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Abstract

In this paper the author considers the n-dimensional (n>3) unitary-, geometry over 
finite field where q is a power of a prime,. The author takesthe set of all one-dimensional 
non-isotropic subspaces as the set of treatments, and obtainsan association scheme and PBIB 
designs with q associate classes, whose parameters are also computed. .

§ 1. Introduction

In [ l]  Wan Zhexian et al constructed many association schemes and PBIB designs 
using isotropic subspaces of finite geometries. Later, Wan Zhexian also constructed 
some association schemes and PBIB designs taking one-dimensional non-isotropic 
subspaces of finite geometries over some small fields as treatments (see [2]). In  the 
present paper, we extend the unitary case in [2] from F 4 to F^, and obtain an 
association scheme and PBIB designs with q associate classes whose parameters are also 
conputed.

Let F aa denote the finite field with q2 elements, where q is a power of a prime. It 
is well known that F aa has an automorphism with order 2

a —» a = a5,

whose fixed subfield is F g. F£ and F£« denote the multiplication groups consisting of 
all non-zero elements of F g and F g* respectively. An и x и matrix H  over F g* is called 
a hermitian matrix if H '= H .  Let H  be an n x n  non-singular hermitian matrix. An 
n x n  matrix T  over F^ is called a unitary matrix with respect to Л  if T H T ' — H. 
All the unitary matrices form a group with respect to the matrix multiplication. 
This group is called the unitary group defined by H  over F a*, and denoted by 
Un(Fq̂  H ) .  The totality of и-tuple

. •••, <vn), AG'Eci*, i = l ,  2, — >■n

forms the и-dimensional unitary space over "Eg* and is denoted by F„(Fgs). Let P  be a 
m-dimensional subspace of F»(Fe8), and we also use P  to denote the т Х и  expression
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matrix with rank те of this subspace. The subspace P  is called a (те, r) -type subspace 
if the rank of the matrix P H P '  is r, and P  is called a m-dimensional non-degenerate 
subspace if г —те. The veotors x and у  are called orthogonal if xHy'=0, and x is called 
isotropic if x H x '—Q, Hence a (1, l)-type subspace is also called an one-dimensional 
non-isotropio subspace. We use P x to denote the orthogonal subspace of P .

Every n x n  non-singular hermitian matrix H  is congruent to the unit matrix 
J (n). Hence R )  is isomorphism to the unitary group defined by I (n). Thus, in
the following statements we always take R = P n) and denote the unitary group by

§ 2. Construction of association scheme and 
computation of parameters

(A) Construction of association scheme
Let №>3 and take the set of all (1, l)-type subspaces V , V г, Vs, •••of F n(3Pg«) as 

the set of treatments. We denote V i  and Vs to be the i-th  associates of each other by 
(Vi, V s)= i.

Thus, we define the associative relation as following:
(Vi, Vs) — 1 if they are orthogonal, i. e.

(Vx, V s ) = i ( 2 < i < q - 1) if :
Vi 
Vs

Vi
Vs

1 1

where the element i  is the i- th  1) element of Fg\ {1} in  a fixed order;
(Vi, Vs) = #  if

Now, we prove that it is an association scheme with q associate classes. For ,2< 
i<,q — 1, there exists a with (cf. [1] p. 31) such that

therefore (Vs, Vi) != i ( K i < q )  if (Vi, V s)= i.
Next, by the transitivity of the unitary group ([1] p. 37 Theorem 3), we can see 

that » i ( K K ? )  is independent of the choice of F .
Furthermore, suppose(Fi, Vs) and (Vs, V i)= i ,  then there exists T £ U n(F<f) 

such that
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F i W F ,
v j  \V<

([1] p. 38 Theorem 4), i. e.
V t = v zT, f 2= f 4t .

Hence p)h (1<«, j, is independent of the choice of Vi and F 2« 
(B) Computation of the parameters of the association scheme 
(1) Computation of v and № j(l< K ?)

(i) v ~ N ( l ,

where N  (m, r-, ri) denotes the number of (m, r) -type subspaces in F n(IV ) . (see [1] 
ch. 3 § 4).

(ii) щ\ For any V , щ  is the number of (1, 1) -type subspace in V х. Because F  is 
non-degenerate, so F  П F 1 = {0} ([1] p. 36 Theorem 2). Thus

пг=Ы(1, l;w —1)
~n-l. (-1)И-1 -,n-2

q+ 1
(iii) — 1): Let F = <e>, where elf e2) • ••, en is a basis of F n(SV) satis-

fing = §w(i, j = 1, 2, •••, ri). If (F , F s) =  % then we can suppose the (2, 2)-type
subspace

F
F s

generated by F  and F s with F s=<ei+Ae2), Thus

/ F U W V  / 1  1 \
\ r , \ r ,  i  l + u

So, we have 1 + A \= i. But the equation ХХ=г—1£1Гд has precisely g + 1 solutions in 
([1] p. 31 Lemma 1), therefore, there are q + 1 such F s in B. We know that the 

number of the (2, 2)-type subspaces containing F  in F n(IV) is

N(2, 2; п)АГ(1, 1; 2, 2;n) _  g - 1- ( - l ) " - 1 ^  
iV(i, i; n) g + i  9 ’

where N (m 1} ri] m, r; ri) is the number of (mi, г*) -type subspaces which are 
contained some (m, r) -type subspace (see [1] ch. 3 § 5). So

Щ =  (S'”-1 -  ( - 1 )  ”-1) qn~2.
(iv) nq: By the equality

,и= % + ••• +Wg_l+Wa+1,
we get immediately.

(2) Computation of j, Jn<q)
( V  Л

(i) 'pl-i'. let ( F i , Fa) = 1  and B=  I ^  J, then ph  is the number of (1, l)-type 

subspaces in  B x,so
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1; П-2) _  ч \n—2( - 1 У gn-3
g+1

(ii) : let (F i, Fa) =1, thus is the number of F s which satisfy 
(Vi, F s) =1 and (Fa, F s) ~ k .  By the formula for % we have immediately

(iii) A < # -1 ): let F i =  <ei>, Fa=<e2>. Now, we compute the number 
of F s which satisfy (F i, F s) = j  and (Fa, F s) =  &. Suppose

If FsG B ,, then F s =  Яе2>, thus A, satisfies
%%=j  1,

й ‘ 1k - 1 ’
.ХФО,

I t is clear that the number of those F s in В  is g+ 1  if ( j —1) (h~ 1) =1, is 0 if ( j —1) 
x (k~ 'l) ¥=1.

Suppose V stfzB. W hen V s> V i  and Fa generate a (3, 3) "-type subspace P, we can

ГЛsuppose P =  Fa with Fs==<ei +X2ea+^звз>, к2ф0, ХафО. Thus X2> Xs satisfy
\ v j

x2x2 — —

X3X3-

k ’
( j - l ) ( f t - l ) - l

£
. Х2ф0, A,3 ^ 0 .

Because the number of (3, 3)-type subspaces containing В  in F„(®V) is
N {3, 3; n )N (2, 2; 3, 3;. n) _  <Ta- ( - 1 ) " " 8 „й_3 

N (2 ,2 ;r i)  q + 1 4 ’
therefore the number of those V$ is 0 if ( j  — l)(Jc — 1) =1, is (<? +1) (<T_2—( — 1) n~2) S'”-3 
if ( j  — 1) (A —1) Ф1. When F s, Vi  and Fa generate a (3, 2)-type subspace, we 

IV P
can suppose Q=j Fa | and F s='(e1+Xe2+ уы})>, ХФО, /л,Ф0, where 17 is an isotropio 

\F s
vector in Bx. We know that the number of the (3, 2)-type subspaces containing В in 
F„(3?ga) is

IV(3, 2; n )N (2, 2; 3, 2; n) (<7n~a— ( —l ) ”-a) (g,”' 3- ( - l ) " _?)
N(2, 2;n) q2- 1

Noticing the computation of F s in B, we can know that the number of those F s is
(g +1) (gn' a -  ( - 1 )  n"a) (дй“3 -  ( - 1 ) и"3) 

if ( j  — 1) (& — 1) =1, is 0 if ( j  — 1) (& — 1) =£1. Therefore
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1 и  if ( j - l ) ( * - l ) “ l;
Pi7e 1(? + 1)(<Гя- ( - 1 ) ,‘- ^ - 8, if ( j - l ) ( b - l ) + l .

(iv) р)к(2<ъ, j, h< g—l):  Let (F i, F 2) = i  and F i=  <ехУ, F 2= <ei+ where 
fj, £ E*a is a fixed element satisfying 1+ррь=г. Now we compute the number of V s 
which satisfies (F i, V s) = j  and (Vs, F*)=fc.

/ F i \(a) If F SG 5 =  I 1, we may suppose F s==<ei + A2e2>. Thus A,s satisfies

(1+рЛ2) ( l+ ^X 2)==-^-}

(1 + р>Л2) +  ( 1 + Xfjus) — —jr—  i j  ■)- i+^*,
(1)

Obviously, the number of the solution X2 is equal to the number of the solution со 
which satisfies equations

со-f-x —— ij  -b i  ~\~j, 
Ic

CMC = -^~
Ic

(2)

in ЗГвг. Let E e2 = F e(0), where в satisfies an irreducible equation on E e
X 2+ aX + /3 = 0 , «¥=o„ (3)

Thus every со £  Eq! is uniquely expressed as co=X+v9, X, г'бЕд, and co=X-\rv9. Put

(4)

%fc -H r-  and bm =  -y— i j+ i+ j ,  then the equations (2) become ю fc
2X~<xv = Ъф,

.Х2 — арХ+^р2=а1Л,
Let q =pb. I f  Р Ф2, then (4) implies

Ь%ь—4<%t — (a2—4/3) г̂2.
Because (3) is irreducible, so a2—4/3 is an non-square element in Eg. Hence the 
number of tne solutions (X, v) of (4) is 0 if  &*%—4aWfc is a square in' E£; is 1 if bfjk— 
4%й=0; is 2 if &«»—4%*, is an non-square in E*.

bIf p=2, then from (4), we know that v= —— and X satisfies the equation oyer Eg
a

x2+ ът х +  = =  o ,

.or ■ (5)

ЯWhen bm ~ 0, (5) has a unique solution: when bi№ф0, put y = -r— , then (5) becomes
VijlC

Г 4 2 / + с=0, where c = - 4 - + - ^ - .  (6)

Let D(t) =  #-Ha+ f4+ *"-H a*’1, obviously D (t)2= D (t) , V^£Eg, so D(o)=  0 or 1. If 
D(cj =0 , we take d £ E g such that jD(d) — 1, then

y=dc2+ (d+d2)c4+ ■••• +  (d+d2+
is a root of (6) and y+ 1  is the other. If D (c) =  1, then (6) has no root (cf. [3] p. 3).
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We observe that D(tx+t2) =D(h) + D (t2) and D -)=1. Thus the number of

the solutions (A, v) of (4) is 0 if D = 0; is 1 if bm=0; is 2 if =

We use the notation oi(i, j, Jo) to denote the number of the solutions (A, v) of
(4), then the number of Fs in В  is just w(i, j, Jo).

(b) If V g$ В  and V s, Fa and Fa generate a (3, 3)-type subspace P, then we can 
suppose Vs= (fix+ X2e2+ A3e3>, A3¥=0. Thus Aa, A3 satisfy

Because there exist exactly q + 1 A2 which satisfy, the first equation of (7) in F 9«. 
Compare (7) with (1) and observe that (i —1)A3X3=£0, then we can see that there are 
q + l —o}(i, j, Jo) X2 satisfing (7) in  F a«. Thus, the number of solutions (A2, A3) is 
( q + l—a>(i, j, Jo))(q+l). Referring to the corresponding calculation of p)b, we can 
obtain the number of those F s is ( q + l —a>(i, j , Jo)) (qn~a — ( - 1  ) n~a)qn~s.

(o) If  F sфВ, V s, Fa and Fa generate a (3, 2)-type subspace, referring to the 
argument of p)^, then we can see that the number of those F s is

(1+ fx,X2) (1+p,X2) = -^ - ,

(1 + jaAa) +  (1 + /лАз) (i — 1)A3A3<

. A3 Ф 0,

(7)

®(», l  h)(qn- s- ( - l ) n- a)(qn-s - ( - l ) n-s).
Therefore

Pi»-»(*, 3, *) [1+  C-l)"-3) ( - 1)"-*)]
+  ( ? + l- m ( i ,  j,

where 2 < i, j, lo<.q — 1, in the case of ohar F gâ =2

0, if Ъ%ь—4.ат is square of 3?*, 
o>(i, j, k) — • 1, if 64% -  4%fc=0,

2, if bf}7c— is non-square of
in the case of ohar F a8=2

where

and
D(t) =4+ta+ ti + — + ta'"

if 7=2*.
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(v) The other parameters can be computed by the equalities
i, j, * - l ,  2, —, g-,

jl, t r n{—1. if i= j ,
2  P % = \  ' gs»=i In*, if* -^ ,

***$»“ M b  *, i, * - l ,  2, —, q.

§ 3. PBIB designs with q associate classes

We take the set of all (m, r)-type subspaces (r< m , and n + r —2w>0, n> 3) of 
F»(Fg8) as the set of blocks, and define a treatment V» ((1, l)-type subspace) to be 
put in some block Bt if V s^zBt. Then by transitivity theorem, we can prove that it is 
a PBIB design with q associate classes whose parameters v, n() р}й ( l< i ,  j , Jc<,q) have 
been obtained in § 2. The other parameters are

b — N (m, г ; п ) ^ - '=и+г-г2т+1
П (^-(-D O

ry r(n+r-2m)
f iib— i •

Ц ( .* - ( - 1 ) * ) .Д  ( .* - 1 )

.= 1 .(1 ,  l ; „ ,  r;n) -  ^

q2m -  [ (gr -  ( - 1 )  Q -  ( - 1 )  г~0  + 1 ] ga(OT- r)
( f f - l ) ? " -1

П  ( . * - ( - 1 ) 0

ъъ

<=n+r-2m+l

«=1

y m — r

IK .*-(-1)0 IK .2*-1)' - t=i

„(•(n+r-Sm) 
2 i

. _  l.(m , r;n)N(2, 2;m, r\n) 
1.(2, 2;n)

Г — 2 пь—'г
П  ( . * - ( - 1 ) 0  П ( . 2* - 1 )
t= l " -

II (.*-(-1)0
t= n+ r~2m + l________________  д(г-а)Ся+г-а»»)(1,^^^^_^)

t-1

, l.(m , r ; n ) N (2, 1; m, r;w)
1^(2, l;n)

f f  ( . * - ( - 1 ) 0
t= n+ r—2m+l -Jr-l)n+rl-2rmi-3

m—r
П ( . * - ( - 1 ) 0  П ( . а* - 1 )

• [ " (flr_ (_1)r) (̂ "1_ (-i)'-o.4M-2'-4
_ (g --  ( - 1 ) 0  (g '-1-  ( - 1 ) 1- 1) (gr-2-  ( - D r-2) ( . ^ - ( - l y - 3)

q3 — q2+ q —1 y
„  ( . r-  ( - 1 ) 0 C.'-1-  ( - i ) r~0 ( .2(w,- r)- D

. - i
( g a(m-r) _  -j_) ( g 2 (m -r-l)  _  j

. 3 _ . 2  +  . _ l
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For example, if we take the set of (2, 2)-type subspace of V n(F 9a) as the set of 
blocks, then the parameters of the PBIB design with q associate classes are v, щ, pljle 
( K i ,  j, Jn^q) as in § 2, and

b = N  (2, 2 \n) =

M ( l ,  2;

(<7n -  ( - 1 )  n) ( q ^ 1 -  ( - 1 )  n_1)

n ) = q ( q - i ) ,

7ac«-a)

■r  _  m .- _  ( g ^ - c - D " - 1) w«-2
© g + 1  q ’

A g = 0 .

When g=3, we have a PBIB design with three associate classes, whose parameters are

©=.-|-:(Зп-^.(—i ) n'*3“-1,

b= J -  (3n -  ( -1)'*) (3”-1 -  ( - 1 )  "-1) 32n-4,

&=6,
r = i  (3»-i -  ( - 1 )  «-1) . 3й-2, '

: ■ % =A (3"-i - ( - i ) ”-l ) .3 ’i-a,

■'■■я* =  (З”"1 -  ( - 1 )  я-1) • 3n“2, 

i  (3”-2 -  ( - 1 )  • 3—3,

pl2= ( 3 « - 2 _ ( _ l ) » - 2 ) . 3 « - 3,

£>22 == 4 [1 +  (3n-a — ( — 1) ”“2) (3n_3 — ( — 1)B-3) ] ,
£>22=2[1+ (3n~a-  ( - 1 ) ”- 3) (8*~3- ( - l ) ”-3) +  (3я-2-  ( - 1 ) и-а) •sr*]j

hi=h>2 — 1, Яз=0.
. The author would like to thank Professor Wang Yangxian for his guidance under 

which the present paper was completed.

References

[  1 ] Wan Zhexian, Dai Zongduo, Peng Xuning and Yang Benfu, Some, researches on finite geometries and 
, incomplete block designs, Science Press, Beijing, 1966.
[ 2 ]  Wan Zhexian, Notes on finite geometries and the construction of PBIB designs. V I. Some association 

schemes and P B IB  designs based on finite geometries, Acta Scientia, Sinica, 14: 12 (1965), 1872—1876.
1 3 ]  Hirschfeld, J . W . P ., Projective geometries over finite fields, Oxford Univeresity Press, 1979.


