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Abstract

In this paper the ?.ilthor'cqnsiders the n~dimensional (»>3) unitary. gedmetry over
finite ﬁeld‘Fq,, where q is a power of a prime, The author takesthe set of all one-dimensional
non-isotropic subspaces as the set of treatments, and obtainsan association secheme and PBIB
designs with g associate classes, whose parameters are also computed.

§ 1. Ihtrodtiction |

In[1] Wan Zhexian et al constructed many associafion schemes and PBIB deugns
using isotropic subspaces of finite ‘geometries. Later, Wan Zhexmn also constructed
some association schemes and PBIB d931gns taking one-dimensional non-isotropic
subspaces of finite geometries over some small fields as treatments (se0[2]). In the
present paper, we extend the | unitary case in [2] from F, to Fyp, and obfain an
association scheme and PBIB des1gns with ¢ assooiate classes whose parameters are also
conputed. _

Let Fg denote the finite field with q? elements, where ¢ is a power of a prime. Tt
is well known that Fg has an automorphism with order 2

a—->a a?,

whose fixed subfield is ¥, ¥; and F* denote the mult1p11cat1on groups consisting of
all non-zero elements of Fy and Fe respeo’vlvely An nxnmatrix H over Fg is called
a hermitian matrix if H' = H. Let H be an n><n non-smgular hermitian matrix. An
nxn matrix T over Fp is called a unitary matnx with respeot to H if THT'=H.
All the unitary matrices form a group with respect to the matrix multiplication.
This group is called "the umtary group defined by H over Fqs and denoted by
U.(Fe, H). The totality of n—tuple '

(wl) {1}2; 0o wﬂ) a;,Gqu = 1 2 .....

forms the n~dimensional unitary spaoe over F, and is denoted by V,, (F =) Let P be a
m-d1mens1onal ‘subspace of V,.(Fq) and we also use P to denote the m X expressmn
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matrix with rank m of this subspace. The subspace P is called a (m, r)-type subspace
if the rank of the matrix PHP’ is r, and P is called a m-dimensional non-degenerate
subspace if r=m. The vectors # and y are called orthogonal if .H ¥ =0, and & is called
isotropic if w Hz'=0. Hence a (1, 1)-type subspace is also called an one-dimensional
non-isotropic subspace. We use P+ to denote the orthogonal éubspa,ee of P.

Every nxn non-singular hermitian matrix H is congruent to the unit matrix
I®, Hence U,(¥p, H) is isomorphism to the unitary group defined by I, Thus, in
the following statements we always take H =I®™ and denote the unitary group by
U, (Fq’) .

§ 2. Construction of association scheme and
computation of parameters

(A) Oonstruction of association scheme

Let n>8 and take the seb of all (1, 1)-type subspaces V', V1, Va, -of Vo (Fyp) as
the set of treatments. We denote ¥ and V', to be the ¢-th associates of each other by
Vs, Vo) =i |

Thus, we define the associative relation as folloWing:

(V1, V3) =1if they are orthogonal, i. e.

el -1

Wy, Vo) =1(2<i<<¢—1) if |

Vi\(V:\ (11
| (n)(n) =<1 ro>
where ‘.the eloment ¢ is the ¢-th (2<é<<¢—1) eloment of F}\ {1} in a fixed order;
(Vy, Vo) =g if

ve)G) -2)

Now, we pi'ove that it is an association scheme with ¢ associate classes. For 2<C
i<<¢—1, there exists a w € F}: with up=4 (cf.[1] p. 81) such that

wt Va\(Va\ (™ ) (11
I ) ()
therefore (V,, V1) =t(1<i<q) if (V1, Vo) =1.
Next, by the transitivity of the unitary group ([1] p. 87 Theorem 8), we can see
that n,(1<<4<<g) is independent of the choice of V.

Furthermore, suppose(V1, Vo) =i and (Vs, V,) =14, then there exists ' €U,(Fy)
such that
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)l
V2 V4
. Vi = V3T 3 Vz = V4T,
Henoce p¥, (1<%, j, k<Xq) is independent of the choice of V'; and V.

(B) Computation of the parameters of the association scheme
(1) Computation of v and n;(1<i<<q)

([1] p. 88 Theorem 4), i. e.

@ v=N (@, 4 m= Lo g, |
where N (m, r;n) denotes the number of (m, r)-type subspaces in V,(Fp). (see [1]
ch.3§4).

(ii) ny: For any V', ny is the number of (1, 1) -type subspace in VL. Because V is
non-degenerate, so V' NV+={0} ([1] p. 85 Theorem 2). Thus
n=1_ (_» 1) n-:l.‘
¢+1 o
(iii) 7, (2<i<q—1): Lot V' =<e>, where e, e, '+, ¢, is a basis of V,(Fy) satis-
fing ey =0, (4, j=1, 2, -, n). If (¥, V) =4, then we can suppose the (2, 2)—type

Vs

generated by ¥ and V', with V=<1 +Aeg), A#0. Thus

vV\(V\ (1 1
(Vs>(Vs> =<1~ 1+m>'
So, we have 1-+AA=4. But the equation AA=%—1 € F} has precisely ¢+1 solutions in
Fi4 ([1] p. 81 Lemma 1), therefore, there are ¢+1 such ¥, in B. We know that the
number of the (2, 2)-type subspaceg containing V" in ¥V ,(Fgp) is
N@,2mN{, 1,2 2mn) ¢ i— (D"

' - N, 1;n) ‘ g+1
where N (my, 743 m, r; n) is the number of (my, ry)-type subspaces which are
contained some (m, r)-type subspace (see [1] ch. 8 § 5). So

m=(g"*— (=1)"")¢"",
(iv) ng: By the equality

=N, 1;n—1) =2 g2,

n-~3
-,

Y=+ - +nq_1+nq+1,
we get n, immediately.
(2) Computation of pl, (1<, 7, #<q)

Vi

(i) ol let (V1i, Vy)=1and B=<V ), then jo}i iy the mumber of (1, 1)-typé

2

subspaces in Bt, so
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1 . | . e D) = q 2 ( 1>n—2 n=3

(i) ph,(C<k<<g—1): let (Vl, V)= 1 thus piy is the number of V', which satisfy
Vi, Vo=1land (V,, V) =h. By the formula for n;, we have 1mmed1ately
| o =" (=1)" g, B
(iil) 5 (2<j, h<g—1): lot V1=<e;>, Va={<eap. Now, we compute the number
of V'; which satlsfy V1, Vs)y=jand (V,, V) =Fk. Suppose

2=(y?)

If V,€ B, then V= e;+Aez>, A0, thus A catisfies
M=7j—1,

A#0,
It is clear that the number of those V, in B is ¢+1 if (j—1)(h—1) =1, is 0 if (j—1)
X (b—1) 1.
' Suppose VSEEB When V, Viand Vs generate a (3 3) —type subspaoe P, we can
[V '
suppose P=| Vo | with V=<1 +Asta+As8s), Aa#0, As#0. Thus Ay, A5 satisfy
VS

}“27\'2—‘"]‘0')

 Agha— ‘(9—1) (7“;1) -1 ’

Aa#0, g0,
Because the number of (8, 8)-type subspaces oontammg Bin V,(Fp) is
N3, 8 m)N (@, 28 8n)_ ¢?— (-1
N, 2 n) g+1 ¢
therefore the number of those ¥, is 0 if (J=1D)(k—1) =1, is (g+1)(g" 2 —(—1)") g3
if ( j—i) (b—1)+1, When V,, V, and V, generate @ (8, 2)-type subspace, we
A Vi | ( ‘
can suppose @=| ¥V | and V=<e;+Aea+und, A#0, w+0, where v is an isotropic
: 7. ' ,
vector in B-. We know that the number of the (8, 2)-type subspaces containing B in
Va(Fp) is

NG, 2 mNQ 28 20 _ (= (—1)”'2) (3= (=1)"2)
N (2, 2n) -1
Noticing the computation of ¥ in B, we can know that the number of those V' is
(g+1) (= (=1)* (" — (-1)*)
if (f~1)(B—1) =1, is 0 if (j—1) (h—1) 1. Therefore
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1
il =

{(9+1) [1+(q" = (=D (@t = (D], i (- (k-1 =1
(g+1) (g2 = (=1)"*) g, if (j—1) (h~1) #1,

(iv) pin(2<i, j, k<g—1): Let (Vy, V) =4 and y=<e, V= <1+ wes, where
wEFgp is a fixed element satisfying 14 up=4. Now we" compu’ue the number of V,
which satisfies (Vy, V) =jand (Va, V) = =k.

(@) f V,&€B= (Irj ), we may suppose Vy=<es+ Agegp. Thus k; satisfies
2 ) . : ‘ .

(1+iah) (L+pla) =L,
_ o M)
(1+M7»2)+(1+?»/~bs)=—,-f—-®'j+i+j.
Obviously, the number of the solution A; is equal to the number of the solution
which satisfies equations

v+g= T—@j—i—rb—i—], S
@
~4 ’
in Fe. Lot Fp=F,(0), where 0 satisfies an irreducible equation on ¥, : -,
X?3+aX +B=0, a0, 3)

Thus every « € ¥ is umquely expressed as w=A+»0, A, vEFq, and z=A+8. Put

Qg ———ig— and b,-jk—-:"]-g——zy i 4, then the equations (2) become

2Ah—ay = bw,
{ A2 —avA+ Br?= ai,k,
Lot g=p" If p+2, then (4) implies
bin— dtup= (& —48)7°,
Because (8) is' irreducible, so « —4,8 is an ‘mon-square element in F;. Hence the
number of tne solutions (A, ») of (4 is 0 if by~ 4%10 isa square in ¥y is 1 if 82—
40y, =0; is 2 if b3, —4ayy is an non-square in K.

If p=2, then from (4), we know that » =—b;%7“- and A satisfies the equation over F,
.7\,2+b o+ Bbv:zzrc"l"azaifk =0 (5)

When b,;=0, (5) has a unique solutmn when b,ﬂﬁéO put y= ._bZL then (5) becomes
ik

y*+y+c=0, where c=%+ Bugts ©)

. 6}70
Lot D(t) = t-+B+ #4442 , obviously D(#)*=D(s), Vt€F,, s0 D(e)=0 ot 1. It
D(c) =0, we take d € F; such that D(d) =1, then
y=do®+ (d-+d?)ct+ o4 (4 oo )™
is a root of (6) and y-+1 is the other. If D(c) 1, then (6) has no root (¢f.[8] p. 3)

@)
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We observe that D(¢+t2) =D (#1) +D(¢s) and D <-&'B-2—>=1. Thus the number of
the solutions (2, ») of (4) is 0 if D ( Qi )=0; is 1 if byy=0; is 2 if D( i ) ~1.

» ) ik 35k
We use the notation w (¢, 7, k) to denote the number of the solutions (A, ») of

(4), then the number of V', in B is just w(4, §, k).
(b) £V, ¢Band V,, Vand V, generate a (8, 8)—type subspace P, then we can
suppose Vs=.<81+7\‘262+7\:363>, As#0. Thus A2, Ag satisfy :

(L-+iha) (1 +phs) =L,

(L+ ha) + (L4 T =_’5.ki ik (E=1)Aghs, 0
Ag#0, |
Because there exist exactly ¢+1 A, which satisfy. the first equation of (7) in F.
COompare (7) with (1) and observe that (¢~1)Ashs#0, then we can see that there are
¢+1—-w@, §, k) A satisfing (7) in F,. Thus, the number of solutions (Ag, As) is
(g+1—-w(, §, k)) (¢+1). Referring to the corresponding calculation of pj,, we can
obtain the number of those ¥, is (¢+1—w(3, 4, k)) (¢"?— (~1)"¢"3,
() IfV&B, Vs, V1 and V, generate a (8, 2)-type subspace, referring to the
argument of pj;,, then we can see that the number of those ¥ is
w(i, §, k) ("= (=" ("~ (=",

Therefore . _
=0, j, ) [1+ ("= (=1)" ") ("2~ (-D"?)]
+(g+1-o@, §, £) (= (-1)"DHg"?,

where 2<%, j, k<<¢—1, in the case of char F,+2
0, if b3jn— 4y, is square of Fy,
o, j, B)=11, if b, —day, =0, |
2, if b}, — 4y is non-square of ¥y;
in the case of char Fp=2

|

0, if D (i
|2
CO(’I;, j) k>= 1) if blik=01

2, if D (g4 )~1,

ik

0,

where
a=—L, b= L~ +it+]
and
D(t) =442t vee +17
if.g=2%
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(v) The other parameters can be computed by the equalities
‘ P§R=P;ch q;J j} ]G=1: 2: e, 4
q s {nr"l, if’l;="i, .
= b, j=1, 2, =+, q;
lél DPsx n, if 'ilﬁej, » J 1 “ »
mp§k=njpgk; ?:; j: k=1) 2: 0y q,

§ 3. PBIB designs with ¢ associate classes

We take the set of all (m, r)-type subspaces (r<m, and n+r—2m=>0, n>8) of
V(¥ as the sot of blocks, and define a treatment ¥, ((1, 1)-type subspace) to be
put in some block B if V,CB,. Then by transitivity theorem, we can prove that it is
a PBIB design with ¢ associate classes whose parameters v, n, pf, (1<<4, j, #<Xq) have
been obtained in § 2. The other parameters are c

SR | L LB

II(¢*~ (=D TI (¢~ 1)
BN, 1im, rm) = Lol @01 (@ OV G (DY e

q2 —1 q2 —1 ‘ qg_ 1
_ b]g _ q2m - [ (qf — (_ 1) r) (qr—l — ( _ 1) r--i) +1] qﬁ(m—r)
=T =y
v (g—1)gq
n~1
it ( t
. ‘=”+:’!;‘[2m+1 (g ( 1> ) qr(n+r—-2m), .

11— (-9 T @*-1)
_ N(m, rm)N(2, 2;m, ryn)
B N(2, 2m)

n~2
. i __ __1 13 : -
= r~2t=n+1]~;[2m+1<q m(_r )) q(r—ﬂ)(n+r-2m)(1<,,;<q_1)o
IT (¢~ (-1)% TI (¢*~1)
_N(m, r;n)N (2, 1;m, r;n)
N (2, 1;n)

z‘=n+:7[;[2m+1 (g ( B DY

@09 T (e*-1)
,[ (¢ —1) (¢*m™ D~ 1) —(¢"— (-1 (g1~ (=1)r1) gim-or-4

M

A

r—1)ntyre—=2rm+3
q( )

¢—¢+q-1 |
~ &= (DN @ = (DD @ (D)) (@ (D7) aonny
¢~¢+q-1 |
(g~ (=D (g (11)"*) (@™ =1) cam-r-n
pr

- (q2(m—r) — 1) (qs(m—-r—l) — 1) ]
¢ —g+g-1 ‘




so6 ~ ' CHIN. ANN. OF MATH. - Vol. 4 8er. B

For example, if we take the set of (2, 2)~type subspace of V,(Fy) as the sob of
blocks, then the parameters of the PBIB design with ¢ associate classes are v, my, Pl
(A<, 4, k<q) asin § 2, and '

b= N(2 2%) (9’ = (=" (qn (= 1)” ), an=2),

RGeS ICES I
E=N(1, 12 2n) glg—1),
e l’_ﬁ’_ ("t (— 1)7»—'1)
v g+1 -
L M=1(1<i<g-1), Ag=

When g= 3 we have a PBIB des1gn w1th three assomate classes, whose parameters are

N2
7

. ,v=__z]-_(3n_~(__1>n_,3n— ;
. b= __31_2_ (3n - ( —1) n) (37»—1‘_ (___ 1) ',"1) 32:»-4’
k=8, - |
‘ r____(gn-l ( 1)n—-1> 3n—2

— ___ <3n—1 ( — 1) n-l) o 391—-2, .
—_ (3%—1 — ( 1) n—l) .37»-2’
Ph= —~(3”‘2 (-1 ") 803,
Fla= 37— (— 1)) 8, -
P%2=4[1+ (3%—-2_ ( : 1)7»—’-2) (3n— ( 1)n—’3)]
p§2=2[1+ <3n—2 ( 1>n—2> (3n~3 ( 1)n—-3) -+ (Sn—ﬂ_( 1>n~2) 3n—3]
A= ?\.2 =1, Ag=0,
~ The author would like to thank Professor Wang degxian for his guidance under
which the present paper was completed.: |
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