12) holds for some *n*. Using the fact that $f \ge \pi f$, we have

$$\pi_{A}^{n}f(x) \ge \left[\pi_{A}^{n}\int_{E}\pi(\cdot, dy)f(y)\right](x)$$

$$= \pi_{A}^{n}\left[\int_{A}\pi(\cdot, dy)f(y) + \int_{E\setminus A}\pi(\cdot, dy)f(y)\right](x)$$

$$= \pi_{A}^{n+1}f(x) + \left[\pi_{A}^{n}\int_{E\setminus A}\pi(\cdot, dy)f(y)\right](x). \qquad (2.13)$$

Substituting this into the first term of the right in (2.12), we get the assertion (2.12) with n replaced by n+1. When $f=\pi f$, each of the above inequalities is replaced by an equality, and the lemma is proved.

Choosing in particular $f \equiv 1$ we get

Corollary 1. For $x \in A$

$$\pi_A^n(x, A) + \left[\sum_{\nu=0}^{n-1} \pi_A^{\nu} \cdot \pi(\cdot, E \setminus A)\right](x) \leq 1.$$
(2)

If π is strictly stochastic, then the equality sign holds.

Letting $n \rightarrow \infty$ we get

Corollary 2. For $x \in A$

$$\sigma_A(x) + \left[\sum_{\nu=0}^{\infty} \pi_A^{\nu} \cdot \pi(\cdot, E \setminus A)\right](x) \leq 1.$$
(2.15)

Using the method in [1, Lemma 7.2], it is not difficult to prove

Lemma 2.9. Let f be a bounded solution of the equation

$$\tau g = g, \ g \in b\mathscr{E}_+ \tag{2.16}$$

and let ||f|| > 0. For fixed $0 < \eta \leq ||f||$ put

$$F_{\eta} = \{ x \in E : f(x) \ge \|f\| - \eta \}_{\bullet}$$
(2.17)

Then F_r is a sojourn set. If

$$\delta/\eta < s, \delta > 0,$$
 (2.18)

then

$$\sigma_{F_n}(x) > 1 - s, \text{ for } x \in F_{\delta_*}$$
(2.19)

Using the method in [1, Lemma 7.3] it is easy to prove Lemma 2.10. If A is a sojourn set, then $\|\sigma_A\| = 1$ and $\|S_A\| = 1$. Using the method in [1, Lemma 7.4], it is easy to prove Lemma 2.11. With the notations of Lemma 2.9 one has

$$f \ge (\|f\| - \eta) S_{F_{\eta}}.$$
 (2.20)

Using the method in [1, Theorem 1.8] it is easy to prove **Theorem 2.12.** For any sojourn set A and $0 < \eta < 1$ put $A_{\eta} = \{x \in A: S_{A}(x) > 1-\eta\}$

and

.14)

(2.21)

$$\overline{A}_{\eta} = \{x \in A: \sigma_A(x) > 1 - \eta\}, \qquad (2.22)$$

Then

$$S_A = S_{A_n} = S_{\overline{A}_n}.$$

Definition 2.13. A sojourn set is called representative set if there exists some $\eta > 0$ such that $S_A(x) > 1 - \eta$ for each $x \in A$.

From Theorem 2.12 we have

Lemma 2.14. Each sojourn set A contains an equivalent subset \overline{A} which is representative.

Using the methods in [1, Lemma 8.2] it is easy to prove

Lemma 2.15. Let A be representative, and $A \subset B$. Then

$$S_B = S_A + S_{B \setminus A}, \tag{2.23}$$

Using the methods in [1, Theorem 9.1] it is easy to prove

Theorem 2.16. For an element $f \in \mathscr{B}$ to be a sojourn solution it is necessary and sufficient that

$$f \cap (S_E - f) = 0. \tag{2.24}$$

Equivalently it is necessary and sufficient that for any sojourn set C

$$f \ge t S_c, \ t > 0 \ implies \ f \ge S_c. \tag{2.25}$$

Using the methods in [1, Theorem 9.2] it is easy to prove

Theorem 2.17. If A and B are sojourn sets, then

$$S_{A\cap B} = S_A \cap S_B. \tag{2.26}$$

Using the methods in [1, Theorem 9.3], it is easy to prove

Theorem 2.18. Let X, Y and X_n be sojourn solutions (elements of \mathscr{C}), then

- i) $X \cap Y \in \mathscr{C}$,
- ii) $Y X \in \mathscr{C}$ provided $X \leq Y$,
- iii) $X \cup Y \in \mathscr{C}$,
- iv) $X+Y \in \mathscr{C}$ provided $X \cap Y=0$,
- v) if either $X_n \downarrow u$ or $X_n \uparrow u$, then $u \in \mathscr{C}$.

Using the methods in [1, Theorem 10], it is easy to prove

Theorem 2.19. In order that an element $X \in \mathscr{B}$ may be a sojourn solution, it is necessary and sufficient that the relations

$$X = tU + (1-t)V, \ 0 < t < 1, \ U, \ V \in \mathscr{B},$$
(2.27)

imply U = V = X.

§ 3. The exit boundaries

Let q(x) - q(x, A) ($x \in E$, $A \in \mathscr{E}$) be a totally stable q-pair [10, Definition 1.1]. For each $\lambda > 0$ put

$$\pi(\lambda, x, A) = q(x, A) [\lambda + q(x)]^{-1} (x \in E, A \in \mathscr{E})$$
(3.1)

and

$$\mathscr{B}_{\lambda} = \Big\{ f \in b\mathscr{E}_{+}; \int \pi(\lambda, \cdot, dy) f(y) = f(\cdot) 0 \leqslant f \leqslant 1 \Big\}.$$
(3.2)

Put

$$H = \{x \in E: q(x) > 0\},\$$

$$\pi(x, A) = \begin{cases} q(x, A) \setminus q(x), x \in H,\\ 0, x \in E \setminus H, \end{cases}$$
(3.3)

and

$$\mathscr{B} = \left\{ f \in b\mathscr{E}_{+}; \ \int \pi(\cdot, \ dx) f(x) = f(\cdot), \ 0 \leq f \leq 1 \right\}.$$
(3.4)

Obviously, for each $\lambda > 0$, $f \in \mathscr{B}_{\lambda}$

$$\begin{split} f(x) = & \int q(x, dy) \left[\lambda + q(x)\right]^{-1} f(y) \leq \int q^{-1}(x) q(x, dy) f(y) \leq 1 \quad (x \in H) \\ f(x) = & 0 = \int \pi(x, dy) f(y) \quad (x \in E \setminus H). \end{split}$$

Therefore $\mathscr{B}_{\lambda} \subset \mathscr{B}^*$. From Lemma 1.2 we know that there exists a function g such that

$$g(x) = \lim_{n \to \infty} \pi^n f(x), \ \forall x \in E$$
(3.5)

and g is the least upper bound of $\{f\}$ in \mathscr{B} . Clearly $\pi^{n+1}f \ge \pi^n f$, $n=1, 2, \cdots$.

Definition 3.1. The canonical map of \mathscr{B}_{λ} into \mathscr{B} is the map which sends the element $f \in \mathscr{B}_{\lambda}$ into the element $g \in \mathscr{B}$ defined by (3.5).

Lemma 3.2. The canonical image f_0 of the element $f_{\lambda} \in \mathscr{B}_{\lambda}$ is given by

$$f_{\mathbf{0}}(\cdot) = f_{\lambda}(\cdot) + \lambda \sum_{a=0}^{\infty} \int_{H} \pi^{a}(\cdot, dy) [f_{\lambda}(y)/g(y)].$$
(3.6)

Proof If $x \in E \setminus H$, then both sides of (3.6) vanish. We want to prove that for $x \in H$

$$f_{\lambda}(x) + \lambda \sum_{a=0}^{n-1} \int_{H} \pi^{a}(x, dy) f_{\lambda}(y) q^{-1}(y) = \int \pi^{n}(x, dy) f_{\lambda}(y).$$
(3.7)

From the fact that $f_{\lambda} \in \mathscr{B}_{\lambda}$, we get

$$f_{\lambda}(y) + [\lambda q^{-1}(y)] f_{\lambda}(y) = \int \pi(y, \, dz) f_{\lambda}(z).$$
 (3.8)

Regarding $\pi^{a}(x, \cdot)$ as a measure in A and taking integrals for both sides of (3.8), we obtain

$$\int_{H} \pi^{a}(x, dy) f_{\lambda}(y) + \lambda \int_{H} \pi^{a}(x, dy) [f_{\lambda}(y)q^{-1}(y)] = \int_{H} \pi^{a+1}(x, dy) f_{\lambda}(y).$$

Summing for a from 0 to n-1, we obtain (3.7). Letting $n \to \infty$ in both sides of (3.7), we know that (3.6) holds for $x \in H$.

Lemma 3.3. Let $f_0 \in \mathscr{B}$. For each $\lambda > 0$, put

$$f_{\lambda}(\cdot) = f_{0}(\cdot) - \lambda \int p^{\min}(\lambda, \cdot, dy) f_{0}(y), \qquad (3.9)$$

where $p^{\min}(\lambda, x, A)(\lambda > 0, x \in E, A \in \mathcal{E})$ is defined by [10, Lemma 1.4]. Then f_{λ} is the greatest lower bound of $\{f_0\}$ in \mathcal{B}_{λ} .

Proof From the fact that $f_0 \in \mathscr{B}$, for each $x \in H$, we have

$$0 \leqslant \int \pi(\lambda, x, dy) f_0(y) \leqslant \int \pi(x, dy) f_0(y) = f_0(x),$$

and for each $x \in E \setminus H$, we have

$$\int \pi(\lambda, x, dy) f_0(y) = 0 = f_0(x),$$

hence $\mathscr{B} \subset \mathscr{B}_{\lambda_*}$. From Lemma 1.3 we know that the limit

$$\lim_{n\to\infty}\int \pi^n(\lambda, \cdot, dy)f_0(y)$$
(3.10)

exists and it is the greatest lower bound of $\{f_0\}$ in \mathscr{B}_{λ} . Put

$$P^{0}(\lambda, x, A) = \delta(x, A) [\lambda + q(x)]^{-1},$$

$$P^{n}(\lambda, x, A) = \sum_{a=0}^{n} \int \pi^{a}(\lambda, x, dy) P^{0}(\lambda, y, A).$$

$$n = 1, 2, \cdots.$$
(3.11)

It follows that

$$\begin{split} \delta(x, A) &= \int P^{n}(\lambda, x, dy) \left[\lambda + q(y)\right] \delta(y, A) - \int P^{n-1}(\lambda, x, dy) q(y, A) \\ &= \int P^{n-1}(\lambda, x, dy) \left[\lambda + q(y)\right] \delta(y, A) \\ &+ \int \pi^{n}(\lambda, x, dy) \left[\lambda + q(y)\right]^{-1} \int \delta(y, dz) \left[\lambda + q(z)\right]^{1} \delta(z, A) \\ &- \int P^{n-1}(\lambda, x, dy) q(y, A) \\ &= \lambda P^{n-1}(\lambda, x, A) + \int_{A} P^{n-1}(\lambda, x, dy) q(y) + \pi^{n}(\lambda, x, A) \\ &- \int_{\pi} P^{n-1}(\lambda, x, dy) q(y, A). \end{split}$$
(3.12)

Regarding both sides as measures in \mathcal{A} and taking integrals for f_0 , from the fact that $f_0 \in \mathscr{B}$ we have

$$f_{0}(x) = \lambda \int P^{n-1}(\lambda, x, dy) f_{0}(y) + \int_{H} P^{n-1}(\lambda, x, dy) q(y) f_{0}(y) + \int \pi^{n}(\lambda, x, dy) f_{0}(y) - \int_{H} P^{n-1}(\lambda, x, dy) q(y) q^{-1}(y) q(y, dz) f_{0}(z) = \lambda \int P^{n-1}(\lambda, x, dy) f_{0}(y) + \int \pi^{n}(\lambda, x, dy) f_{0}(y).$$
(3.13)

Letting $n \rightarrow \infty$, from [4, Theorem 4.1] and [6, Appendix, Lemma 11] we obtain (3.9).

Definition 3.4. The typical map of \mathscr{B} into \mathscr{B}_{λ} is the map which sends the element $f_0 \in \mathscr{B}$ into the element $f_{\lambda} \in \mathscr{B}_{\lambda}$ defined by (3.9).

Lemma 3.5. Let $f_0 \in \mathscr{B}$. Then the typical images $f_{\lambda}(\lambda > 0)$ satisfy

$$f_{\lambda}(\cdot) - f_{\nu}(\cdot) = (\nu - \lambda) \int P^{\min}(\lambda, \cdot, dy) f_{\nu}(y) = (\nu - \lambda) \int P^{\min}(\nu, \cdot, dy) f_{\lambda}(y) (\lambda, \nu > 0).$$
(3.14)

Proof From (3.9) and the fact that $P^{\min}(\lambda, x, A)$ satisfy the resolvent equation, we get the first equality in (3.14). Exchanging λ and ν , we obtain the second equality in (3.14).

Corollary. $f_{\lambda} \equiv 0$ for some $\lambda > 0$ is equivalent to $f_{\lambda} \equiv 0$ for each $\lambda > 0$. For each fixed $x \in E$, $f_{\lambda}(x) (\lambda > 0)$ is a continuous function on $(0, \infty)$.

Definition 3.6. A function $f \in \mathscr{B}$ is called passive if for some, and consequently for each $\lambda > 0$

$$f(x) = \lambda \int P^{\min}(\lambda, x, dy) f(y) \quad (x \in E).$$
(3.15)

Lemma 3.7. Let $f_{\lambda} \in \mathscr{B}_{\lambda}$ and let $f_{0} \in \mathscr{B}$ be the canonical image of f_{λ} . Then

$$f_{\lambda}(\cdot) = f_{0}(\cdot) - \lambda \int P^{\min}(\lambda, \cdot, dy) f_{0}(y). \qquad (3.16)$$

Proof Put

$$f_{\lambda}'(\cdot) = f_0(\cdot) - \lambda \int P^{\min}(\lambda, \cdot, dy) f_0(y)$$

From Lemma 3.3 we know that f'_{λ} is the greatest upper bound of $\{f_0\}$ in \mathscr{B}_{λ} . From (3.6) we get $f_{\lambda} \leq f_0$, hence $f_{\lambda} \leq f'_{\lambda}$. By induction

$$\int \pi^n(\cdot, dy) f_\lambda(y) \ll \int \pi^n(\cdot, dy) f_\lambda^i(y) \ll f_0$$

Letting $n \to \infty$ we obtain that f_0 is the common canonical image of f_{λ} and f'_{λ} . Thus $f'_{\lambda} - f_{\lambda} \in \mathscr{B}_{\lambda}$ and his canonical image is zero. From (3.6) we have $f_{\lambda} = f'_{\lambda}$.

Lemma 3.8. For an $f_0 \in \mathscr{B}$ to be the canonical image of

 $f_{\lambda}(\cdot) \triangleq f_0(\cdot) - \lambda \int P^{\min}(\lambda, \cdot, dy) f_0(y),$

it is necessary and sufficient that there exists no passive non-null $g \in \mathscr{B}$ such that $g \leq f_0$.

Proof From Lemma 3.3 we know that f_{λ} is the greatest lower bound of $\{f_0\}$ in \mathscr{B}_{λ} . Let f'_0 be the canonical image of f_{λ} . From Lemma. 3.7 we have

$$(f_0-f'_0)(\cdot) = \lambda \int P^{\min}(\lambda, \cdot, dy) (f_0-f'_0)(y).$$

Clearly f'_0 is the least upper bound f_{λ} in \mathscr{B} , and $f_0 \ge f_{\lambda}$. Hence $0 \le f_0 - f'_0 \le f_0$. This proves that $f_0 - f'_0$ is passive. If there isn't any non-null passive g such that $g \le f_0$, then $f_0 - f'_0 = 0$, thus $f_0 = f'_0$. Conversely, if there exists a passive non-null $g \in \mathscr{B}$ such that $g \le f_0$, then we have

$$f_{\lambda}(\cdot) = (f_0 - g)(\cdot) - \lambda \int P^{\min}(\lambda, \cdot, dy)(f_0 - g)(y),$$

hence $f_0 - g \ge f_{\lambda}$. We will denote the canonical image of f_{λ} by f'_0 . From the fact that f'_0 is the least upper bound of $\{f_{\lambda}\}$ in \mathscr{B} , we obtain that $f_0 - g \ge f'_0$. From the fact that $g \not\equiv 0$, we know that $f_0 \neq f'_0$, that is, f_0 is not the canonical image of f_{λ} .

Corollary. The range of the canonical mapping from \mathscr{B}_{λ} to \mathscr{B} is independent of λ .

- Aller

Put

$$\overline{X}_{\lambda}(\cdot) = \lim_{n \to \infty} \pi^n (\lambda, \cdot, E).$$
(3.17)

We will denote the canonical image of \overline{X}_{λ} by \overline{X} . From Corollary to Lemma 3.8, it is not difficult to prove that \overline{X} is the maximal element in the range of cononical mapping, therefore it is independent of λ . We will denote the set of sojourn solution in $\mathscr{B}_{\lambda}(\mathscr{B})$ by $\mathscr{C}_{\lambda}(\mathscr{C})$.

Theorem 3.9.

i) For each $\lambda > 0$, the range of the canonical mapping of \mathscr{B}_{λ} coinsides with $\overline{\mathscr{B}} = \{ f \in \mathscr{B} : f \leq \overline{X} \}.$ (3.18)

ii) $\overline{\mathscr{B}}(\overline{\mathscr{B}}\cap\mathscr{C})$ is the isomorphic lattice of $\mathscr{B}_{\lambda}(\mathscr{C}_{\lambda})$.

Proof i) Let f be an element in the range of the canonical mapping. From the fact that \overline{X} is the maximal element of the range of the canonical mapping, we obtain that $f \in \overline{\mathscr{B}}$. Conversely, let $f \in \overline{\mathscr{B}}$ not be canonical image. From Lemma 3.8 we know that there exists a non-null passive g such that $g \leq f$, hence $g \leq \overline{X}$. This contradicts that \overline{X} is a canonical image, therefore f is a canonical image.

ii) From (3.16) and i), it is easy to prove that the canonical mapping is a one to one mapping. Denoting the canonical images of f_{λ}^1 , $f_{\lambda}^2 \in \mathscr{B}_{\lambda}$ and $f_{\lambda}^1 \cup f_{\lambda}^2$ by f_0^1 , f_0^2 and f_0 respectively, we have

$$f_{0}(\cdot) = \lim_{n \to \infty} \int \pi^{n}(\cdot, dy) \lim_{m \to \infty} \int \pi^{m}(\lambda, y, dz) \cdot \left[\max\left(f_{\lambda}^{1}, f_{\lambda}^{2}\right)\right](z)$$

$$\geq \lim_{n \to \infty} \int \pi^{n}(\cdot, dy) \lim_{m \to \infty} \int \pi^{m}(\lambda, y, dz) f_{\lambda}^{i}(z)$$

$$= \lim_{n \to \infty} \int \pi^{n}(\cdot, dy) f_{\lambda}^{i}(y) = f_{0}^{i}(\cdot), \ i = 1, 2,$$

hence

 $f_0 \ge f_0^1 \cup f_0^2$.

(3.19)

Conversely we have

$$\int \pi^n(\lambda, \cdot, dy) \max\{f^1_{\lambda}, f^2_{\lambda}\}(y) \leq \int \pi^n(\cdot, dy) \max\{f^1_0, f^2_0\}(y).$$

Letting $n \rightarrow \infty$ we obtain

 $f^1_{\lambda} \cup f^2_{\lambda} \leqslant f^1_0 \cup f^2_0.$

From the fact that f_0 is the least upper bound of $\{f_{\lambda}^1 \cup f_{\lambda}^2\}$ in \mathscr{B} , we obtain $f_0 \leq f_0^1 \cup f_0^2$. Denoting the canonical image of $f_{\lambda}^1 \cap f_{\lambda}^2$ by f_0' , from (1.8) we obtain

$$f_0' = (f_0^1 + f_0^2) - (f_0^1 \cup f_0^2) = f_0^1 \cap f_0^2.$$

From Theorem 2.16, (2.25), it is not difficult to prove that $\mathscr{C} \cap \overline{\mathscr{B}}$ is the isomorphic lattice of \mathscr{C}_{λ} .

Theorem 3.10. (Basic Lemma). Let $f_0^t \in \overline{\mathscr{B}}(t \in T)$ be a family of non-null sojourn solutions. If for $t \neq s$ $f_0^t \cap f_0^s = 0$, then for every fixed $t \in T$ and $\lambda > 0$ there exist x_n^t , $n = 1, 2, \dots$, such that

$$f^{*}_{\lambda}(x^{t}_{n}) \rightarrow \begin{cases} 1, \ s=t, \\ 0, \ s\neq t, \end{cases} \xrightarrow{n \to \infty}, \tag{3.20}$$

where $f_{\lambda}^{t} \in \mathscr{C}_{\lambda}$ is the typical image of f_{0}^{t} .

Proof From Theorem 2.12, we know that for every $t \in T$ there exist $x_n^t \in E$, $n = 1, 2, \dots$, such that

$$f_n^t(x_n^t) > n/(n+1), n=1, 2, \cdots$$

From Lemma 3.5, we know that $f_{\lambda}^{t} \leq f_{\lambda}^{t}$ for $\lambda \geq \lambda'$. Hence for every fixed $\lambda > 0$, for every positive integer $n > \lambda$ we have

$$1 \geq f_{\lambda}^{t}(x_{n}^{t}) \geq f_{n}^{t}(x_{n}^{t}) > n/(n+1) \rightarrow 1, n \rightarrow \infty.$$

From Theorem 2.18 iv) and the fact that for $s \neq t$, $f_0^s \cap f_0^t = 0$, we obtain that for $s \neq t$, $f_0^s + f_0^t$ is a non-null sojourn solution. Therefore for every $\lambda > 0$ we have

$$0 \leq f_{\lambda}^{s}(x_{n}^{t}) \leq 1 - f_{\lambda}^{t}(x_{n}^{t}) \rightarrow 0, n \rightarrow \infty$$

From the fact that $P^{\min}(\lambda, x, A)$ satisfy the resolvent equation, we have

$$Z_{\lambda}(\cdot) - Z_{\nu}(\cdot) + (\lambda - \nu) \int P^{\min}(\lambda, \cdot, dy) Z_{\nu}(y) = 0, \qquad (3.21)$$

where

$$Z_{\lambda}(\cdot) \triangleq 1 - \lambda P^{\min}(\lambda, \cdot, E). \qquad (3.22)$$

Hence for every fixed $x \in E$, $\lambda P^{\min}(\lambda, \cdot, E) \leq \lambda' P^{\min}(\lambda', \cdot, E)$ for $\lambda > \lambda' > 0$. By the norm condition we have $1 \geq \lambda P^{\min}(\lambda, x, E) \geq 0$, therefore the limit function

$$X^{0}(\cdot) = \lim_{\lambda \downarrow 0} \lambda P^{\min}(\lambda, \cdot, E)$$
(3.23)

exists.

Letting $\nu \rightarrow 0$ in (3.21), from (3.22), (3.23) and the dominated convergence theorem, it is easy to prove

Lemma 3.11.

$$\lambda \int P^{\min}(\lambda, \cdot, dy) X^{0}(y) = X^{0}(\cdot) (\lambda > 0). \qquad (3.24)$$

Lemma 3.12. Let $f_0 \in \overline{\mathscr{B}}$, for each $\lambda > 0$, denote the typical image of f_0 in \mathscr{B} by f_{λ} . Then

$$f_{\lambda} \uparrow f_{0} \quad (\lambda \downarrow 0). \tag{3.25}$$

Proof From (3.14) we obtain $f_{\lambda} \uparrow (\lambda \downarrow 0)$. From (3.9) we have

$$f_0 \triangleq \lim_{\lambda \to 0} f_\lambda \leqslant f_0. \tag{3.26}$$

Obviously $0 \leq f_0 \leq 1$ and for $x \in E \setminus H$

$$\int \pi(x, dy) f'_0(y) = 0 = f'_0(x)$$

From the dominated convergence theorem and the fact that $f_{\lambda} \in \mathscr{B}_{\lambda}$, we have for $x \in H$

$$\int \pi(x, dy) f'_0(y) = \lim_{\lambda \downarrow 0} [\lambda + q(x)] q^{-1}(x) \cdot \int \pi(\lambda, x, dy) f_\lambda(y) = f'_0(x).$$

Hence $f'_0 \in \mathscr{B}$ is an upper bound of $\{f_{\lambda}\}$ in \mathscr{B} . From (3.26) and the fact that f_0 is the least upper bound of $\{f_{\lambda}\}$ in \mathscr{B} , we obtain $f_0 = f'_0$.

Lemma 3.13. If μ , $\mu_n \in \mathscr{L}_+$, $n=1, 2, \dots, \mu_n \uparrow \mu$, $f \in \nu \mathscr{E}_+$, then $\lim_{n \to \infty} \int \mu_n(dx) f(x) = \int \mu(dx) f(x).$

Proof Put $\nu_0 = \mu_0$, $\nu_n = \mu_n - \mu_{n-1}$ ($n \ge 1$). From [6, Appendix, Lemma 9] we have

$$\lim_{n \to \infty} \int \mu_n(dx) f(x) = \lim_{n \to \infty} \sum_{p=0}^n \int \nu_p(dx) f(x) = \int \sum_{p=0}^\infty \nu_p(dx) f(x) = \int \mu(dx) f(x).$$

n→ Put

$$X_{\lambda}^{d}(\cdot) = \int P^{\min}(\lambda, \cdot, dy) \left[q(y) - q(y, E)\right].$$
(3.27)

Theorem 3.14. $0 \leqslant X_{\lambda}^{4} \leqslant 1 (\lambda > 0)$ and the limit function

$$X^{4}(\cdot) = \lim_{\lambda \downarrow 0} X^{4}_{\lambda}(\cdot)$$
(3.28)

exists. Furthermore

$$\overline{X}_{\lambda}(x) + \lambda P^{\min}(\lambda, x, E) + \int P^{\min}(\lambda, x, dy) [q(y) - q(y, E)] = 1$$

$$(\lambda > 0, x \in E), \qquad (3.29)$$

$$\overline{X} + X^{0} + X^{4} = 1 \qquad (3.30)$$

Proof From(3.11) we have

$$\begin{split} \lambda P^{n}(\lambda, x, E) + \int P^{n}(\lambda, x, dy) \left[q(y) - q(y, E)\right] + \pi^{n+1}(\lambda, x, E) \\ = \pi^{n+1}(\lambda, x, E) + \sum_{p=0}^{n} \int \pi^{p}(\lambda, x, dy) \left[\lambda + q(y)\right]^{-1}. \\ \int \delta(y, dz) \left[\lambda + q(z)\right] - \int \sum_{p=0}^{n} \pi^{p}(\lambda, x, dy) \left[\lambda + q(y)\right]^{-1} q(y, E) \end{split}$$

$$=\sum_{p=0}^{n+1} \pi^p(\lambda, x, E) - \sum_{p=1}^{n+1} \pi^p(\lambda, x, E) = \delta(x, E) = 1.$$

Letting $n \to \infty$, from [3, Theorem 4.1], Lemma 3.13 and (3.17) we obtain (3.29). Letting $\lambda \downarrow 0$, from Lemma 3.12 and (3.23) we obtain (3.30) and (3.28). From (3.29) we know that $0 \leq X_{\lambda}^{4} \leq 1$.

Lemma 3.15.

$$X^{A}_{\lambda}(\cdot) - X^{A}_{\mu}(\cdot) = (\mu - \lambda) \int P^{\min}(\lambda, \cdot, dy) X^{A}_{\mu}(y) \quad (\lambda, \mu > 0), \qquad (3.31)$$

 $X^{4}_{\lambda}(\cdot) = X^{4}(\cdot) - \lambda \int P^{\min}(\lambda, \cdot, dy) X^{4}(y). \qquad (3.32)$

$$P_{Toof} \quad \text{From the fact that } P^{\min}(\lambda, x, A) \text{ satisfy the resolvent equation, we have}$$
$$X^{A}_{\lambda}(\cdot) - X^{A}_{\mu}(\cdot) + (\lambda - \mu) \int P^{\min}(\lambda, \cdot, dy) X^{A}_{\mu}(y)$$
$$= \int [P^{\min}(\lambda, \cdot, dy) - P^{\min}(\mu, \cdot, dy) + (\lambda - \mu) \int P^{\min}(\lambda, \cdot, dz) P^{\min}(\mu, z, dy)]$$
$$\cdot [q(y) - \overline{q}(y, E)] = 0 \quad (\lambda, \mu > 0).$$

This proves (3.31). Letting $\mu \downarrow 0$ on both sides of (3.31), from (3.28) and the dominated convergence theorem we obtain (3.32).

Theorem 3.16.	If $f \in \mathscr{C}_{\lambda}$,	$x_n \in E$, $n=1$, 2, such that		
		$f(x_n) \rightarrow 1, n \rightarrow \infty,$		(3.33)

then

 $P^{\min}(\lambda, x_n, E) \rightarrow 0, n \rightarrow \infty$

Proof From Lemma 2.1 we know that if (3.33) holds, then $\overline{X}_{\lambda}(x_n) \rightarrow 1$ $(n \rightarrow \infty)$. The assertion follows from (3.29).

§ 4. Expression of q-processes satisfying the kolmogorov backward equation when q(x) - q(x, A) is finite

Definition 4.1. A q-pair q(x) - q(x, A) is called finite (m) if for some and consequently for each $\lambda > 0$, the dimension of \mathscr{B}_{λ} is finite (m).

Lemma 4.2 (Substitution Theorem). Let f_1, \dots, f_m be a family of linearly independent real functions and let $\alpha_1, \dots, \alpha_m$ be a family of real numbers.

i) If g=∑_{i=1}^m α_if_i and α_k≠0, then f₁, ..., f_{k-1}, g, f_{k+1}, ..., f_m are linearly independent.
ii) For 1≤i, k≤m, i≠k, f₁, ..., f_i-f_k, ..., f_k, ..., f_m are linearly independent.
Lemma 4.3. If f₁, f₂∈ C_λ(λ>0), then (f₁∩f₂) ∩ (f_i-f₁∩f₂) = 0 (i=1, 2) (4.1)

If f, g, $h \in \mathscr{C}_{\lambda}$, $f \leq g$, $g \cap h = 0$, then $f \cap h = 0$.

Proof For each i=1, 2, we can take A_i such that there exists a representative set B such that $B \subset A_1 \cap A_2$ and $f_1 \cap f_2 = S_B$. By Lemmas 2.15 and 2.16, we have $(f_1 \cap f_2) \cap (f_i - f_1 \cap f_2) = S_B \cap S_{A_i \setminus B} = 0.$

The second assertion is obvious.

Theorem 4.4. If the dimension m of \mathscr{B}_{λ} is finite, then there exists a family of sojourn solutions $X_{\lambda}^{1}, \dots, X_{\lambda}^{m}$ such that they are a basis for $\mathscr{B}_{\lambda}, X_{\lambda}^{i} \cap X_{\lambda}^{j} = 0$ for $i \neq j$ and

$$\overline{X}_{\lambda} = \sum_{i=1}^{n} X_{\lambda}^{i}. \tag{4.2}$$

Proof Let $f_1, \dots, f_n (n \le m)$ be a basis for \mathscr{C}_{λ} . From the fact that \mathscr{B}_{λ} is a bounded closed set in a finitely dimensional subspace of the Banach space $b \ \mathscr{C}$, we obtain that \mathscr{B}_{λ} is compact and convex. By Theorem 2.19 and Krein-Milman theorem, we know that \mathscr{B}_{λ} is the closure of the convex hull of \mathscr{C}_{λ} . Therefore each elemant of \mathscr{B}_{λ} can be expressed by a linear combination of f_1, \dots, f_n . This proves $n \ge m$, hence n = m.

We want to prove that without loss of generality we can assume that $f_i \cap f_j = 0$ for $i \neq j$.

(3.34)

First, we want to prove that under proper adjustment we can assume $f_1 \cap f_2 = 0$. If $f_1 \cap f_2 \neq 0$, then there exist real numbers $\alpha_1, \dots, \alpha_m$ such that at least one of them is non-null and $f_1 \cap f_2 = \sum_{i=1}^m \alpha_i f_i \cdot \text{If } \alpha_1 \neq 0$, then substitute $f_1 \cap f_2$, $f_2 - f_1 \cap f_2$ for f_1 , f_2 respectively. By Lemma 4.2, we know that $f_1 \cap f_2$, $f_2 - f_1 \cap f_2$, f_3 , \dots , f_m are linearly independent. From Lemma 4.3, we have $(f_1 \cap f_2) \cap (f_1 - f_1 \cap f_2) = 0$. By the same reasons, we know that if $\alpha_1 = 0$ but $\alpha_2 \neq 0$, then the assertion is proved by substituting $f_1 - f_1 \cap f_2$, $f_1 \cap f_2$ for f_1 , f_2 respectively. If $\alpha_1 = \alpha_2 = 0$, then there exists some $3 \leq k \leq m$ such that $\alpha_k \neq 0$, The assertion is proved by substituting $f_1 - f_1 \cap f_2$, $f_1 \cap f_2$, f_2 for f_1 , f_2 , f_k respectively.

Secondly we want to prove that if there exist $f_1, \dots, f_n(n < m)$ such that $f_i \cap f_j = 0$ for $i \neq j$, $i, j \leq n$, then under proper adjustment we can assume that $f_i \cap f_j = 0$ for $i \neq j$, $i, j \leq n+1$. If $f_1 \cap f_{n+1} \neq 0$, then there exist real numbers $\alpha_1, \dots, \alpha_m$ such that at least one of them is non-null and $f_1 \cap f_{n+1} = \sum_{i=1}^m \alpha_i f_i$ If α_1, α_{n+1} are not all zero, we can adjust them referring to the case of $f_1 \cap f_2 = 0$. If $\alpha_1 = \alpha_{n+1} = 0$, then there exists some $n+2 \leq k \leq m$ such that $\alpha_k \neq 0$. If it is not, then $f_1 \cap f_{n+1} = \sum_{i=2}^n \alpha_i f_i$. Put M = $\max_{i=2,\dots,n} \{ |\alpha_i|, 1 \}$. Obviously $M^{-1}[f_1 \cap f_{n+1}] \leq \sum_{i=2}^n f_i$. From (1.16), (1.15) and the fact that $f_i \cap f_j = 0$ for $i \neq j$, $i, j \leq n$, we have

$$0 \leqslant M^{-1}(f_1 \cap f_{n+1}) \leqslant f_1 \cap \left(\sum_{i=2}^n f_i\right) = \sum_{i=2}^n f_1 \cap f_i = 0.$$

This contradicts the fact that $f_1 \cap f_{n+1} \neq 0$. Substitute $f_1 - f_1 \cap f_{n+1}$, $f_1 \cap f_{n+1}$, f_{n+1} , f_{n+1} for f_1, f_{n+1}, f_k respectively. Under the above adjustment, f_1 does not increase and f_2, \dots, f_n remain fixed. Hence, under substituting $r \leq n$ for 1, the assertion remain true. Thus passing through the finite steps of adjustment, we can arrive at our purpose. We denote these sojourn solutions by $X_{\lambda}^1, \dots, X_{\lambda}^m$.

Particularly there exist real numbers $\alpha_1, \dots, \alpha_m$ such that

$$\overline{X}_{\lambda}(\cdot) = \sum_{i=1}^{m} \alpha_i X_{\lambda}^i(\cdot).$$
(4.3)

By Basic Lemma, for fixed positive integer $i \leq m$ we can take $x_n^i \in E$, n=1, 2, such that

$$X_{\lambda}^{i}(x_{n}^{i}) \rightarrow \begin{cases} 1, \ j=i \\ 0, \ j\neq i \end{cases} \quad (n \rightarrow \infty).$$

$$(4.4)$$

Substituting x_n^i for x in (4.3) and letting $n \rightarrow \infty$, we obtain $\alpha_i = 1$. (4.2) is proved.

For fixed $\lambda > 0$, we can take X_{λ}^{1} , \cdots , X_{λ}^{m} satisfying Theorem 4.4. Let X_{0}^{1} , \cdots , X_{0}^{m} be their canonical images respectively. We denote the typical images of X_{0}^{1} , \cdots , X_{0}^{m} in \mathscr{B}_{ν} by X_{ν}^{1} , \cdots , X_{ν}^{m} respectively. From Theorem 3.9 they are sojourn solutions satisfying Theorem 4.4.

Theorem 4.5. Suppose that q(x) - q(x, A) is finite(m). $P(\lambda, x, A)$ ($\lambda > 0, x \in E, A \in \mathscr{E}$) is a B q-process [11.§ 1] if and only if

$$P(\lambda, x, A) = P^{\min}(\lambda, x, A) + \sum_{i=1}^{m} X^{i}_{\lambda}(x)\xi^{i}_{\lambda}(A) \quad (\lambda > 0, x \in E, A \in \mathscr{E}), \qquad (4.5)$$

where $\xi_{\lambda}^{i} \in \mathscr{L}_{+}$ $(i=1, \dots, m)$ satisfy resolvent condition

$$\xi^{i}_{\lambda}(A) - \xi^{i}_{\nu}(A) = (\nu - \lambda) \int \xi^{i}_{\lambda}(dx) P(\nu, x, A) \quad (\lambda, \nu > 0, A \in \mathscr{E})$$
(4.6)

and norm condition

$$\lambda \xi_{\lambda}^{i}(E) \leqslant 1, \tag{4.7}$$

A B q-process is honest if and only if q(x) - q(x, A) is conservative and the equality in (4.7) holds for some $\lambda > 0$ and each $i=1, \dots, m$.

Proof i) If $P(\lambda, x, A)$ is a B q-process, then $P(\lambda, x, A) - P^{\min}(\lambda, \cdot, A) \in \mathscr{B}_{\lambda}$ for $\lambda > 0, A \in \mathscr{E}$. From Theorem 4.4, we know that there exist real numbers $\xi_{\lambda}^{i}(A), i=1, \dots, m$ such that (4.5) holds. By Basic Lemma we can take y_{n}^{i} satisfying (4.4). For fixed i, substituting y_{n}^{i} for x in (4.5) and letting $n \rightarrow \infty$, by Vitali-Hahn-Saks theorem we know $\xi_{\lambda}^{i} \in \mathscr{L}_{+}$.

ii) Substituting $P(\lambda, x, A)$ in (4.5) for $P(\lambda, x, A)$ in the resolvent equation, from the fact that $P^{\min}(\lambda, x, A)$ satisfies the resolvent equation, $X_{\lambda}^{1}, \dots, X_{\lambda}^{m}$ are linearly independent and for each i, X_{λ}^{i} is coordinated, we obtain that $P(\lambda, x, A)$ in (4.5) satisfies the resolvent equation if and only if $\xi_{\lambda}^{i}, \dots, \xi_{\lambda}^{m}$ satisfy (4.6).

iii) By Basic Lemma and Theorem 3.16, we know that $P(\lambda, x, A)$ in (4.5) satisfies the norm condition if and only if (4.7) holds.

Combining i)-iii), we know that $P(\lambda, x, A)$ is a B q-process if and only if (4.5) \sim (4.7) hold.

iv) Suppose that q(x) - q(x, A) is conservative and $\lambda \xi_{\lambda}^{i}(E) = 1$ for some $\lambda > 0$, each $i=1, \dots, m$. By Lemma 4.4 and (3.29), we have

$$\lambda P(\lambda, x, E) = \lambda P^{\min}(\lambda, x, E) + \sum_{i=1}^{m} X_{\lambda}^{i}(x) = \lambda P^{\min}(\lambda, x, E) + \overline{X}_{\lambda}(x) = 1 \ (x \in E).$$

Conversely, suppose that the B q-process is honest. From [11, Theorem 1.6] we know that q(x) - q(x, A) is conservative. Obviously for each $\lambda > 0$ we have

$$\lambda P^{\min}(\lambda, x, E) + \lambda \sum_{i=1}^{m} X^{i}_{\lambda}(x) \xi^{i}_{\lambda}(E) = 1.$$

Taking x_n^i , $n=1, 2, \dots, i=1, \dots, m$ satisfying (4.4), substituting x_n^i for x in the above equality, letting $n \to \infty$, from Basic Lemma and Theorem 3.16 we obtain $\lambda \xi_{\lambda}^i(E) = 1$ for each $i=1, \dots, m$.

Definition 4.6. We call that Markov process
$$P(t, x, A)$$
 is honest for $x_0 \in E$ if

$$P(t, x_0, E) = 1 \quad (\forall t \ge 0). \tag{4.9}$$

From the properties of Laplace transform, we know that this is equivalent to that for some and consequently for each $\lambda > 0$ the Laplace transform $P(\lambda, x, A)$ of P(t, x, A)

satisfies

$$\lambda P(\lambda, x_0, E) = 1 \tag{4.10}$$

Put

$$D(I) = \{x \in E: X_0^i(x) > 0, \forall i \in I, X_0^i(x) = 0, \forall j \notin I\}, I \subset \{1, \dots, m\}, (4.11)$$

$$D(\lambda, I) = \{x \in E, X_{\lambda}^{i}(x) > 0, \forall i \in I, X_{\lambda}^{i}(x) = 0, \forall j \notin I\}, \lambda > 0, \quad (4.12)$$

Lemma 4.7. For any fixed $I \subset \{1, \dots, m\}$, in order that $x \in D(I)$ it is necessary and sufficient that there exists $\lambda > 0(\lambda$ dependent of x) such that

$$x \in D(\mu, I), \forall \mu < \lambda. \tag{4.13}$$

Proof By Corollary to Lemma 3.5 and Lemma 3.12, we know that for fixed i =1, ..., m, $x \in E X_{\lambda}^{i}(x) (\lambda > 0)$ is continuons on $[0, \infty)$, and $X_{\lambda}^{i}(x) \uparrow (\lambda \downarrow)$. Suppose $x \in D(I)$, then there exists $\lambda > 0$ such that

$$0 < X^i_{\mu}(x) \leq X^i_0(x), \ \mu < \lambda, \ i \in I, \ X^i_{\mu}(x) = 0, \ \mu > 0, \ i \notin 1.$$

This proves that there exists $\lambda > 0$ such that (4.13) holds. From the fact that $X_{\lambda}^{i}(x) \uparrow$ $X_0^i(x)$, we know that the sufficiency holds.

Lemma 4.8. Suppose the conservative q-pair q(x) - q(x, A) is finite(m). For any fixed $I \subset \{1, \dots, m\}$, $\mu > 0$ and $x \in D(\mu, I)$, we have that a q-process $P(\lambda, x, A)$ is honest for x if and only if

$$\mu \xi_{\lambda}^{i}(E) = 1, \forall i \in I.$$

$$(4.14)$$

Proof Let (4.14) holds, From Theorem 4.5 and (3.29), we have that for each $x \in D(\mu, I)$

$$\mu P(\mu, x, E) = \mu P^{\min}(\mu, x, E) + \mu \sum_{i=1}^{m} X^{i}_{\mu}(x) \xi^{i}_{\mu}(E) = \mu P^{\min}(\mu, x, E) + \sum_{i \in I} X^{i}_{\mu}(x)$$
$$= \mu P^{\min}(\mu, x, E) + \overline{X}_{\mu}(x) = 1.$$

Conversely, let $P(\lambda, x, A)$ be honest for Some $x \in D(\mu, I)$. By (4.12), (3.29) and (4.5) we know that

 $\mu P^{\min}(\mu, x, E) + \sum_{i \in I} X^{i}_{\mu}(x) = 1 = \mu P(\mu, x, E) = \mu P^{\min}(\mu, x, E) + \sum_{i \in I} X^{i}_{\mu}(x) \mu \xi^{i}_{\lambda}(E).$ Hence

$$\sum_{i \in I} X^{i}_{\mu}(x) = \sum_{i \in I} X^{i}_{\mu}(x) \mu \xi^{i}_{\mu}(E).$$

From (4.7) and the fact that $X^{i}_{\mu}(x) > 0 (\forall i \in I)$, we obtain (4.14).

Theorem 4.9. Suppose q(x) - q(x, A) is finite(m) and conservative, $P(\lambda, x, A)$ is a q-process, $I \subset \{1, \dots, m\}$, then

i) either $P(\lambda, x, A)$ is honest for each $x \in D(I)$ or $P(\lambda, x, A)$ is dishonest for each $x \in D(I)$.

ii) put

$$\mathcal{D}(I) = \bigcup_{J \in I} \mathcal{D}(J), \qquad (4.15)$$

 $P(\lambda, x, A)$ is honest for each $x \in O(I)$ if and only if $P(\lambda, x, A)$ is honest for each

282

 $x \in D(I)$.

Proof i)Taking fixed $y \in D(I)$, from Lemma 4.7 we know that for any fixed $z \in D(I)$, there exists some $\lambda > 0$ such that

 $y, z \in D(\mu, I), \quad \forall \mu \leq \lambda. \tag{4.16}$

Suppose $P(\lambda, x, A)$ is honest for y. From Lemma 4.8, we have

 $\mu \xi^1_\mu(E) = 1, \ i \in I, \ \mu < \lambda$.

By Lemma 4.8, we know that $P(\lambda, x, A)$ is honest for z. Similarly, if $P(\lambda, x, A)$ is dishonest for y, then for each $\mu < \lambda$ there exist $i \in I$ such that $\mu \xi^i_{\mu}(E) < 1$. From Lemma 4.8 and (4.16), we know that $P(\lambda, x, A)$ is dishonest in z.

ii) Necessity is obvious, we want to prove the sufficiency part. Let $P(\lambda, x, A)$ be honest for each $x \in D(I)$. From Lemma 4.7 and Lemma 4.8, we know that for any fixed $x \in D(I)$, $\phi \neq J \subset I$ there exists some $\lambda > 0$ such that

 $\mu \xi^i_{\mu}(E) = 1, \ i \in J, \ \mu < \lambda. \tag{4.17}$

For any fixed $y \in C(I)$, there exists uniquely $J \subset I$ such that $y \in D(J)$. By Lemma 4.7, we know that there exists some $\nu > 0$ such that

 $y \in D(\mu, J), \forall 0 < \mu \leq \min \{\lambda, \nu\},$

From (4.17) and Lemma 4.8, we know that $P(\lambda, x, A)$ is honest for y.

Corollary. (Oriterion on honesty) Suppose q(x) - q(x, A) is finite(m). For any fixed non-empty D(I) defined by (4.1) we take $x \in D(I)$, then a B q-process $P(\lambda, x, A)$ is honest if and only if q(x) - q(x, A) is conservative and $P(\lambda, x, A)$ is honest for every x chosen above.

References

- [1] Feller, W., Boundaries induced by non-negative matrices, TAMS, 83, (1956)19-54.
- [2] Feller, W., On the boundaries and lateral conditions for the Kolmogoroff differential equations, Ann of Math., II ser 65 (1957), 527-570.
- [3] Hu Dihe, On purely discontinuous Markov Processes, Wuhan Daxue Xuebao, 4(1978), 1-18, 1, (1979), 15-38.
- [4] Hu Dihe, Construction of q-processes on abstract spaces, Acta Mathematica Sinica, 16: 2(1966), 150-165.
- [5] Zheng Xiaogu, On the potential Markov processes in abstract space, Beijing Shifan danue Xuebao, 4 (1981), 15-32.
- [6] Wang Zikun, Stochastic process theory, Science Press, Beijing, China (1965).
- [7] Yang Xiangqing, On the construction problem for single exit q-processes satisfying the Kolmogorov backward equation or single entrance q-processes satisfying the Kolmogorov forward equation, Kenue Tongbao, (1980), 1105-1108.
- [8] Chen Mufa, Minimal nonnegative solution for an operator equation, Beijing Shifan daxue Xuebao, 3 (1979), 66-73.
- [9] Chen Mufa, on the reversable Markov processes in abstract spaces, Chinese Annals of Mathematics, 1: 3-4 (1980), 437-451.
- [10] Ohen Mufa and Zheng Xiaogu, Uniqueness criterion for q-processes, Tclentia Sinica, 4A(1982), 298-308.
- [11] Zheng Xiaogu, Qualitative theories of the constructions of q-processes on abstract spaces, Acta Mathematica Scientia, 2:1(1982), 63-80.
- [12] Williams, D., On the construction problem for Markov chains, ZWvG, 3 (1964), 227-246.