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Abstract

"In this paper, most of “the Feller’s boundanes are extended to abstra,ct spaces, and a
general expression of g-processes sahsﬁng the Kolmogorov backward equatlon is obtained
when g(#) —q(z, 4) is finite. '

'\ Ihtroduc.tibn

" The Feller’s boundary theory on countable state spaees was estab11shed by W.
‘Feller in 1956. It has played an important role in ‘the constructions of Q—processes
In this paper, most of Feller’s results are extended to abstract spaces. Firstly, the
. asic Lemma in [2, §>6] is extended to abstract spaces, but the proof is simpler than
Feller’s. Secondly, a general expression of g—processes sabtisfying the Kolmogorov
backward equation is obtained and it is a -preparation for constructing potential -
g-processes which satisfy the Kolmogorov backward equation when ¢(z) —g(s, 4) is’
finite. Finally, the criterion for honest, q—proeesses mentloned above is established.
I would like to thank Prof. Yan ‘Shijian for hlS gu1d ance and Chen Mufa for his
' great help

§ 1 Operatlon on Lattlces

Let(H, &) be an abstract measurable spaee and agsume that all the smgle’nons{w}
v (mEE) belong to &. We use the same notations as in [10, § 1], such as b8, b &, r
&y Lo :
Let function w(w, A)satisfy that
i) w(s, 4) €b&,ifor A, w(w, -) €L, for =,
i) O<w(w, A)<<1, Vo€ B, ACS,
'The operator m is defined by

wf ()= 2 ) f @) (fFEBO). (1.1)

Olearly, for each fixed n, w" is a bounded lmear operator with norm less than or equal
4o 1. ' ‘
Manuseript received;Maiéh- 6, 1981.
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Put _
B={f€b&y mf =F, O<f<1}, . (1.2)
B*={f€b&:. wf=f, 0<f<1}, | (1.8)
B, ={fE€bE s, mf <[, 0O< F<1}, (1.4)

Obv1ous1y, 4 is eonvex and closed.

Definition 1,1, We call g the least upper bound of {f.€d&, a€1} in Z if
Sup fo<<gE B, and i f sup fo<gE€ B, then g<g. We call h the greatest lower bound of
acl ’ acl

{f€b&, a€I}in Bif inffa>ké.%’, and & f i%ff«%‘e B, then h=h. Here I is an
' aE ’ 1 )

arbitrary index set. :
Lemma 1.2. For any fiwzed f € B* and © € E, the limit

9@ =tm@ NH(o) (1.5)

exists and g s the least upper bound of {f} in AB.
Proof From (1.8)it is easy to prove that #" f<#x"*f<1, n=1, 2, «--. Then
lim (*f) (@) exists and we denote it by g(«). By the dominated convergence theorem,

gER. It g+€ A, g:=>f, then by induction we have gi=>w"f, n=1, 2, »--. Letling
n—»oo, from(1.5), we obfain g:>g.

Similarly, we can prove

Lemma 1.3. For any fized f € B, and € B, the limit

| h(@) =lim (a°f) (@)

exists and h is the greatest lower bound of {f} in &.

Theorem 1.4. Let fy, fo€B. B contains o unique least upper bound filUfa of
{f1, fa} and a unique greatest lower bound f1(\fa of {f1, fa}.

Proof For each ®, put f(o)=max{fi(®), f2(@)}. Olearly f€Z" and the
funotion ¢ defined by (1.5) has the properties required by fiU fe. Put

| h(@) =min{f1(2), fa@)},

then from Lemma 1.8 the assertion follows.

In the rest of the section, we assume that all the functions f, g, f+g, fUg and
80 on, whenever they appear, belong to Z.

Using the method in[1, Lemma 4.1], it is not difficult to prove

Proposition 1.5.. If

fit+gi=fatga=h, . (1.6)
then _ |
S fiUfat+giNga=Ph, .7
Particularly, we have

Sitfa=fiUfat+fi0 fa. (1.8)
Using the method in[1, Lemma 4.2], it is not difficult to prove '
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Proposition 1.6. A |
(PN URSUR N (UR), (1.9)

(FUPNE=(fFNRU(gNA), I € 1)
(FNg) +h<(f+8) N (g+h), (d.11)
(fU) +2=(f+R) U (g+k) 1.12)
(F+D NASFNRA(gNk), | (1.18)
(f+9) UAS(fUR) +(gUR), (1.14)
If fNg=0, then _ _ '
o (F+DNE=(FNR+(gnk), (1.1B)
If O<A<L, then
A(f0g)=Qf) N (g, | (1.16)
AMUD =N UKD, - @1

§ 2. Sojourn sets and sojourn solutions

Obv1ous1y 1€4%,. From Lemma 1 3 we know that for each # € F the lmut
S (@) =1im (%" 1) (2) - @1

exists and Sy belongs fo Z. From the fact that 0<<f<1 for every f E,%’ by induction
we have f<#" 1, n=1, 2, ..., Thig proves

- Lemma 2.1. The function Sy defined by (2.1) is the maximal element of B, that
is, Sp€ & and f< 8y for each f € H.

If w(e, B)=1, then Sgz=1. Conversely 1f SE_.l then 1>a" 1 1(n—>o0),
therefore ow(+, B)=1. This proves

Lemma 2.2. Sp=1 if and only if w(s, B) =1,

Now let A be an arbitrary set in & and let SN A={BcA4: BES}. Applying the
above argument to the restriction w, of = to (4, &N .A) and letting o’ (v, 4) =a? 1
we know that the limit funotion

pa(@) =lim i (e, 4), (2€4)

exigts and satisfies

PA=TaP4, . - (2.2)

0<ps<1, : (2.8)

Obviously p, is the max1ma1 element of %4, where |

Bt {fED(ENA): maf=F, 0<f<I1},

Putb | ' ' o
pale), B€A,

oa(w) ={ ’

0,  oCh\4, e

Forzc A



270 UHIN. ANN. OF MATH. ' Vol. 4 Ser. B -

(@, dau) =] w@ douw)+], @, d)ou) =] 5, Wouw)

, =ps(@) =04(®),
and for € B\ A4 o '

\ [0, d)ou@)>0=0u@),
therefore o4 € #*. Applying Lemma 1.2 to f=o04; We see that the limit function
’ S 4(x) -—hm(ov ca) (@) (wEE) (2.5)

emsts and is the least upper bound of {o,}in % Partloulary O‘E—SE
" Definition 2.8. A set AE& is called sojown set 5 8,0 (or 'whwt amounis to the
same, if pa%0).
“. " Obviously, for 4 to be a SOJOU.I‘n set it is necessary and sufficient that there exisis
an €A and an 7n>0 such that’ A
m:ﬁ(w, A) >0 | . (2.6)
for all n. : ’ : -
Deﬁmtlon 24. Two sets A and B are eqmwlent of 84=8z.
Definition 2.5. The set of all f'wnctwns SA and 0 is be denoted by ‘ea” The elements
of € are referred to sojourn solutions.
~ Using the method in [1, Lemma 5.1]it is not difficult-to prove
Lemma 2. 6 If A and B are non- oweﬂwppmg, then S
SA”SB"' , ’ (2.7)
SAUSB SutSp=840s o (2.8)
Let A be a sojourn seb and B>DA, A, B€&. Tt is easy to prove “that the 11m1t
function ll.m w'pa(2) (@ € B)exigts, where

A() {pd(m) for s € A,

0 for v € B\A,
S5 () 2 == g 2.9)
Obviously 8,=08%, ¢4=84 and o
- oa<8E<8., (2.10)

" Lemma 2.9. We have _. :
| §4(0) =1im (@"S) (2), (A<B, ¢ € B), (2.11)
If AcB, OB and 82=88, then S;=So.
Proof Premultiply (2.10) by w”. The right S1de remains unchanged, and (2.5)
leads to this lemma. |
‘Lemma 2.8. Let ACE and fEB,. For each n and each € A we have

J@zwf@ S #C, wiw o), (2.12)
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If FEB, then the equwhty stgn holds in (2. 12)
Proof For n=1 the relation (2.12) reduces to f=mf. Assume that (2. 12) holdg
for some n. Using the fact that f>=mf, we have

@[ m [ w, wf@ @
=a ] =C ar@+], = owrmle
—.mn+1f<w>+[mj w (-, @) £ (5) | @). RNCRE)

Substituting this into the first term of the right in- (2.12), we get the ztséertion
(2.12) with n replaced by n+1. When f xf, each of the above lnequahtles is
replaced by an equality, and the lemma i is proved

Choosing in partlcular JS=1we get

Corollary'l. Fors€A

wite, H)+[F wreal-, 1\4) | @<L, ey

If v is strictly stochastic, then the equality sign holds.
Letting n—>c0 we get
Corollary 2. Foraz€A

aA<w>+[2m (e, E\A)](w><1 " (2.15)

Usmg the method in[1, Lemma 7.2], it is not difficult to prove
Lemma 2.9. Let f be o bounded solution of the equation

: wg=g, §ELE, (2.16)
and let | f]>0. For fiwed 0<n<<|f| put ‘
F,={€B: f(@)>|f] -}, E @.17)
Then F, is a sojourn set. If o e
d/n<s, 6>0, - T (2.18)
then o
or,(0)>1—s, for x€ Fs, , (2.19)

Usmg the method in[1, Lemma 7.8]it is eagy o prove
Lemma 2.10. If A isa sojourn set, then|os| =1 and|8,] =1,
Using the method in[1, Lemma 7.4], it is easy to prove
Lemma 2.11. With the notations of Lemma 2.9 one has

o =AA=m8e (2.20)
Using the method in[1, Theorem 1.8]it is easy to prove
Theorem 2.12. For any sojourn set A and 0<n<1 put

A, ={o€A4: 8,(@)>1—n} o (2.21)

and
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A,={@€A: o4(@)>1—n}, (2.22)
T hen ' - '
S4=84,=87,.
Definition 2.13. A sojourn set is called representatwe set if there ewists some n>0
such that 8 4(@) >1—n for each € A.
From Theorem 2.12 we have
Lemma 2.14. Each sojowrn set A contwins an equivalent subset A which s
representative.
Using the methods in[1, Lemma 8,2]it is easy to prove
Lemma 2.16. Let A be representative, and A B, Then
Sp=84+8pa, (2.23)
Using the methods in[1, Theorem 9.1]it is easy to prove
Theorem 2.16. For an clement fE 2 to be a sojourn solution &t 4s necessary and
suffictent that

FN Sr—f) =0, (2.24)
Bquivalently it is necessary and sufficient that for any sojourn set O
f>tSo, t>0 fimphes f}So_ (2 .25)

Using the methods in[1, Theorem 9.2]it is easy to prove
Theorem 2.17. If A and B are sojourn sets, then
SAnB=SAnSB. (2'26)
Using the methods in[1, Theorem 9.8], it is easy to prove |
Theorem 2.18. Let X, Y and X, be sojourn solutions (elements of €), then
i) XNYEYZ,
ii) ¥ —X € € provided XY,
iii) XYY €%,
iv) X+Y € € provided X NY =0,
v) if either X, | u or X4} u, then u€ €,
Using the methods in[1, Theorem 10], it is easy to prove
Theorem 2.19. In order that an element X € % may be a soyoum solution, it 4s
necessary and suffictent that the relations ' '
| X =tU+1—8)V, 0<t<1, U, VEZB, (2.27)
imply U=V =X,

§ 8. The exit boundaries

Let ¢(@) —q(w, A) (wE B, A€ E)be a totally stable g-pair [10, Definition 1.17.
For each A>0 put : :
w(d, o, 4)=q(a, 4)[A+q(@)] @€ H, ACS) (8.1)
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and . .
B={rese. =0, -, Wf@)=fY0<r<t). @
Put o
H={a€E: ¢(2)>0},
A\g(@), o€ H S
oo, )= {5 N0 0€ T 3.9)
and - N | :
a={rebé.. [u(., o)t (@) =12, o<f<i}. (3.4)

Obviously, for each A>0, f € %, N L
1@)= e, ) D»+q<w>1-1f<y><fq~i<w>q<_w, W G)<L e )
| f @) =0= [w(s, d)f () @EA\B),

Therefore 4, #*. From Lemma 1.2 we know that there exists a functlon g such
that
| g(a;)'»-—lim a'f (@), Vo€ H . I (3.5)
and ¢ is the least upper ‘bound of {f}in Z. Clearly av”*if =>a"f, n=1, 2,
Definition 3 1. The canonical map of ,%, into Z is the map wkwk sends the

element f € %, into the element g € A defined by(3.D). ,
Lemma 8.2. The canonical image fy of the element f;»E«%L s given by

EOESAOREN EJCENFAOVAOIE (3.6)

Proof If #€ E\ H, then both sides of (3 6) vamsh We want to prove that for
cEH

1@ 1.2 [ @, W)@ @) = [o@ @), 37)
From the fact that f, € %,, we get _ |
1@+ D @A) = [al, WG, (3.:8)

Regarding vr“ (@, )as a measure in A and ’oakmg integrals for both sides of (8.8), we
obtain

[ 7@, @@ +1[ 2%, W L@ @1=] 6 WG

Summing for @ from O to n—1, we obtain(8.7). Letting n—>co in both Sides.of (8.1,
we know that(8.6)holds for e € H, - ~
Lemma 8.8. Let fo €A, For each \>0, put

£ =Fo) =A™, -, d)Fo(@), (3.9)



274 ' .. OHIN. ANN. OF MATH. . Vol. 4 Ser. B

where p® (A, , A)(A>0, e € H, AE€&)is defined by[10, Lemma 1.4]. Then f, is the

grea;test lower bound of{ fo}'m B, : }
- Progf From the fact that FoEB, for eaoh 8E H we have

0<[aa, o, d)fo(®) <jav<w ) $(9) =Fo(®),
and for each # € H\ H, we have

[=@, o, o) =0=1o),
hence BB, From Lemma 1.8 we know that the limit

tim[w, -, dg)fole)

exists and it 1s the greatest lower bound of { for in 95’;» Pub
' P2, @, A) = S(w A) [}\.—i—q(m)]‘l

P, 0, &) = 3 [0, 0, )P (4, y, 4),
oo | Cm=1, 2, e, ' : S
It follows that
8 D)= [P0, 6 D@06, 4)= [P0, 5 ), 4

jpn-lcx %, dy) m+q<y>16<y, A)

=) ”‘1(?~ w, dy)@l(?/, A) , .
=m—1<x s, A)+f H(x o, oby)q(y)—i—av (x o, A)
| '--‘ P, o, dy)a(y, 4). -

foe,,”é’ we have _
fo(@) =1 j PG, 5, dS0)+ [, P, 5 W@

| [0, 5 W@~ [, P, 5 @)
[ @0, 7o) =1 [P0, 0, afots) + [0, 2, )0

| +(‘ # (0, BT+ (9)1 ja<y, az)[mq(z)]ia(z 4

(3.10)

(8.11)

(3.12)
Regarding both s1des as measures in A and takl,ng 1ntegra1s for fo, from the fact that

(8.13)

Letting n—>o0, from [4 Theorem 4.1]and[6, Appendlx Lemma, 11]we obtain(3.9).
Deﬁnltlon 34 The typwal map of % into @L is the map which senols the element

fo€ B inio the dement f, € B, defined by(3.9).
Lemma 3.56. Let fo€X. Then the typfwal fwnwges fa, (?\.>0) satzsj’y

| fa(-)—fv(~)=(v—?»)jl?m‘“(?» W) - <v—>»>ij<v AN

(3.14)
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Proof From(8.9) and the fact that Pmi (A @, A4) satlsfy the resolvent equation,
we geb the first equality in(8.14). Exchanging A-and »; we obtain the second equality
in(3.14). '

Corollary. fz__O For some A>0 is . egmwlent to f,h_O for each A>0. If’or ewch
fixed 2 € B, fi.(w) (A>0)is a cont'muous funcmcm on (O 00), . .

Definition 8.6. 4 functwn fER is called passive if for some and conseguently
for each A>0

F@=A[P0, 6, 4 f@) (@ED).. L (3.15)
" Lemma 3.7, Let fLE B, and let foeﬁ’ be the canondcal, /omage of f,, Tben
S =fo() - fomm@ : dy)fo(y) R R

 Proof Pu
, B =foY =3[P0, - ) o).
From Lemma 8.8 we know that f, is the greatest upper bound of { fo} in. ,%
From (8.6)we got f1,<<fo, hence f3<<fh. By induction
fwrc, mp@<[wc, wf@<p
Letting n~>co we obtain that fo is the common canonical 1mage of fZ and fx Thus

fi—fL€E %, and his canonical image is zero. From (3.6)we have f,=f}.
Lemma 3.8. For an foégé’ to be the canongcal 'z,mwge of

F(+) & o) = ijmm(x , W),

it 4s necessary and sufficient that thefre emsts no passwe non- null g E%‘ such that g<< fo.
Proof From Lemma 8.8 we know that f, is the greatest lower bound of {fo} in
#,. ‘Lot f; be the canonical image of f,. From Lemma,. 8.7 we have . ‘

o= f () =2 PoGa, -, dy) (fo=10) @).

Olearly f5 is the least upper bound f, in &, and fo= f,L Henee 0< fo fo<<fo. This
proves that fo— f; is passive. If there isn’t any non—null pa.sswe g such that 9=<fo,
‘then fo Ffo=0, thus fo=fo. 00nversely, if there ex1sts a pass1ve non—null geg%’ such
that g< fo, then we have ' -

F2() = (fom=0) ()= fomm &) o-0) @),
- hence fo— g=fi. We. W111 denote the canonical image of f, by fi. From the fact that

fo is the least upper bound of {f.} in &, we obtain that fo—g>f5. From the fact that |

' g%0, we know that fo#fo, that is; fo is not. the canonical image of f,.

- Corollary.. The range of thé canonical-mapping from %, to B is independent of
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Put : ‘
X, () =lima"(p, -, ), - | | 3.17)

We will denote the canonical image of X, by X. From Oorollary to Lemma 8.8, it is
not difficalt o prove that X is the maximal element in the i'an'ge of cononical
mapping, therefore it is independent of A. We will dénote the set of sojourn ‘solution
in %,(# )by €.(¥). '
Theorem 3.9.
i) For each A>0, the range of the canonical mapping of %, coinsides with
B={fER: f<X}. . (3.18)
i) # (ﬁé’ N ¥ )is the isomorphic lattice of B,(%s). ' ' |
Proof i) Let f be an element in the range of the canonical mapping. From the
fact that X is the maximal element of the range of the canonical mapping, we obfain
that f € Z. Oonversely, let f € Z not be canoniosl image. From Lemma 3.8 we know
that there exists a non-null passive g suoh that ¢g<<f, hence g<<X. This contradiots
that X is a canonical image, therefore f is a canonical image. '
il) From(8.16)and i), it is easy to prove that the canonical mapping is a one to
one mapping. Denoting the canonical images of fi, f:€ %, and f7Uf3 by f3, f5 and f,
respectlvely, we have ‘ '

fo) =lim(w (e, dy)lim (670, 9, d2)+ Cmax( 3, DI

- ;meoo)

>lim|ar(-, dy)lim (3, 9, d)F4)

n-»00,/

~lim[a"(:, dy)fi() =f4(+), i=1, 2,

. T N0 )

h’énce v
|  fo>fiUS, o | (3.19)
Conversely we have _ :
[aa, -, dpymaxisl, £@<[aC-, dp)mex(s, 13 @),
Letting n—>00 We obtainr |
. fi UAI<SiUSS.
From the fact thab f, is the least upper bound of {fiU f%}m %, we obtain f,<< fsUf2.
Denoting the canonical image of f3 N f2 by fo, from(1.8) we obtain
Jfo=(fot+ D) — (UM =fNSMAR
. From Theorem 2,16, (2,25), it is not difficult to prove that ¥NZ is the 1somorph1c
" lattice of %}, : : _
Theorem. 8.10. (Basic Lomma). Let f5€ Bt ET)be a family of non-null éojourn
- solutions, If for t+s f4N f3=0, then for every fived t€T and A>0 there ewist o, n=
1, 2, -, such that




No. 3 FELLER’S BOUNDARY IN ABSTRACT SPACES 277

s 1, s=t, _ :
f,,(mf,)»{ 0 oat " (3.20)
where i, € €, is the typical image of f}, |
Proof From Theorem 2,12, we know that for every ¢ €T there exist o}, € B, n=
1, 2, «-, such that ' I
folaty>n/(n+1), n=1, 2, -
From Lemma 8.5, we know that f4<< f% for A=A/, Hence for every fixed A>0, for
every positive integer n>>A we have
1=filah) =filal) >n/ (n+1)->1, n—soo,
From Theorem 2.18 iv)and the fact that for s#4, f5Nf5=0, we obtain that for s+,
fo+1b is a non-null sojourn solution. Therefore for every A>0 we have
0< fi(an) <1—fi(ah) >0, n—>o0,
From the fact that P™"()A, », A)satisly the resolvent equation, we have

Z() =T+ (=) [P, -, T =0,  (3.2)
where - '
Z)(+) 21 —=AP™(}, -, B), ' (8.22)
Hence for every fixed « € H, AP®2(}, «, B)<A P=()/, ., B) for A>A">0. By the
norm condition we have 1=>AP™® (A, », E)=0, therefore the limit function
X°(+) <lim APRR(h, -, ) - (3.23)
A
exigts, -
Letting »—0 in (8.21), from (3 22), (3.28) and the dominated eonvergence

theorem, it is easy to prove
Lemma 3.11.

MPeRG, «, &) XO) = X0() (1>0), @.24)
Lemma 8.12. Let £, € B, for each A>0, denote the typical image of fo in B by
fa Then
Sutfo (A0), - | (8.25)
Proof From(8.14)we obtain f, 1 (A | 0). From (8.9)we have

fo i‘.llm fa,< fo ' : (8.28)
Obviously 0< fo<<1 and for € B\ H | | g
 [wte, wf@)=0=f1@.
From the dominated convergence theorem and the fact that f, & %,, we have for s € H
[, do)foly) =1mDta(@)10@) - [mh, @, W)FW) =Fo (@),

Hence fi & # is an upper. bound of{ f,}in #. From (3 26) and the fact that fo is the
least upper hound of {f,}in %, we obtain fo=Fb, T
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Lemma 3.13. If 1, M«th n=1, 2, .-, ,u,,,?,u,, fEVE,, then
lim de)f@) fu(«zwv(w) S
Pa"oof Put Vo=lho, Vp==Hn=Mn-1 (n>1) F.rom [e, Append1x Lemma 9] We have
0 () () = 3 [, s j go vy (@f(w) - [wa@or@.
Put '

X4(-)= [Pm*n(x  WL@-1@ B G
Theorem 3 14 0<X 4<1 (A>0)and the Vimit functzon' : '

| XA( ) thA( ) S (8.28)
ewists. Furthermore L | R
X..(0) +AP™ (2, o, E) +f‘1"‘“"“_ @, , dy), [e(y) —q(y, B)]1=1

A>0,2€B), . - (8.29)
| X+ X4 X4=1, (8.30)
Pq'oof From (8.11)we have )

ARG, o, D[P0, o, ) [q(y) o, B +0, B

'=au"+1(x @, E)+2fav”(?» @, dy) [?»+<;/(fy)]‘1

o wiran- ~[3w0, o W11, B
—Zav"(?\, , E)——Zav(?\. @, E) 3 (z, E) 1

. Letiing n—>oc0, from[3, Theorem 4.1], Lemma 8.18 and (3.17) Wé“"obtai‘n (3 29).

Letting A | 0, from Lemma 8.12 and(3 23) we obtain (8. 80) and (8.28). From (38.29)

we know. that 0<X4< <i, : - : - ¥
Lemma 3.15.

X40) = XHC) = Qo= [P0, < @) X2 Gy w0, (3.1)
‘ X=X P, - X, @
Proof From the fact that Pmin(),, A) satisty the resolvent equation, we have -
X4() = XEC)+0om ) [P0, +, ) XSG, :
=i, d) PG, )+ G [ P, AP, )]

[g(®) =9y, B)]=0 (A, u>0), | « ,
“This ‘proves: (8.81);: Letting | 0 on both sules of - (8. 31), from . (3 28) and the

 dominated convergence theorem we obta;ln (3. 82).
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Theorem 3 16 If Ni E %, w, EH, n=1 2, such thwt
' J (@)1, n—>oc0, - (8.38)
then S : S . :
Pm‘“(?u @y, E)——>0 n—>00, : | (3 34)
P/roof Froin Lemma 2.1 we know that if(8. 33) holds then X, (m,.,)——a»l (n>00).
~ The assertmn follows from (3 29)

- § 4, Expfession of q—-progces'sesv sati'sfvyi'ngthe i
kolmogorov backward equatlon When q(a:)
| q(w, A) is ﬁmte o |

‘Definition 4:1.. A g-pair q(z)—q¢ (s, A) is ca,lled findte. (m) 8f for some.and
consequently for each A>0, the dimension of éé’,b is finite (m) _ 3

Lemma. 4, 2(Subst1’nut10n Theorem) Let f1, =, fu be a fam@lry 0 f Zmewlry
mdepemdent real fwnctwns ond let oy, -+, oa,,, be faomly of mzl numbers '

1) If g=§ afi and aE%O, then f1, ,fk—i; 9, fk-{-l; Y fm are meewrrlry mdepemdent

ii) For 1<3, k@hi, % b, fi,'-i-,- f,.——fk} SO (SR fm are lineaily independent.
Lemma 4.3. If f;, f2€ %, (0L>0), then T R
(fzﬂfa)ﬂ (fi=fiNfa) =0 (i=1, 2) 4.1)
Iff, 9, hE G, f<<g, gNh=0, then f Nh=0.
Proof For ea,ch ¢= 1, 2, we can fake 4, such’ that ’ohere ex1sts a representatlve
set B such that BCAiﬂ A2 and fy nfg—‘SB By Lemmas’ 2.15 and 2.16, we have R
(finfa) N i f1 Nfa)= SBﬂSA,\B—-O ' '
The second assertion is obvious. c
 Theorem 4.4. If the dimension m of B, is ﬁmu@ t'h'm' there e_a:q',sté a famiily of
sojourn solutions X3, , X such ihat "tke'y are a basis for B,, X ﬁn X {%O 'fbr i
and - |
o EXi : R (4.2)
Proof Let f4, o f,,(n<m) bo a basis for €. From the fact that £, is a
bounded closed sl in a finitely dlmensmnal subspace of the Banach space b &, we
obtain that 4B, is compact and convex. By Theorem 2.19 and Krein- Milman theorem,
wo know that %, is the closure of the convex hull of %,. Therefors each elemant of
%, can be expressed by a linear coﬁibinationof "fi', T f,,.’ This proves‘ n>m,-' honce
. 'We want to prove tha,t without loss of generality we can assume that f;n f,——
for ¢+4. ‘
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First, we want to prove that under proper adjustment we can assume fi[)fs=0.
If f1 N fa#0, then there exist real numbers s, -+, ay, such that at least one of them is

non-null and f1 nf2_'2 aifg oIf aﬁEO then substitute f1 nfg, fz "‘fi an for fi, fg

respectively. By Lemma 4.2, we know that f1 N fa, fa—f1Nfs, fs, ***, fm are linearly
independent. From Lemma 4.3, we have (fiNfa) n (f1—=f1Nf2) =0. By the same
reasons, we know that if ;=0 but a;#0, then the assertion is proved by substituting
fi—=Ff1iNfa, fiNfe for fi, fa respectively. If oy =oap==0, then there exists some S8<<h<<m
such that ay#0, The assertion is proved by substituting fi—f1N _fg, fin fz, fa for £y,
f2, fx respectively,

Secondly we want to prove that if there exist j"i, oo, fa(n<m) such that finf;=0
for i#4, ¢, j<n, then under proper adjustment we can assume that f,Nf;=0 for
¢#7, ¢, j<n+1.If f1 N frs1%0, then there exist real numbers ey, **«, a, such that at

least one of them is non-null and fiN f,.+1——~§1} o fi If ay, a,,+1~are not all zero, we
can adjust them referring to the case of f ﬂf2=0, If oy=o0i,1=0, then there exists
some n+2<k<m such that akaéOf If it .is not, then flﬂf,+1=§é‘, o fi. Put M=
max {Jal, 1}, Obviously M~[f1fy.] <g fur From(1.16), (1.15) and the fact
that f;Nf;=0 for ¢4, ¢, j<<n, we have

O<M(faNfu) <S:N (3} £) = Zfanfi0. |
This contradiots the fact that f1N fa.a#0. Substitute fi—f1iNfass, F1N fass, Fasz for
fi, Sns1, fu rospectively. Under the above adjustment, f; does not increase and fa, «-«, fa
remain fixed. Hence, under substituting »<(n for 1, the asserfion remain true. Thus
passing through the finite steps of adjustment, we can arrive at our purpose. We
denote these sojourn solutions by X3, ---, X7, |
Partioularly there exist real numbers ay, -, ay such that

X.() = aXi(). (4.9)
By Basic Lemma, for fixed positive integer i<<m we can take 4}, EH, n=1, 2, such
that

ety jzz (n>0). . 4.9)

Substituting o, for @ in (4.8)and letting n~>c0, we obtain a;=1. (4;2)is proved.
For fixed A>-0, we can take X3}, «--, X% satisfying Theorem 4,4. Let X3, ...,
X7 be their canonical images respectively. We denote the typical images of X3,
¢ in &, by X3, +-+, X respectively. From Theorem 3.9 they are sojourn solutions

satisfying Theorem 4.4.
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Theorem 4.5. Suppose that ¢(x) —g(», A) is ﬁmte (fm) P(?u w, A) (A\>0, &
B, A€&)is a B g-process[11.§ 1]4if and only if

PG, @, 4)=P™(, o, )+ XL@EU (>0, 2€ B, 4€),  (4.5)
where €L, ('z',‘ ., m)satisfy resolvent condition

B4~ (4) = (r— ;ojgz ()P (v, 3, A) (\, >0, o) (4.6)
and norm condition
o ML(B) <1, (4.7)
A B g-process is honest ¢f and only if q(w) —q(w, A)is conservative and the equality
in (4.7) holds for some A>0 and each i=1,
Proof i)If P(A, », A)is a B ¢- process, then P(A x, 4) =P, -, A) €%, for
A>0, AE&. From Theorem 4.4, we know that there exist real numbers &i(4), i=1,
., m such that(4.5)holds. By Basic Lemma we can take ¢} satisfying(4.4). For fixed
%, substituting gyt for  in (4 5) and letting n—»o0, by Vitali-Hahn-Saks theorem we
know £ €2,
if) Substltutmg P, o, A) in (4.8) for P(A, #, A) in the resolvent equatlon
from the fact that P™=(A, w, A) satisfies the resolvent equation, X3, «-., X7 are
linearly independent and for each ¢, X3 is coordinated, we obtain that P (7\, w, A) in
| (4.5)satisfies the resolvent equation if and only if £, -+, &y satisfy (4.6).
iii) By Bagic Lemma and Theorem 8.16, we know that P(A, #, 4) in (4.5)
satisfies the norm condition if and only if(4.7)holds.
COombining 1)-iii), we know that P(A, @, A) is a B ¢g-process if and only if (4.5)
~(4.7) hold.
iv) Suppose that ¢(#) —g(w, 4)is conservative and A&, (H) =1 for some A>0, each
, **», m. By Lemma 4.4 and (8.29), we have

MP(, o, H)=APUR(h, o, H)+3) Xi(z) =hP"(h, o, B)+X, () ~1 (wen),

=1

Conversely, suppose that the B g-process is honest. From [11, Theorem 1.6] we
know that ¢(2) —¢(w, A)is conservative, Obviously for each A>0 we have

APRR( o, H) A ﬁ;, X (o)L (H) =1,

Taking af, n=1, 2, «, =1, «+«, m satisfying (4.4), substituting 2} for « in the
above equality, letting m—>oco, from Basic Lemma and Theorem 8.16 we obtain
AEL(E) =1 for each i=1, «+, m
Definition 4.6. We call that Markov process P (¢, %, A)is honest for o€ B ¢ f
P(t, wo, B)=1 (Vt=0), . (4.9)
From the propeﬁies of Laplace transform, we know thab this is equivalent to that for
some and consequently for each A>0 the Laplace transform P(A, , 4) of P(¢, «, 4)
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satisfies : .
xP(x, wo, B) =1 | (410
Pnt
D)= {wEE X“ (z)>0, V@EI Xi(z) =0, VJEEI} Ic{l, -, m}, (4.11)
D, I)={s€ B, X\(x)>0, Vic I, Xi(z)=0, Vj¢ I}, m>o (4.12)
Lemma 4.9. For any fiwed Icz{1, +--, m}, in order that « € D(I) it is necessary
and sufficient that there exists A>0 () dependent of x)such that :
as€D(u, I),Vu<A, (4.18) -
: Prroof By Corollary to Lemma 3.5 and Lem_ina, 3.12, we know that for fixed ¢ =
1, - | , m, #€ B X} (&) (A>0) is continuons on-[0, o0), and X} (o) 1+ (A} ). Suppose
x ED(I ), then there exists A >0-such that |
0 X (o) < Xb(w), w<h, ¢€1,
. Xi(2)=0, u>0, i¢1,
This proves that there exists A>0 such that (4.13) holds From the faot that X ; (a;) T
% (@), we know that the sufficiency holds. L ‘
. Lemma 4.8. Suppose the conservative q-pair ¢(x) —q(a, 4) s _ﬁfnfite (m). For
any fiwed T {1, -+, m}, w>0 and € D(u, I), we have t_kdt o g-process P(A, @, A)is
honest for @ if and only if : R o
o . uwéi(B) =1, Vi€I, - - (4.14)
Proof Let (4.14) holds, From Theorem 4.5 and (3.29), we have that for each
2€D(u, I)

wP(w, @, B) =uP™ (u, o, E)+M§.‘. X3(0) () = P (u, @, H) +2X (=)

= WP, 2, B)+Xy(0) =1, |

Convérsely, let.'P(}\., x, A)be honest forSome _w\G_D(,u,', I). By(4.12),:(3.29) and
(4 5)we know thal

wPeR(u, a, E)+2X (W) 1= MP(w o, B)= MP’”’“(/«O, 2, E)+2 Xi(W)Mf”(E).

Hence ‘ _ ' 7 |
2 Xi(0) =2 Xulo)péi(H).
From(4.7)and the fact that X s ) >0(V®€I Y, we obtain (4.14) :
Theorem 4.9. . Suppose q(w) —gq(a, A)is ﬁmte (m) and consefrmtfwe P(A w, A)
is @ g—process, I {1, ---, m}, then '
i) either P(h », A) 4s honest for each we D(I)or P(?\. x, A) is d@shonest for each
s€D(I )
i) put -
’ 0(1) UD(J) N 1))

P(?\, @, A) is honest for each wEO (I) if and only- zf P, 2, A) is honest for each
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v € D(I).
Proof 1i)Taking fixed y€D(I), from Lemma 4.7 we know that for any fixed
zE D(I ) there ex1sts some 7»>0 such that ’

y, 2€D(w, I), Vu<i\ . '_ (4.16)

Suppose P(A, ©, A)is honegst for- y. From Lemma 4.8, we have -
péu(E) =1, $€1, p<h,

By Lemma 4, 8 we know that P(), @, A) is honest for 2. S1m11ar1y, if P(?\, w, 4) is
dishonest for ¢, “then for each w<A there exish i€ such that ugs(H)<1. From

Lemma 4.8 and(4.16), we know that P (A, @, 4)is dishonest in2. -

Ci) Necess1ty is obv1ous we want to prove the sufficiency part, Let P(?«. @, 4)be
honest for each # € D(I). From Lemma 4.7 and Lemma 4, 8, ‘we know that for any

fixed € D(I), p+J &I there exists some A0 such that

‘ eI =1, 6€T, p<hs @
For any ﬁxed yEO'(I ), there oxists umquely JcI suoh ‘that yED(J ) By Lemma!

4. 7, we know that there exists some »>>0 such that
N - yED(u, J), VO<p<min{A, »},
From (4.17)and Lemma 4.8, we know that- P(A, @, 4)is honest for .

Corollary. (Omterrwn on honesty) Suppose ¢(w) —q(w, A) ds finite (oﬁ) FOfr any/'

fized non-empty D(I) defined by (4.1) we take s € D(I), then a B g—process P(A, o, A)

is honest if and only if ¢(@) —q(w, A)is conservative and P (A, ©, A) is honest for every =

" @ chosen above,
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