USING FINITE UNITARY GEOMETRY TO CONSTRUCT A CLASS OF PBIB DESIGNS

WEI HONGZENG (魏鸿增)

(Hebei Normal College)

Abstract

In this paper the author considers the *n*-dimensional $(n \ge 3)$ unitary geometry over finite field \mathbf{F}_{q^2} , where q is a power of a prime. The author takes the set of all one-dimensional non-isotropic subspaces as the set of treatments, and obtains an association scheme and PBIB designs with q associate classes, whose parameters are also computed.

§1. Introduction

In [1] Wan Zhexian et al constructed many association schemes and PBIB designs using isotropic subspaces of finite geometries. Later, Wan Zhexian also constructed some association schemes and PBIB designs taking one-dimensional non-isotropic subspaces of finite geometries over some small fields as treatments (see[2]). In the present paper, we extend the unitary case in [2] from \mathbf{F}_4 to \mathbf{F}_{q^2} , and obtain an association scheme and PBIB designs with q associate classes whose parameters are also conputed.

Let \mathbf{F}_{q^2} denote the finite field with q^2 elements, where q is a power of a prime. It is well known that \mathbf{F}_{q^2} has an automorphism with order 2

$$a \rightarrow \overline{a} = a^q$$
,

whose fixed subfield is \mathbf{F}_q . \mathbf{F}_q^* and $\mathbf{F}_{q^*}^*$ denote the multiplication groups consisting of all non-zero elements of \mathbf{F}_q and \mathbf{F}_{q^*} respectively. An $n \times n$ matrix H over \mathbf{F}_{q^*} is called a hermitian matrix if $\overline{H}' = H$. Let H be an $n \times n$ non-singular hermitian matrix. An $n \times n$ matrix T over \mathbf{F}_{q^*} is called a unitary matrix with respect to H if $TH\overline{T}' = H$. All the unitary matrices form a group with respect to the matrix multiplication. This group is called the unitary group defined by H over \mathbf{F}_{q^*} , and denoted by $U_n(\mathbf{F}_{q^*}, H)$. The totality of n-tuple

 $(x_1, x_2, \cdots, x_n), x_i \in \mathbf{F}_{q^2}, i=1, 2, \cdots, n$

forms the *n*-dimensional unitary space over \mathbf{F}_{q^2} and is denoted by $V_n(\mathbf{F}_{q^2})$. Let P be a *m*-dimensional subspace of $V_n(\mathbf{F}_{q^2})$, and we also use P to denote the $m \times n$ expression

Manuscript received July 20, 1981.

matrix with rank m of this subspace. The subspace P is called a (m, r)-type subspace if the rank of the matrix $PH\overline{P}'$ is r, and P is called a m-dimensional non-degenerate subspace if r=m. The vectors x and y are called orthogonal if $xH\overline{y}'=0$, and x is called isotropic if $xH\overline{x}'=0$. Hence a (1, 1)-type subspace is also called an one-dimensional non-isotropic subspace. We use P^{\perp} to denote the orthogonal subspace of P.

Every $n \times n$ non-singular hermitian matrix H is congruent to the unit matrix $I^{(n)}$. Hence $U_n(\mathbf{F}_{q^2}, H)$ is isomorphism to the unitary group defined by $I^{(n)}$. Thus, in the following statements we always take $H = I^{(n)}$ and denote the unitary group by $U_n(\mathbf{F}_{q^2})$.

§ 2. Construction of association scheme and computation of parameters

(A) Construction of association scheme

Let $n \ge 3$ and take the set of all (1, 1)-type subspaces $V, V_1, V_2, \dots \text{ of } V_n(\mathbf{F}_{q^3})$ as the set of treatments. We denote V_1 and V_2 to be the *i*-th associates of each other by $(V_1, V_2) = i$.

Thus, we define the associative relation as following:

 $(V_1, V_2) = 1$ if they are orthogonal, i. e.

$$\binom{V_1}{V_2}\binom{\overline{V_1}}{V_2}' = \binom{1\ 0}{0\ 1};$$

 $(V_1, V_2) = i(2 \le i \le q-1)$ if (

$$\binom{V_1}{V_2}\binom{\overline{V_1}}{V_2}' = \binom{1 \ 1}{1 \ i},$$

where the element *i* is the *i*-th $(2 \le i \le q-1)$ element of $\mathbf{F}_q^* \setminus \{1\}$ in a fixed order;

 $(V_1, V_2) = q$ if

$$\binom{V_1}{V_2}\binom{\overline{V_1}}{V_2}' = \binom{1\ 1}{1\ 1}.$$

Now, we prove that it is an association scheme with q associate classes. For $2 \leq i \leq q-1$, there exists a $\mu \in \mathbf{F}_{q^2}^*$ with $\mu \overline{\mu} = i$ (cf. [1] p. 31) such that

$$\binom{\mu^{-1}}{\bar{\mu}}\binom{V_2}{V_1}\binom{\overline{V_2}}{V_1}'\binom{\overline{\mu^{-1}}}{\bar{\mu}}'=\binom{1\ 1}{1\ i}.$$

therefore $(V_2, V_1) = i(1 \le i \le q)$ if $(V_1, V_2) = i$.

Next, by the transitivity of the unitary group ([1] p. 37 Theorem 3), we can see that $n_i(1 \le i \le q)$ is independent of the choice of V.

Furthermore, suppose $(V_1, V_2) = i$ and $(V_3, V_4) = i$, then there exists $T \in U_n(\mathbf{F}_{q^2})$ such that

$$\binom{V_1}{V_2} = \binom{V_3}{V_4} T.$$

([1] p. 38 Theorem 4), i. e.

$$V_1 = V_3 T$$
, $V_2 = V_4 T$.

Hence p_{jk}^i $(1 \le i, j, k \le q)$ is independent of the choice of V_1 and V_2 .

- (B) Computation of the parameters of the association scheme
- (1) Computation of v and $n_i(1 \leq i \leq q)$

(i)
$$v = N(1, 1; n) = \frac{q^n - (-1)^n}{q+1} q^{n-1}$$
,

where N(m, r; n) denotes the number of (m, r)-type subspaces in $V_n(\mathbf{F}_{q^2})$. (see [1] ch. 3 § 4).

(ii) n_1 : For any V, n_1 is the number of (1, 1) -type subspace in V^{\perp} . Because V is non-degenerate, so $V \cap V^{\perp} = \{0\}$ ([1] p. 35 Theorem 2). Thus

$$n_1 = N(1, 1; n-1) = \frac{q^{n-1} - (-1)^{n-1}}{q+1} q^{n-2}$$

(iii) $n_i(2 \le i \le q-1)$: Let $V = \langle e \rangle$, where e_1, e_2, \dots, e_n is a basis of $V_n(\mathbf{F}_{q^2})$ satisfing $e_i \overline{e'_j} = \delta_{ij}(i, j=1, 2, \dots, n)$. If $(V, V_s) = i$, then we can suppose the (2, 2)-type subspace

$$B = \begin{pmatrix} V \\ V_s \end{pmatrix}$$

generated by V and V_s with $V_s = \langle e_1 + \lambda e_2 \rangle$, $\lambda \neq 0$. Thus

$$\binom{V}{V_s}\binom{\overline{V}}{V_s}' = \binom{1 \quad 1}{1 \quad 1 + \lambda \overline{\lambda}}.$$

So, we have $1+\lambda\bar{\lambda}=i$. But the equation $\lambda\bar{\lambda}=i-1\in \mathbf{F}_q^*$ has precisely q+1 solutions in $\mathbf{F}_{q^2}^*$ ([1] p. 31 Lemma 1), therefore, there are q+1 such V_s in B. We know that the number of the (2, 2)-type subspaces containing V in $V_n(\mathbf{F}_{q^2})$ is

$$\frac{N(2, 2; n)N(1, 1; 2, 2; n)}{N(1, 1; n)} = \frac{q^{n-1} - (-1)^{n-1}}{q+1} q^{n-2},$$

where $N(m_1, r_1; m, r; n)$ is the number of (m_1, r_1) -type subspaces which are contained some (m, r)-type subspace (see [1] ch. 3 § 5). So

$$n_i = (q^{n-1} - (-1)^{n-1})q^{n-2}.$$

(iv) n_q : By the equality

$$v = n_1 + \cdots + n_{q-1} + n_q + 1$$
,

we get n_q immediately.

(2) Computation of $p_{jk}^{i}(1 \leq i, j, k \leq q)$

(i) p_{11}^1 : let $(V_1, V_2) = 1$ and $B = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$, then p_{11}^1 is the number of (1, 1)-type subspaces in B^1 , so

$$p_{11}^1 = N(1, 1; n-2) = \frac{q^{n-2} - (-1)^{n-2}}{q+1} q^{n-3}$$

(ii) $p_{1k}^1(2 \le k \le q-1)$: let $(V_1, V_2) = 1$, thus p_{1k}^1 is the number of V_s which satisfy $(V_1, V_s) = 1$ and $(V_2, V_s) = k$. By the formula for n_k we have immediately

$$p_{1k}^1 = (q^{n-2} - (-1)^{n-2})q^{n-3}.$$

(iii) $p_{jk}^1(2 \le j, k \le q-1)$: let $V_1 = \langle e_1 \rangle, V_2 = \langle e_2 \rangle$. Now, we compute the number of V_s which satisfy $(V_1, V_s) = j$ and $(V_2, V_s) = k$. Suppose

$$B = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}.$$

If $V_s \in B$, then $V_s = \langle e_1 + \lambda e_2 \rangle$, $\lambda \neq 0$, thus λ satisfies

$$\begin{cases} \lambda \overline{\lambda} = j - 1, \\ \lambda \overline{\lambda} = \frac{1}{k - 1}, \\ \lambda \neq 0. \end{cases}$$

It is clear that the number of those V_s in B is q+1 if (j-1)(k-1)=1, is 0 if $(j-1) \times (k-1) \neq 1$.

Suppose $V_s \notin B$. When V_s , V_1 and V_2 generate a (3, 3)-type subspace P, we can suppose $P = \begin{pmatrix} V_1 \\ V_2 \\ V_1 \end{pmatrix}$ with $V_s = \langle e_1 + \lambda_2 e_2 + \lambda_3 e_3 \rangle$, $\lambda_2 \neq 0$, $\lambda_3 \neq 0$. Thus λ_2 , λ_3 satisfy

$$\begin{cases} \lambda_2 \overline{\lambda}_2 = \frac{j}{k}, \\ \lambda_3 \overline{\lambda}_3 = \frac{(j-1)(k-1)-1}{k} \\ \lambda_2 \neq 0, \ \lambda_3 \neq 0. \end{cases}$$

Because the number of (3, 3)-type subspaces containing B in $V_n(\mathbf{F}_{q^2})$ is

$$\frac{N(3, 3; n)N(2, 2; 3, 3; n)}{N(2, 2; n)} = \frac{q^{n-2} - (-1)^{n-2}}{q+1} q^{n-3}$$

therefore the number of those V_s is 0 if (j-1)(k-1) = 1, is $(q+1)(q^{n-2}-(-1)^{n-2})q^{n-3}$ if $(j-1)(k-1) \neq 1$. When V_s , V_1 and V_2 generate α (3, 2)-type subspace, we can suppose $Q = \begin{pmatrix} V_1 \\ V_2 \\ V \end{pmatrix}$ and $V_s = \langle e_1 + \lambda e_2 + \mu \eta \rangle$, $\lambda \neq 0$, $\mu \neq 0$, where η is an isotropic

vector in B^{\perp} . We know that the number of the (3, 2)-type subspaces containing B in $V_n(\mathbf{F}_{q^2})$ is

$$\frac{N(3, 2; n)N(2, 2; 3, 2; n)}{N(2, 2; n)} = \frac{(q^{n-2} - (-1)^{n-2})(q^{n-3} - (-1)^{n-3})}{q^2 - 1}.$$

Noticing the computation of V_s in B, we can know that the number of those V_s is

$$(q+1)(q^{n-2}-(-1)^{n-2})(q^{n-3}-(-1)^{n-3})$$
if $(j-1)(k-1)=1$, is 0 if $(j-1)(k-1)\neq 1$. Therefore

$$p_{jk}^{1} = \begin{cases} (q+1) \left[1 + (q^{n-2} - (-1)^{n-2}) \left(q^{n-3} - (-1)^{n-3} \right) \right], \text{ if } (j-1) \left(k-1 \right) = 1; \\ (q+1) \left(q^{n-2} - (-1)^{n-2} \right) q^{n-3}, \text{ if } (j-1) \left(k-1 \right) \neq 1. \end{cases}$$

(iv) $p_{jk}^i (2 \le i, j, k \le q-1)$: Let $(V_1, V_2) = i$ and $V_1 = \langle e_1 \rangle$, $V_2 = \langle e_1 + \mu e_2 \rangle$, where $\mu \in \mathbf{F}_{q^2}^*$ is a fixed element satisfying $1 + \mu \overline{\mu} = i$. Now we compute the number of V_s which satisfies $(V_1, V_s) = j$ and $(V_2, V_s) = k$.

(a) If
$$V_s \in B = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$
, we may suppose $V_s = \langle e_1 + \lambda_2 e_2 \rangle$. Thus λ_s satisfies
$$\begin{cases} (1 + \overline{\mu}\lambda_2) \ (1 + \mu\overline{\lambda}_2) = \frac{ij}{k}, \\ (1 + \overline{\mu}\lambda_2) + (1 + \overline{\lambda}\mu_2) = \frac{ij}{k} - ij + i + j. \end{cases}$$
(1)

Obviously, the number of the solution λ_2 is equal to the number of the solution x which satisfies equations

$$\begin{cases} x + \bar{x} = \frac{ij}{k} - ij + i + j, \\ x \bar{x} = \frac{ij}{k} \end{cases}$$
(2)

in \mathbf{F}_{q^2} . Let $\mathbf{F}_{q^2} = \mathbf{F}_q(\theta)$, where θ satisfies an irreducible equation on \mathbf{F}_q

$$X^{2} + \alpha X + \beta = 0, \ \alpha \neq 0.$$
(3)
us every $x \in \mathbf{F}_{q^{2}}$ is uniquely expressed as $x = \lambda + \nu \theta, \ \lambda, \ \nu \in \mathbf{F}_{q}$, and $\overline{x} = \lambda + \nu \overline{\theta}$. Put

 $a_{ijk} = \frac{ij}{k}$ and $b_{ijk} = \frac{ij}{k} - ij + i + j$, then the equations (2) become

$$\begin{cases} 2\lambda - \alpha\nu = b_{ijk}, \\ \lambda^2 - \alpha\nu\lambda + \beta\nu^2 = a_{ijk}. \end{cases}$$
(4)

Let $q = p^{h}$. If $p \neq 2$, then (4) implies

Th

$$b_{ijk}^2 - 4a_{ijk} = (a^2 - 4\beta)\nu^2$$

Because (3) is irreducible, so $\alpha^2 - 4\beta$ is an non-square element in \mathbf{F}_q^* . Hence the number of the solutions (λ, ν) of (4) is 0 if $b_{ijk}^2 - 4a_{ijk}$ is a square in \mathbf{F}_q^* ; is 1 if $b_{ijk}^2 - 4a_{ijk} = 0$; is 2 if $b_{ijk}^2 - 4a_{ijk}$ is an non-square in \mathbf{F}_q^* .

If p=2, then from (4), we know that $\nu = \frac{b_{ijk}}{\alpha}$ and λ satisfies the equation over \mathbf{F}_q

$$\lambda^2 + b_{ijk}\lambda + \frac{\beta b_{ijk}^2 + \alpha^2 a_{ijk}}{\alpha^2} = 0.$$
 (5)

When $b_{ijk}=0$, (5) has a unique solution: when $b_{ijk}\neq 0$, put $y=\frac{\lambda}{b_{ijk}}$, then (5) becomes

$$y^{2}+y+c=0$$
, where $c=\frac{\beta}{\alpha^{2}}+\frac{a_{ijk}}{b_{ijk}^{2}}$. (6)

Let $D(t) = t + t^2 + t^4 + \dots + t^{2^{n-1}}$, obviously $D(t)^2 = D(t)$, $\forall t \in \mathbf{F}_q$, so D(c) = 0 or 1. If D(c) = 0, we take $d \in \mathbf{F}_q^*$ such that D(d) = 1, then

$$y = dc^{2} + (d + d^{2})c^{4} + \dots + (d + d^{2} + \dots + d^{2^{h-2}})c^{2^{h-1}}$$

is a root of (6) and y+1 is the other. If D(c) = 1, then (6) has no root (cf. [3] p. 3).

We observe that $D(t_1+t_2) = D(t_1) + D(t_2)$ and $D\left(\frac{\beta}{\alpha^2}\right) = 1$. Thus the number of the solutions (λ, ν) of (4) is 0 if $D\left(\frac{a_{ijk}}{b_{ijk}^2}\right) = 0$; is 1 if $b_{ijk} = 0$; is 2 if $D\left(\frac{a_{ijk}}{b_{ijk}^2}\right) = 1$.

We use the notation $\omega(i, j, k)$ to denote the number of the solutions (λ, ν) of (4), then the number of V_s in B is just $\omega(i, j, k)$.

(b) If $V_s \notin B$ and V_s , V_1 and V_2 generate a (3, 3)-type subspace P, then we can suppose $V_s = \langle e_1 + \lambda_2 e_2 + \lambda_3 e_3 \rangle$, $\lambda_3 \neq 0$. Thus λ_2 , λ_3 satisfy

$$\begin{cases} (1+\bar{\mu}\lambda_2)(1+\mu\bar{\lambda}_2) = \frac{ij}{k}, \\ (1+\bar{\mu}\lambda_2) + (1+\mu\bar{\lambda}_2) = \frac{ij}{k} - ij + i + j + (i-1)\lambda_3\bar{\lambda}_3. \\ \lambda_3 \neq 0. \end{cases}$$
(7)

Because there exist exactly q+1 λ_2 which satisfy. the first equation of (7) in \mathbf{F}_{q^*} . Compare (7) with (1) and observe that $(i-1)\lambda_3\overline{\lambda}_3 \neq 0$, then we can see that there are $q+1-\omega(i, j, k)$ λ_2 satisfing (7) in \mathbf{F}_{q^*} . Thus, the number of solutions (λ_2, λ_3) is $(q+1-\omega(i, j, k))(q+1)$. Referring to the corresponding calculation of p_{jk}^1 , we can obtain the number of those V_s is $(q+1-\omega(i, j, k))(q^{n-2}-(-1)^{n-2})q^{n-3}$.

(c) If $V_s \notin B$, V_s , V_1 and V_2 generate a (3, 2)-type subspace, referring to the argument of p_{jk}^1 , then we can see that the number of those V_s is

$$\omega(i, j, k) (q^{n-2} - (-1)^{n-2}) (q^{n-3} - (-1)^{n-3})$$

Therefore

$$p_{jk}^{i} = \omega(i, j, k) \left[1 + (q^{n-2} - (-1)^{n-2}) (q^{n-3} - (-1)^{n-3}) \right] \\ + (q+1 - \omega(i, j, k)) (q^{n-2} - (-1)^{n-2}) q^{n-3}.$$

where $2 \leq i$, j, $k \leq q-1$, in the case of char $\mathbf{F}_{q^2} \neq 2$

$$\omega(i, j, k) = \begin{cases} 0, \text{ if } b_{ijk}^2 - 4a_{ijk} \text{ is square of } \mathbf{F}_q^*, \\ 1, \text{ if } b_{ijk}^2 - 4a_{ijk} = 0, \\ 2, \text{ if } b_{ijk}^2 - 4a_{ijk} \text{ is non-square of } \mathbf{F}_q^*; \end{cases}$$

in the case of char $\mathbf{F}_{q^{*}}=2$

$$\omega(i, j, k) = \begin{cases} 0, \text{ if } D\left(\frac{a_{ijk}}{b_{ijk}^2}\right) = 0, \\ 1, \text{ if } b_{ijk} = 0, \\ 2, \text{ if } D\left(\frac{a_{ijk}}{b_{ijk}^2}\right) = 1, \end{cases}$$

where

$$a_{ijk} = \frac{ij}{k}, \ b_{ijk} = \frac{ij}{k} - ij + i + j$$

and

$$D(t) = t + t^2 + t^4 + \dots + t^{2^{n-1}}$$

if $q=2^{h}$.

(v) The other parameters can be computed by the equalities

$$p_{jk}^{i} = p_{kj}^{i}, i, j, k = 1, 2, \dots, q;$$

$$\sum_{k=1}^{q} p_{jk}^{i} = \begin{cases} n_{i} - 1, \text{ if } i = j, \\ n_{j}, \text{ if } i \neq j, \end{cases} i, j = 1, 2, \dots, q;$$

$$n_{i} p_{jk}^{i} = n_{j} p_{ik}^{j}, i, j, k = 1, 2, \dots, q.$$

§ 3. PBIB designs with q associate classes

We take the set of all (m, r)-type subspaces $(r \leq m, \text{ and } n+r-2m \geq 0, n \geq 3)$ of $V_n(\mathbf{F}_{q^3})$ as the set of blocks, and define a treatment V_s ((1, 1)-type subspace) to be put in some block B_t if $V_s \subset B_t$. Then by transitivity theorem, we can prove that it is a PBIB design with q associate classes whose parameters v, n_i , p_{jk}^i $(1 \leq i, j, k \leq q)$ have been obtained in § 2. The other parameters are

$$\begin{split} b = N(m, r; n) &= \frac{\prod\limits_{i=1}^{n} (q^{i} - (-1)^{i})}{\prod\limits_{i=1}^{r} (q^{i} - (-1)^{i}) \prod\limits_{i=1}^{m-r} (q^{2i} - 1)} q^{r(n+r-2m)}, \\ k = N(1, 1; m, r; n) &= \frac{q^{2m} - 1}{q^{2} - 1} - \frac{q^{2(m-r)} - 1}{q^{2} - 1} - \frac{(q^{r} - (-1)^{r})(q^{r-1} - (-1)^{r-1})}{q^{2} - 1} q^{2(m-r)}, \\ r &= \frac{bk}{v} = \frac{q^{2m} - \left[(q^{r} - (-1)^{r})(q^{r-1} - (-1)^{r-1}) + 1\right]q^{3(m-r)}}{(q-1)q^{n-1}} \\ \cdot \frac{\prod\limits_{i=1}^{n-1} (q^{i} - (-1)^{i})}{\prod\limits_{i=1}^{r} (q^{i} - (-1)^{i})} q^{r(n+r-2m)}, \\ \frac{1}{\prod_{i=1}^{r} (q^{i} - (-1)^{i})} \prod\limits_{i=1}^{m-r} (q^{2i} - 1) q^{r(n+r-2m)}, \\ \lambda_{4} &= \frac{N(m, r; n)N(2, 2; m, r; n)}{N(2, 2; m)} \\ = \frac{\prod\limits_{i=1}^{n-2} (q^{i} - (-1)^{i})}{\prod\limits_{i=1}^{r-1} (q^{2i} - 1)} q^{(r-2)(n+r-2m)} (1 \le i \le q-1), \\ \lambda_{6} &= \frac{N(m, r; n)N(2, 1; m, r; n)}{N(2, 1; m)} \\ = \frac{\prod\limits_{i=1}^{n-3} (q^{i} - (-1)^{i})}{\prod\limits_{i=1}^{r} (q^{2i} - 1)} q^{(r-1)n+r^{2}-2m+3} \\ &= \frac{\prod\limits_{i=1}^{n-3} (q^{i} - (-1)^{i})}{\prod\limits_{i=1}^{r} (q^{2i} - 1)} q^{(r-1)n+r^{2}-2m+3} \\ \cdot \left[\frac{(q^{2m} - 1)(q^{3(m-1)} - 1)}{q^{3} - q^{2} + q - 1} - (q^{r} - (-1)^{r-1})(q^{r-1} - (-1)^{r-3})} q^{4(m-r)} - \frac{(q^{r} - (-1)^{r})(q^{r-1} - (-1)^{r-3})}{q^{3} - q^{3} + q - 1} q^{3(m-r-1)} \\ - \frac{(q^{2(m-r)} - 1)(q^{2(m-r-1)} - 1)}{q^{3} - q^{3} + q - 1} \end{bmatrix}, \end{split}$$

For example, if we take the set of (2, 2)-type subspace of $V_n(\mathbf{F}_{q^3})$ as the set of blocks, then the parameters of the PBIB design with q associate classes are v, n_i , p_{jk}^i $(1 \le i, j, k \le q)$ as in § 2, and

$$\begin{split} b &= N\left(2,\ 2;n\right) = \frac{\left(q^n - (-1)^n\right)\left(q^{n-1} - (-1)^{n-1}\right)}{\left(q^2 - 1\right)\left(q+1\right)} \ q^{2(n-2)},\\ k &= N\left(1,\ 1;2,\ 2;n\right) = q\left(q-1\right),\\ r &= \frac{bk}{v} = \frac{\left(q^{n-1} - (-1)^{n-1}\right)}{q+1} \ q^{n-2}, \end{split}$$

 $\lambda_i = 1$ $(1 \leq i \leq q-1)$, $\lambda_q = 0$.

When q=3, we have a PBIB design with three associate classes, whose parameters are

$$\begin{aligned} v &= \frac{1}{4} (3^n - (-1)^{n} \cdot 3^{n-1}, \\ b &= \frac{1}{32} (3^n - (-1)^n) (3^{n-1} - (-1)^{n-1}) 3^{2n-4}, \\ k &= 6, \\ r &= \frac{1}{4} (3^{n-1} - (-1)^{n-1}) \cdot 3^{n-3}, \\ n_1 &= \frac{1}{4} (3^{n-1} - (-1)^{n-1}) \cdot 3^{n-3}, \\ n_2 &= (3^{n-1} - (-1)^{n-1}) \cdot 3^{n-3}, \\ p_{11}^{\Gamma} &= \frac{1}{4} (3^{n-2} - (-1)^{n-2}) \cdot 3^{n-3}, \\ p_{12}^{\Gamma} &= (3^{n-2} - (-1)^{n-2}) \cdot 3^{n-3}, \\ p_{22}^{\Gamma} &= 4 [1 + (3^{n-2} - (-1)^{n-2}) (3^{n-3} - (-1)^{n-3})], \\ p_{22}^{\Gamma} &= 2 [1 + (3^{n-2} - (-1)^{n-2}) (3^{n-3} - (-1)^{n-3}) + (3^{n-2} - (-1)^{n-2}) \cdot 3^{n-3}], \\ \lambda_1 &= \lambda_2 = 1, \quad \lambda_2 = 0 \end{aligned}$$

The author would like to thank Professor Wang Yangxian for his guidance under which the present paper was completed.

References

 Wan Zhexian, Dai Zongduo, Feng Xuning and Yang Benfu, Some, researches on finite geometries and incomplete block designs, Science Press, Beijing, 1966.

[2] Wan Zhexian, Notes on finite geometries and the construction of PBIB designs. VI. Some association schemes and PBIB designs based on finite geometries, Acta Scientia Sinica, 14: 12 (1965), 1872-1876.

[3] Hirschfeld, J. W. P., Projective geometries over finite fields, Oxford University Press, 1979.