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Abstract

There have been many - results™~" on seeking a periodic solution for systems of

autonomous differential equations by using the torus principl. The finest one amony them is
still Liapunov’s method of rotating functions proposed by B. B. Nemytskii® 4., However,
this method is limited in the case that the absolute values of derivatives of rotating funetions
are greater than some positive constants. This paper summarizes the methods proposed
in[8-5] and gives a more careful criterion such that derivatives of rotating funections

might be alternative functions. The author provides a sufficient condition of existence of

a periodic solution for systems of autonomous differential equations by using Liapunov’s

method of rotating funetions under more general circumstances.

§ 1. Introduction

There have been many results™~" on seeking a periodio solution for systems of

autonomous differential equations by using the torus principle™. It ought to be said

that the finest one among them is still Liapunov’s method of rotating functions
proposed by B. B. Nemytskii in[8] and [4]. However, the method of B. B. Nemytskii
is limited fo the case that derivatives of rofating functions are either greater than

some positive constants or smaller than some negative constants. In this papre we

have summarized the methods proposed in [8—5] and given a more careful criterion

such that derivatives of rotating functions might be alternative functions. Thus. we

have provided a sufficient condition of existonce of a periodic solution for systems of

autonomous differential equations by using Liapunov’s method of rotating functions

under more general circumstances,

Suppose
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T =fioy @) (=12, 0 @

is an n—th order autonomous system defined in some neighborhood of a bounded and
closed toroidal domain G'(z) CE(n~d1mensmnal Euclidean space), and the right hand

side of (1) satisfies conditions which guarentee the ex1stence uniqueness and continuity
of all solutions of (1)

§ 2. Preliminaries

1. In E" we call a bounded piecewise smooth surface dividing the space info two
connected domains (the interior and exterior) a torus “if the interior can be simply
covered by an (n—1)-parameter family of closed paths free from double points. By a
toroidal domain™® we mean the interier of a torus or sphere from which" ﬁmtely
many domains may have been removed. ' o A

In E* an(n—1)-dimensional double-faced manifold § | is called unilaterial
conductive™ if every field vector starting ab any point on § either is directed toward
a fixed side of S, or 1s tangent to S (at this tlme the tangent vector is nob zero) when
the field vector is very small in magnitude.

2. A function . _ :
| _Fy(oy, oy 00)

'Ii'2(w1; ...) wﬂ)
is called a Liapunov rotating function®®* Wlth respect 10 a closed toroidal domain
G (w)if the following conditions are satisfied:

i) Fy(wy, -, oa)and Fa(ay, -+, m,)are continuous differentiable in G (a);

i) Fy(w, o-.-, Tn) —tgpe Fa(wy, o+, @) =0 (O<¢<2av) is an equation of a surface
pencil whose axis is oub of G () and Whose surfaces have common pomts each other
only on the penéil axis; ' v o

iii) Every surface of pendil' Fi—tgp F2=O crosses G'(«) with two disjoint closed
connected domiains. One of them corresponds o go(<w), and another corresponds to
Po+. When ¢ continuously varié_s, the oorrespondin'g surfa,Ce of the pencil
continuously Varies, $00; | ' v :

'iv) Every point in G(a;)belongs to one and only one surfa,ce of the penoﬂ

If the property about angles is not too emphasmed then the equatmn of the
pencil may be written as F,— OFz—O At this tlme When 0 contmuously varies
throughout the following intervals

(=00, 0), (0, +o0), (—o0, 0)and(0, +o0),
wo obtain all surfaces of the pencil. - ; o ,
Oonsider the derivative of V (ay, -+, a;,,)by. méaﬁs of (1), ’nhat is
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oF4 oF,
o B n ;s N
dt ‘ F2(w1: ) w%)

Since along trajeotorieé of (1) we have Fi_g¢ (t), (2)can be rewrifiten as

P
oF, . OFy
' 2N Fa——7— L S '
w2 " ) g3ty o 200, ®
dt i ,
Besides, we have %o consider values of %— on surface V=0, i. e., surface Fi= 0. Then
we haVe" |
2 3F1
av - 2;' s, ! =B(wy, *+, @), (4)
dt |o=o0 7, Lo T .

§ 8. Narration and Proof of Theorems

To simplify our illustration, we use the following notations: By Sy we denote the
section of Lispunov layer-surface C=0 with G(») corresponding to p=0, by Ss
denote the section corresponding to p=m; By S, denote the section of la,yer-surfaoe

0= +-oo(—o0) with G(w) correspondmg to (p——— by S4 denobe the seotion corres-

pondmg to p= %—- Domain G- 2 S, is divided into four componen’ns By g: we denote

the component which is located between S; and 8.1 (85="51).
Theorem 1. Suppose G (&) having no singular point s a bounded and closed toroidal
domain whose boundary @s . inward unilaterial. conductive manifold, and there is a
Liapunov rotating function with respect to G(@). If |
i) On sections S, Ss and Sa, S, 4. e., on sections of surfaces F1=0 and F2—0 with
G(a) funct@ons B and I" have no zero-poins, respectively;
i) Angy trajectory of (1) passes through zero-points of I' at most finite number-
times; . - .
111) There s a sectfbon So that s homeomwph/w to an(n— 1) —dzmensrz,onwl ball and is
: out of conmct with the vector field defined bg/ (1) then there is at least one closed tmyectorry
which is not contractible.
Before estabhshmg the theorem let us ﬁrst state a lemma which can e easily
proved ’
Lemma. If functions I' amol B have no zero—pomt on @ prum,oa: Zayw-wface-
“section 8, then S is an umlaterml comluctwe mamfold out of contact: mth the wector ﬁeld
Proof of Theorem 1. ‘
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For any fixed component g;(¢=1, 2, 3, 4) we ocan investigate any half-frajectory
f(P, t=0)which has points out of ¢g;, VP Eg.

Without lossing generality, we assume PEg;. For cases PEg,(¢=2, 3, 4) the
proofs are all the same.

By the assumptions, the trajectory f(P, t)passes through zero-points of I" at most
finite number- times. Now suppose these zero-points all lie on arc MK, Moreover, we
may assume these zero-points all lie in the interior of MN and points M and N do
not lie on the sections §; and S;. By C=Cy and O=0y we denote, respectively, the
sections on which M and N lie. By removing MN from.trajectory f (P, ¢), the rest in
g1 18 two arcs, and on the two arcs I has no zero-point any more. On the two arcs, by
(8), O(%)is single-valued and strictly monotone function of ¢, i. e., ¢ is a single-valued

function of O on the two arcs. Hence, the related expression (g; ‘fg can be rewrit-
ten as |
&(0) =~ (®)
dt

Assume Oy <<Cy. Since there is no singular point in ¢4, O is strictly decreasing and
finally reach O as it extends from M along the arc and strictly increasing and finilly
reach oo, as it extends from N along the arc.

In what follows we come o show that the period, denoted by Ty, consumed by a
particle passing through the arc of f (P, t) which is located between M and S; and the
period, denoted by T, consumed by a particle passing through the arc of f(P, ?)
located between N and S, are all finite,

From(5)we have

Ou o« dO0 OM
rim|fy | <[ < Ti< e
Tdt

where L, is a positive constant. Using (2), we know —%—I{—- is continuous, therefore, Ly

defined on the arc of f(P, t) located between

may be taken as the infimum of i%[;-

8; and 8. Clearly L0, otherwise, either B has at least a zero-point on §y or I' has
at least a zero-point on the arc of f(P, #) located between §; and Sy. All these
contradict the previous assumptions, -

Similarly, we have

' 2o g0 (+e d0 1 (+=d0 1 |
To= f ’<f =fo,, IFIO<Z§LN"0?='LQON <o,

where L, is a positive constant, and it may be taken as the inﬁmuhn of [ I'| defined on
the arc of £(P, t) located between Sy and S,. Obviously, L;+0, otherwise, I" has at
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least a zero-point either on S, or on the arc of f(P, ¢)located between Sy and S, All
these contradict the previous assumptions. '

By T3 we denoted the period consumed by a particle passing through MN.
BEvidently, T3<<+ oo,

Hence, the half-trajectory f(P, ¢=0) cerfainly has points out of g, when ¢>T',4-
To+Ts,

. Leb Q be any point which lies on 8;. By Lemma, S; is a unilaterial conductive
manifold out of contact with the vector field. Therefore, f (@, t=>0)must go into g, or
g4 atb oﬁoe. For explicitness, we assume the direction of unilaterial conductivity of Sy is
pointed to that as f(Q, t=0) penetrates S; from g, to g;. On the basis of the previous
establishment, after f(Q, {==0) goes info g it will come out. we have already known
F(Q, t=0) does not penetrate the boundary of G(#) and escape from G'(z) since the
boundary of & (#)is an inward unilaterial conductive manifold. Thus, f(Q, ¢=0)only
escapes from g; through S; or S,. Since S; is an unilaterial conductive manifold
whose direction of conductivity, by the previous assumption, is pointed to that as
£(Q, t=0) penetrates Sy from gy to g5, £(Q, >0) only goes into g, shrough S,. After
f(@, t=0) goes into g, it will come out, and by the same reason, it will penetrate S,
and go into gs. Finilly, f(Q, ¢=0) will go into g, and penetrate S; at some point,
denoted by O(Q), on S;. It can be seen that the function 0(Q) is a mapping from S;
into itself. The solution of (1), being of continuity and of uniqueness and S; being out
of contact with the vector field definee by(1l), the mapping is single-valued and
continuous, By the well known theorem of Brouwer, there is at least one fixed point
R, i.e., f(R, t)is a closed trajectory which is not contractible. The proof of Theorem1
is completed. |

. Tt is not difficult to see that Theorem 1 can be extended as follows:

Theorem 2. Suppose G(x) having no singular point is @ bounded and closed
toroidal domain whose boundary is an tnward unilaterial conductive manifold, and there
is a Liapunov rotating function with respect to G(@). If

i) on sections Sy, Ss and Sa, Sy, i. 6., on sections of surfaces F1=0 and Fo=0 with
G (w), functions B and I' have no zero-points, respectively;

ii) any trajectory of (1)passes through zero-point of I' at most in @ finite period;

iii) there is @ section Sy that is homeomorphic to an(n—1)-dimensional ball and out
of contact with the vector field defined by(1), then there is at least one closed iragectory

which is not contractible.

§ 4. ‘Examples

Example 1. As an application of the theorems in § 8, let us consider the following
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system;
g‘: sy(R2+¢2-—w2) +a:y 2 y2?,
3 9 . .
-‘é—g=—sw(R :;Ir +y> oy—a, (6)
dz _ '
R

which ig defined in a toroidal domain @ (): r® <o+ <R’, —a<\#<Xq, Where constants
R>r>0, a>2R. Now we show there is ab least one periodic solution of . (6) which is
not contra,chble o

' 1 Consider the behavior of trajectories on the boundary of G@).

do _ Sa dz
dt 2= 2 >0’ dt 2=a 2

pointed upward on the lower bottom and pointed downward on the upper bottom.
ii) Let V*=a%4-y? then we have R '

1 4drr _ RB+’Y' e, .8
G dt+y dt_smy[ 3 (”+-“/>]

i) Since —— 9 <0, the veotor ﬁeld defined by (6) is

=12 dV 27 <0 as 2?+¢?=R? That is, on the inside

7
a =
cylinder of @'(w), the vector field is pomted to that direction along which Vs notb
decrea,smg, on the outside cylinder of G‘(w) the vector field is pomted to that direction
along which V* is not increasing.
To sum up, the boundary of G‘ (w) is an inward unilateral conductive manifold.

2. ’I'here 1s no smgular point in G‘(w) In fact assume the contrary, that is, assume

K +sy(R2 72 —a?) +42* =0,

R24-r? 9 N -
—o ry—saz( 5 +4? )—wz =0, , )

a -
-2 +v'§'=0,

- then from the preceding two equations of(7) we obtain
ay (@ +9?) + (R +r?) (y + 5 )+ (2®+y*2*=0
~namely

z"=—w?s(-32+:sl<y )

Thus, in G () we have

AP B pa
2 2 ?
e., |2/ <R. By the third equation of (7)we know z=%>R. As a consequence, (7)

is not consistent.

o . 1).In fact, it. is the.zero-point surface of I, see (9).
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3. We try to construct a L1apunov rotating function
F 1 (CU Y, Z) »
) F 2 (w Y; Z) y e
Then
' @2
wy (& +y?) + & (R*+r?) (7 +y9> + (@ +4yN) &
= ) e ’ ®
B= wy+s(32+fr ——w") +22,

It is clearly B=g(R+r)+2? as 0=0; I'= = (R” 7‘9) +z2 asy=0. In other words, B

has no zero~pomt on plane F1=0(z=0), and I" hag no zero-point on plane
Fa=0(y=0). |
4. It can be seen from (8)that the zero—pomt surface of 1" is

oy (4 97) + e (R?+19) ( +y ) + (@ +y?) P = 9)

Obviously, the intersection of surface (9) and G(z) is not empty prov1ded ®, ¢ have

distinot signs and ¢ is small enough.

We have already proved in 2 that in G(z), for any point on zero-pomt surface

(9) of I', |2 <R holds for ever. On the other hand, from the third equation of (6)
we kndw that any trajectory of (8) tends to z=—;—>R as the period inéreases_. There-

fore, for any trajectory of (8), after lasting some finite period, it has no intersection
point any more with zero-point surface(9)of 1.
 Hence, by Theorem 2; there is at least one periodic solution in & (@) Which is not
contractible. |
Example 2, Asan applmatmn of our theorems to a S1mple case, We come t0 dlscuss
Nemytskii’s original example®, too.

Suppose
7 =q-+e2?P(w, v),
L‘li_—. — o+ 50°Q (o, y), a (10)
d e
o 2+R(w, y)

is a system defined in a toroidal domain G (#): ¢9<w2+yﬂ<R2, 0<2<a. If P, @ and

R are continuous and satisfy Lipschitz co‘ndi’qi@n in r‘f’<ztf’ +y?<R?, and in G(x) the

following conditions are satisfied:
i) wP+yQ>0 as o*+-¢*=1r?;
ii) aP+9yQ<0 as 2?+¢*= R,

1) Imn [4] there is some wrong with selection and calenlation of I,
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iii) 0<R(x, y)<a,
then there is at least one periodic solution in & (#) when g is small enough.

Similarly with Example 1, on the boundary of G (x) the vector field defined by
(10) is pointed inward. Construct a Liapunov rotating function

= Fl.(w: Y, Z) =iv_
) F2(w; Y, Z) Y )
Then
2 2
I=22Y +s(yP-of),
ew?P

B=1+

On F;=0(w=0), B=1, i. e., B hag no zero-point on #;=0, When #+#0, we have an
estimate

sinoe 42 +¢2=>r?, o?<R®. Moreover, yP—aQ is bounded in & (¢). Therefore, |I'|>0
provided ¢ is enough small. In other words, I" has no zero-point in G'(») when g is
enough small, i. e., in G'(z) any trajectory of (10) does not pass the zero-point surface
of I', By Theorem 1, there is at least one periodic solution.
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