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Abstract

There have been many results11-73 on seeking a periodic solution for systems of 
autonomous differential equations by using the torus prinoipl. The finest one amony them is 
still Liapunov’s method of rotating functions proposed by В. B. Nemytskii[3’4]. However, 
this method is limited in the case that the absolute values of derivatives of rotating functions 
are greater than some positive constants. This paper summarizes the methods proposed 
in[3-5] and gives a more careful criterion such that derivatives of rotating functions 
might be alternative functions. The author provides a sufficient condition of existence of 
a periodic solution for systems of autonomous differential equations by Using Liapunov’s 
method of rotating functions under more general circumstances.

§ 1. Introduction

There have been many results111-711 on seeking a periodio solution for systems of 
autonomous differential equations by using the torus principle1183. It ought to be said 

that the finest one among them is still Liapunov’s method of rotating functions 
proposed by В. B. Nemytskii in [3] and [4]. However, the method of В. B. Nemytskii 
is limited to the case that derivatives of rotating functions are either greater than 
some positive constants or smaller than some negative constants. In this papre we 

have summarized the methods proposed in [3—5] and given a more careful criterion 

such that derivatives of rotating functions might be alternative functions. Thus, we 

have provided a sufficient condition of existence of a periodic solution for systems of 
autonomous differential equations by using Liapunov’s method of rotating functions 

under more general circumstances.
Suppose
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For any fixed component g t( i= 1, 2, 3, 4) we can investigate any half-trajectory 

/ ( P ,  t> 0 )which has points out of gt, \fP£gi.
Without lossing generality, we assume P £ g x- For cases P £ g t(i= 2 , 3, 4) the 

proofs are all the same.
By the assumptions, the trajectory / ( P ,  t) passes through zero-points of Г  at most

✓ -'N
finite number- times. Now suppose these zero-points all lie on arc MN. Moreover, we 
may assume these zero-points all lie in the interior of MN  and points M and N  do 
not lie on the sections Sx and S2. By 0 = G U and 0 = 0 N we denote, respectively, the

A
sections on which M  and N  lie. By removing MN  from trajectory /  (P , t), the rest in  

g± is two arcs, and on the two arcs Г  has no zero-point any more. On the two arcs, by 
(3), G (t) is single-valued and strictly monotone function of t, i. e., t is a single-valued

function of О on the two arcs. Hence, the related expression can be rewrit
es dt

ten as

— (5)
dt

Assume 0 M< 0 N. Since there is no singular point in дХ) О is strictly decreasing and 

finally reach О as it extends from M  along the arc and strictly increasing and finilly 
reach + o o , as it extends from N  along the arc.

In what follows we come to show that the period, denoted by Ti, consumed by a 
particle passing through the arc of / ( P ,  t) which is located between M and 8X and the 
period, denoted by T2, consumed by a particle passing through the arc of / ( P ,  t) 
located between N  and S2, are all finite.

From (5) we have

4 1 .
Ou I fOu

d t\ < 1  ■
dO
dV
dt

where Lx is a positive constant, 

may be taken as the infimum of

Using (2), we know is continuous, therefore, Lx
ТГГ

defined on the arc of /  (P , t) located between dt
Sx and SM. Clearly Z ^ O , otherwise, either В has at least a zero-point on Sx or P  has 

at least a zero-point on the arc of f (P ,  t) located between Sx and SM. A ll these 

contradict the previous assumptions.
Similarly, we have

P 2 =
f+°° 7 I f+°° dO (+°° dG 1 f
L ^ r L l  dV “ J o .T T W

\ dt

'+~cza l
O * -  L2On < + 0 °>

where L2 is a positive constant, and it may be taken as the infimum of |P |  defined on 

the arc o f / ( P ,  t) located between SN and S2. Obviously, Z2 ¥»0, otherwise, P  has at



least a zero-point either on S2 or on the aro of f (P , t) located between SN and S 2. A ll 
these contradict the previous assumptions.

/^4
By T3 we denoted the period consumed by a particle passing through MN. 

Evidently, 2T3< + o o .
Hence, the half-trajectory / ( P ,  0) certainly has points out of g% when t> T x+

T2-{-T3,
Let Q be any point whioh lies on Si. By Lemma, Sx is a unilaterial conductive 

manifold out of contact with the vector field. Therefore, f(Q, i> 0 )m u st go into g% or 
g4 at once. For explicitness, we assume the direction of unilaterial conductivity of Si is 

pointed to that as f(Q , 0) penetrates Si from p4 to <jq. On the basis of the previous 
establishment, a fter /(Q , t> 0 )  goes into g± it w ill come out. we have already known 
f(Q , f> 0 )  does not penetrate the boundary of G(ca) and escape from G(cc) sinoe the 

boundary of G (cc) is an inward unilaterial conductive manifold. Thus, f(Q , #>0)only  

escapes from gx through Si or S2. Since Si is an unilaterial conduotive manifold 
whose direction of conductivity, by the previous assumption, is pointed to that as 

f(Q, t>0)  penetrates S i from y4 to glf f(Q , t> 0 )  only goes into g2 through S2. After 
f(Q , O O ) goes into g2, it w ill come out, and by the same reason, it  w ill penetrate S3 
and go into g3. F in illy , f(Q , t > 0) w ill go into y4 and penetrate Si at some point, 
denoted by 0(Q ), on Si. It can be seen that the function 0(Q) is a mapping from Si 
into itself. The solution o f ( l) ,  being of continuity and of uniqueness and S i being out 
of contact with the vector field definee b y ( l) ,  the mapping is single-valued and 

continuous. By the well known theorem of Brouwer, there is at least one fixed point 
B, i. e., f (B , t) is  a closed trajectory which is not contractible. The proof of Theoreml 
is completed.

It is not difficult to see that Theorem 1 can be extended as follows:
T heorem  %. Suppose Q (cc) having no singular point is a bounded and closed 

toroidal domain whose boundary is an inward unilaterial conductive manifold, and there 
is a Liapunov rotating function with respect to G (cc) . I f

i) on sections S i, S3 and S2t S4, i. e., on sections of surfaces A a= 0  and F 2= 0 with 
G (cc) , functions В and Г  have no zero-points, respectively,

ii) any trajectory of (1)passes through zero-point of Г  at most in a finite period;
iii) there is a section S0 that is homeomorphic to an (и—1) -dimensional ball and out

of contact with the vector field defined by( 1), then there is at least one closed trajectory 
which is not contractible.
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§4. Examples

Example 1. As an application of the theorems in  § 3, let us consider the following
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system:
= sy (R2+ ra—cd2) +  xy2+ yz2,dx

dt
<kj
dt

dt 2 ’

R2+ r 2fR 2-{
s4 —

■y2 ĵ—x2y —xz2, (6)

which is defined in a toroidal domain G (x) : r2< x 2+ y 2<:R2, — a < 2< a , where constants 
R > r> 0 , a>2R. Now we show there is at least one periodic solution of (6) which is 
not contractible.

1 . Consider the behavior of trajectories on the boundary of G(x) .

i) Since dz
dt

3 се.  л d%
,=-<* T ’~di — ——<  0, the vector field defined by (6) is 

A

pointed upward on the lower bottom and pointed downward on the upper bottom, 
ii) Let V*=x2+ y 2, then we have

Г B2H 
2

dV

1 dV* dx \ dy Г R2+ r 2 > a , ач 1--a>-^-+y-±- = 8xyI— T— - ( x 2+ y2) J.

пт dV*We can see —rr-> 0

dt dt 

s x2+ y 2= r 2', -< 0  as x2+ y 2= R 2. That is, on the insidedt ’ dt
cylinder of G(x), the vector field is pointed to that direction along which V* is not 
decreasing; on the outside cylinder of G(x) the vector field is pointed to that direction 

along which V* is not increasing.
To sum up, the boundary of G (x) is an inward unilateral conductive manifold.

2 . There is no singular point in  G (x) .  In fact, assume the contrary, that is, assume

xy2+ sy (R2+ r 2—x2) +  yz2 =  0,
2 ( R2+ r 2

— x"y — sx  ̂

a
■y<SJ — xz2=0,

— % + ’ 0,

(7)

then from the preceding two equations of (7) we obtain

xy(x2+ y 2) + s ( R 2+ ir2) (x2+ y 2)z2=Q,

namely

I (S a+ r a) ( - f - + ! / a)

1)

za=  —xy- x2+ y 2
Thus, in  G (x) we have

i. e., 1251 < R . By the third equation of (7)we know z = ^ > R .  As a consequence, (7) 

is not consistent.

' 1). In  fact, it. is the. zero-point surface of Г, see (9).
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a.

Then

We try to construct a Liapunov rotating function
j r _  F 1(cc, y, g) _  со 

Fsi®, у, *). У'

ху (ж2+ ya) +  s (R2+ г2) ( 4 г  +  у3 )  +  (ж2+ уа) г9
<xf (8)

В =  ауу +  8 (В2+  г2 — Ж3) +  Z2.

It is clearly B = s(R + r )  + za as ж=0; Г = -^ (Д а+та) 4-г2 asg/=0. In other words, В

has no zero-point on plane F1—0(x= 0), and Г  has no zero-point on plane
F 2= 0  (?/= 0 ) .

4. It can he seen from (8) that the zero-point surface of Г  is

<cy (xa+ y a) 4- s (P24-<ra) + y â  +  (xa+ ya) za= 0. (9)

Obviously, the intersection of surface (9) and Gf (ж) is not empty provided ж, у  have 
distinct signs and s is small enough.

We have already proved in  2 that in  Gt(x), for any point on zero-point surface
(9) of Г, \ % | < R  holds for ever. On the other hand, from the third equation of (6)

we know that any trajectory of (6) tends to % = ~ > R  as the period increases. There-
A

fore, for any trajectory of (6), after lasting some finite period, it has no intersection 
point any more with zero-point surface (9) of T .

Hence, by Theorem 2, there is at least one periodic solution in (?(ж) which is not 
contractible.

Example 2 . As an application of our theorems to a simple case, we come to discuss 
Nemytskii’s original example15, too.

Suppose

Jg. =  y + e3* P (x ,y ), '

^ - - - г г +s i&Q,(x,y), ■ 

* . - z + R ( x , y )

(10)

is a system defined in  a toroidal domain Gf (ж): г2<ж2+ у а<.Йа 0 If P , Q and 

R are continuous and satisfy Lipschitz condition in  г3<ж а+ 2/2< Р а, and in (?(ж) the 
following conditions are satisfied:

i) xP +yQ > 0  as xa+ y a= r a‘,
ii) xP +yQ <0  as xa+ y a—Ra;

1) In  [4] there is some wrong with selection and calculation of Г.
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iii) 0<B(x, y )< a ,
then there is at least one periodic solution in G (x) when s is small enough.

Similarly with Example 1, on the boundary of Gf (со) the vector field defined by
(10) is pointed inward. Construct a Liapunov rotating function

Y -  У> g) -  x
У'

Then

r - ^ + a i + e f e p - ^ ) ,
W

y  '
On F i= 0 (a ;= 0 ), B = l,  i. e., В has no zero-point on Fx=0. When x*fcO, we have an
estimate

\ r \ > ^ - s \ y P - ^ \ ,

since a3+ 2/a> r 9, ж2< Б 2. Moreover, y P —xQ is bounded in  G(co). Therefore, | jP | > 0  
provided в is enough small. In  other words, Г  has no zero-point in G(x) when s is 
enough small, i. e., in  G(x)  any trajectory of(10) does not pass the zero-point surface 
of Г.  By Theorem 1, there is at least one periodic solution.
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