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Abstract

In this paper, the authors inveétigate the ﬁzst boundary value problem for equations of
the form o )

= ___3_;_( t ou )_ iUy %, 1) _ ot o 1
I/u 3# awg a J(u) w} t) amj / . awi g(ul '”) t)
with . @ (u, %, $)6:£,>0.

An existence theorem of solution in BVl,é @) is‘prove’d. The principal condition is that
there exists 8>0 such that for any (x, t) €Qr, luj<M
a"(u, , #)éirﬂ% (aii(u, @, 1)§)*>0,

§1. Infrdduction

In a recent paper™, weo have studied. the global solutions of the first boundary

value problem for the quasilinear equation of the form.

L= 0 (g N2 e B
Lu= (¢ & Dgo) o F' 2 =g 2,8 (L1)

ot o
with ¥ =q" and
. & (u, @, 1)€£;>0, VUER, (v, ) €Qr, =&y, &, -, &m) ER™,
where QT.=.Q>< (0, T) and QC R™ is a bounded region with an appropriately smooth
boundary X. The boundary value condition and the initial value condition are
U zx0,1y=0" , 1.2)

| 4=0 =" (@) ‘ . (1.8)
respectively. Under certain conditions, in[1], the solvability was established in BV (Qr),
a class of all integrable functions whose generalized derivatives are measures with

and

bounded variations. » ' o
" In this paper, wo shall show that the conditions described in[1] for the existence
of solutions may be weakened: But with the weaker condition which will be stated in
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Theorem 1, we can only obtain the solutions in a more wide clags of functions, denoted
by BV, L (Qr) (see [2]), each element v(w, ) of which is integrable on Qr and satisfies

”lfv(w, t-+4t) — v (w, t)]dwdt<K[At|%,
Qc

”lfv(a;+Aw, ) — (@, §) |dedi<K | do|
(8
for some constant K. Here we sot v=0 for (#, ¢) EQp. Clearly BV (Qr) CBV,, 1 (@r).

The generalized derivatives of any function in BV, 1 (Qr) with respect to 4;(1=1, 2,

m) are measures with bounded variations, but in general, the generalized derivative
with respect o ¢ is not.

We shall assume that e¥(u, o, t) Fu, o, ©) and g(u, @, t) are appropriately
smooth for u€ER, (@, t) €Qr and g,, fM are bounded and % (#) is appropriately
smooth for # € Q. In addition, certain compatibility conditions will be assumed, namely,
uo (@) itsolf and its first and second order derivatives vanish on 3 and

.0, 2, 0) + (0, &, 0)=0,
Si={(=, ) €Zx [0, T], a"(0, », t)nn;=0},
Se={(z, ) €2x [0, T, ¢“(0, =, t)nn,;>0,

where n= (ny, +++, n,) denotes the inner unit normal on ¥. We shall assume that

S:l n‘§2=¢;

Let

- this means that , )
Sy=2;%[0, T, 83=23% [0, T]

with 21U 2y=2, 21N 2=,
- Ag in[1], the existence of global generalized solutions will he proved by means of
the method of parabolic regularization. Thus we shall consider the regularized equations

Oy 0 [ y _ 0 u
Lsu—‘ _"‘—“a y € A’Ms a % (a (us) Q} t) a w ) aw‘z f <u5) wl t)
=g, @, 1), (6>0) » (1.4)

with the conditions (1.2) and (1.8) and need to establish some estimates on the family
{u.} of solutions of these problems.It is well-known that under the conditions stated
above, for any >0, the problem (1.4), (1.2), (1.8) has a unique appropriately
smooth solution,

§ 2. Definition of generalized solutions

Deﬁnition._ A bounded function u € BV1,1 (Qr) ts said to be the generalized solution

of the first boundary value problem (1 1),. (1 2), (1.8), if the following conditions are
Sfulfilled: :
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1°) There exist functions ¢* € L*(Qr) (i=1, 2, -+, m) such that for any ¢ €O3(Qr)
j gt dodi= —” 2 R, 0, o dt—ﬁq,Rg,g(u, o, Hydwdi(i=1, 2, -, m),
Qr Or / (2
2.1)
where - RY(u, o, ©) =J: (8, o, £)dS,
2°) There ewists o subset Eo [0, T with zero measure such that for t € [0, T'] \ Ho,

as & function of », u is defined almost evevywhere on Q and

i | |u(e, ) —u(@) |do=0,

te[O.T]\Eo
3°) wu satisfies

H{Iu B 2L —sgm (u—B) 11 (x, o, g -T2
0

T

+ (P, 0 D =F 0, 0) L2~ (7ob, 0, 1)+0)p: | |dodt

+ogn b [[u G2y, o, 09— (£, 5, = Fk 5, )32

T

+ (Fulh, 0, ) +9)a |dodi— | Lsgn (ru—F) (49w, o, )

—A”(h 2, £)) Zﬁi n,-dadt-l—j j sgn k[A”(lo , t) a(pi

— A9 (yu, @, 1) ggz |nydo dizo, (2.2)
3

where AY(u, @, t) =L,“”(S; @, 1)dS, ¢, P€EC*@r), =0, @1]sx0,m=02|2x00,m,
supp g1, supp @22 % (0, T, .
By integrating by parts, (2.1) may be rewritten as ~
| T N \ ou )
i — 2] }) e 2.
ngp_g do dt jo ([, o o, 9 2 do)ds  (i=1, 3, -, m), (2.8)
where 7% (u, @, t) denotes the composite mean value of r¥(u, #, ¢) and u(w, #). (2.3)
means that for almost all ¢€ [0, T, 7 (u, , t)"aag" is equivalent to g*. Furthermore
_ ' 7
we can show that for almost all € [0, T, a%(u, , t)-%:— is equivalent to 7Y(u, @,
: i
)y’
&, 0, )2 =r¥(u, 0, 1), @9
35:;;

Obviously, a generalized solution in the sense of Definition 1 in[1] is also a gener-
alized solution in the sense of the above definition.

In a similar Way ag in [1], we can prove that (2.2) is equivalent to the total of
the following two conditions: |

a) w satisfies
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({12 —ste- o o 00 22

Qr

(P, o t) ~fi(k, o, t)')%’i%—— (Fo(k, @, 1)+9)ps |dad:

+sgn70”[u-%%2—— i (u, o, t)gf a% (f‘(u @, 1) f(lc », 1)) 8q)2

23

S 6 rOplia=0, ey

b) For almost all t€ [0, T']- o
| A (yu, x, H)nn;=0, a. 6. on Z, (2.6)
this means that .
yu=0, a.e,on S
and for almost all points of §; such that yu%O, one has
ai(8, @, HHn=0, VS EI(0, yu),
where I (e, 8) denotes the closed interval with endpoints & and 8.

§ 8. Estimates of solutions of regularized problems

Let u, be the solutions of regularized problems (1.4), (1.2), (1.8).
The first estimate we need follows from the maximum prinoii)le .
o ) <M o | (3.1)
for some constant M independent of &. |
- Lemma 1. The solutions u, of ¢egulwa~i_zed problems (1.4), (1.2), (1.8) satisfy
(2 e
8,{ 0 J‘ Z —aa_n—
where constants C, Oy are mdependent of & and grad u (Ugyy Uy *+*5 Usy,) o
Proof Without loss of generahty, we may assume that uy(w)=0. Let v; be the

j | grad Us | 3y @S,

dads+ﬁ (0, o, t)n,nj

solution of the prollem

64)1_8 i 3'1)1_A=+
222 (o5 VL)

@1!2—

V1 | 1=0 == O,
where

f f(w t)“'"‘“‘f(us: @, t>+g<'us; w t))

o[£ >0, —f, i f<0,
Fr= {,lff<o 7 "{o, if =0,

30)1
on .|z

Then by maximum principle, we have ;>0 in Qy, and hence

Similarly, for the solution v, of the problem .
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00 ( (s, @, 8)— 50s )‘—84’0‘2=f_a
i

ot o ‘

vg|5=0,

’Uzlt=o=0,

we have vy =0
on |z~ i

Sinoe w=w; — vy is a solution of the problem

o i(a” (s, @, T) —g—:—) — g %f,
j

ot 39;;
u,z'-:
u.t=o~"=0

by uniqueness, ;= v1— va.
Integrating the equation satisfied by v; we obtain

SUE 20, dO‘dS’—l-J’:La?"nmj Py dadS=j:ja f%d&-[ami(w, fdw,

Similarly o |
(f [ ove J Y 0v3 _ft{ »- -
8J0Jz on do‘dS—i—J LU R do‘ S'—J"’L’f daal _[9'02(“7; t)dw,
Therefore

dodS + Y I atngy; l —aé—@::— ] do dS

0113

8 ovy, J‘ J i3 . 6’{)1 th vy
<sj j dodS+| | oo Zidoas+o| | Tt dods

e

<01 -+ ngo ’ grad Ug l Lx(g)ds",

f L, (f++f")dwcéS4Ja(w1(w, ) +v2§c§, £))dw

Theorem 1. Suppose' S8:NS:=0 and a¥ (0, @, t) can be ewtended to a neighborhood
of Sy such that in this neighborhood

@(0, o, DEE>O, VECEN, (3.2)

Suppose there emsts a constant >0 such that for (w, ) EQT and |u|<M
a“s‘é,-—@s% (alif)*>0, VEER, | (3.3)

Then the solutoins us of fregularfized problems (1.4), (1.2), (1.8) satisfy
|grad U sy <M. - (8.9
j (o, -4t (o, 1) |do<K | 4¢|%, for 1, t—!—AtE [0, . CE

Here grad u= (uw,, Usyy ***, Ua,) and the constants My and K are mdependent of ER
Remark. Notice that (8.8) does not involve the derivative of o* with respect to :

t. Henoe it is always fulfilled, for example. if a¥(u, @, 1) =a"(u, 1). -
Proof Differentiate (1.4). with respect to #; and sum up for § from 1 up to m
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sgn, |grad _go_l_

after multiplying the resulting formula by w,, gradu] The integration over @

yields
sgn, | grad |
JQIQ(|gradu|)dw jI (|gradu,|)do— sj j (duty,) v zs—————————' Tu| dedS

(¢
- { 0 (@ U Uy, O, -+ @l ;) U, _s_gﬂ__lgmlr‘_‘l_wdg

0 0w, |grad u
I ‘ ’ sgn,|grad v/
JQ o CfillF o) |grad u| dodS

=r [ (_3___ )u sgn,|grad u| dwds,

0Jo\ omw, |grad |

By integrating by parts, we obtain
jaIn(Igradude j I (Igraduo(m)l)dw+J j 33 %, um,um,dwds‘

Uppar, A0 IS

oI J’ J’
14 7 _ tg
+f,Je XA N P v ags a&,

R < 0 afJ)uzj(]gradu|sgn,,|gra,d@|_ 1)dwds

JoJga 356;
(t(

- @ Us,, (| grad w|sgn,|grad u| — I,)dodS

NO.‘D
rt a
~Jola (8:1: )(lgradu]sgn,,[gradu[ L)dwdS
+af. 2L ndoas+| [ av 2o ndoas
o 2] oJ= 69},
+ ”t"‘ af;u,,I,,n;do'dS-l—rj filndodS
JOJ2 oJs
4 ot J‘ aﬁjuzjuxswnido‘ds
Jo |grad | |
T2 n 0 sgn, |grad u| .
: —4‘0.‘10[< 6@ %)+ 39}8 ‘q]ums Ig a«d’dl dedS (3'6)

As in the proof of Theorem 1 in [1], from (8.8) we may deduce
¢ 01 [t o°1,
14 n . 2
J’ jga a é:s a ép uﬁszjuxpﬁidQ;dS +J0 JQ @y uﬂj ags aép ’M_,;pz,w dS

0
t
>—BIOJQ |grad u|dedS

for some constant B.
Using Lemma 1, in a similar way as in the proof of Theorem 1 in [1], we can

estimate the five surface integrale in (8.6) by j.: |grad ©| ;s dS. Thus, letting 7—>0,
from (8.6) we can obtain
: J |grad u]dw<03+04jz L) lerad u| (w, S) |dw d8,

whence the estimate (8.4) follows.
It is remarkable that under the weaker vondition (8.8), in general we can not
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ou
ot

To prove this, we shall apply the followmg lemma.
Lemma 2",  Suppose u(w, t) i3 measumble on Qr, |u(e, 1) |<M and,

ou

obtain the estimate of or {—-
v@) ot

. what we can obtain is the estimate (8.5).
'@r)

J (u, do) = j lu(wtdo, £) —u(w, 1) |do<w(]|do]) 3.7
(For o+ 4w € Q, we set u=0). If for t, t+4t€ [0, T] and any Y (2) €03(Q)
[ 4@ @, t+4) ~u(@, )do| <O| 48| max( (@) | +[Ya(@) | + ),

(3.8)
then for ¢, t+4 € [0, T]

j (@, #+48) ~u(@, 1) |do< min (h+w(k)+"“ ). (3.9)

Here w(h) is a continuous increasing function which is defined for 0<Ah<<h, such
that »(0) = .
Now from the equation (1.4) which satisfied by w,, we have

| 4@ @, 1440 ~u G, 91do=] [ (02

-_-_-‘(:ertj e )[_ (a‘f SZ, )+84u8 2 +g]dwd'v

_ -Jt+AtJ l‘b%(w)( iy Oy 3% g: )da;dr

+£+At j P () ( + g)da:dz‘
Using the estimate (3 4) we obtain
IJ U (@) [us (@, t+48) —us (o, t)]dw‘<02|Atl mox(lt/J[ + ]l/fz,)
Olearly (38.4) implies

dr dae

j |ty (044w, 2) —up (v, 1) |do< Ly | do],

where M;=max (M, M;). Here we set 4,=0 for 2+ 4z & Q. Thus v, satlsﬁes (8. 7) with
w(h) =Mh. Aocordmg to Lemma 2, for ¢, ¢+ 4t € [0, T,
J [us(a; t+4t) —us (@, t) |do<<Oy n}lm [k+M h+ MtIJ K[At]'%.
O<h<ghg
Thus the proof of Theorem 1 is completed.
Using Theorem 1, ag in [1], we can obtain

[ jaff (e 2, 8) 2 Ny s g0 < M, (3.10)
[ ‘ awj ’
for some constant M, not depending on s. -
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§ 4. Existence of generalized solutions

On the basis of estimates (8.1), (3.4), (3:5), (8.10); we can prove

Theorem 2. Suppose the conditions of Theorem: 1 are fulfilled. Then the first
boundwrfy value problem 1. 1) (1 2), (1. 3) ims a generalized solution which is o limit
point in L*(Qr), of the famfbly {us} of solutions of reqularized pfroblems (1 4) (1. 2),
- (1.3). . |
Proof By Kolmogoroff’s theorem $hero ex1sts a subsequenoe {us,,} of {ug}, con-
verging both in Z*(Qr) and in L. (Qr) to some function u. Olearly |u|<M and for
almost all ¢€ [0, T - I

S

' o T
Jg'“(‘”’ b-d8) —u(o, &) [do<K|4|2,
j |u(w+Aw, 1) —u(e, t) |do<B;|do),
- in particular, uGBV1,1 (OF . _
Estimat (8.10) implies the weak oompactness of { Y (u,,, @, t) v } in L2(Qr).
. . j

6@;3” } itself weakly converges

J

in L2(Qp) and denote the Timit functmn by ¢'(@, t). Then for any (pEOo Qr)
U (pgida;dt—-hm”gw” (s, ®, t) au"" dao dt

T

" For simplicity of notation, we assume that {r" (%, @, 1)

=lim ”gy 2 Riu,, o, ¢)dodt— j j oRY (u, ©, §)dw ds
Qr Qr

€p—0

= §¢ B, 0, Odadi= | [oB (u, , Odds
n—> A - Qm.. v

- H_a_??__ RY(w, o, o dt—-”gnRg(u, o, H)dwdt (i=1, 2, -, m),
) .

Thus v satisfies the condition 1°) in the deﬁmtlon of genevalwed solutions.
- It is easy to prove that u satisfies the condﬂuon 2°) in the definition of generalized
solu tions. ' '
In order o prove that u satisfios the condition 8°), 1ot g €0?(Qr), p4=0, supp ¢,
cx (0, T), multiply (1 4) by @1 sgn,,(us k) and integrate over Q. By integrating
by parts, we obtain

I (us ]0) 3¢1 dwdt-}— sgn,,(ue . 70) aus .3('01-
B! [Jama-nl:

) 850,» ow; -
1} : i i
+a s ——_aw; +(f <_“", w, t)—fi(k, », t?)-—-awi ]dm dt
;o ous U | 4 Ous OUs _
+”sgn,, (us—F) (e %0 m, +a Fu; 0, )q;ldwdt

Qr
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] 7 0 )= 0, ) sl ) g dads

Qx

~ [ [semau—b) (1o, 0, D +9 0, 0, 0)pidads
. @Qr .

T
—sgn, kj J ( gz: +ai~" 2% )(pmzda dt

—sgn, JJ (f‘(O @, t) ——fi(k ®, t))q;inidaldt—o

Noticing that the third term is nonnegatlve and that the fourth term tends to zero
as 1—>0, we deduce

_ 1 _ - 3163 a¢1 , 6us 3(01
“{lug M sgn. (te k)[s ox;, O +, ! on; 0m¢

QOr

(o & D =F 6 o, s )28~ (f(b, w, t)—l—g(ue, 2, t))q;l]}dwdt

+sgn k"' J’v(s ZZ" e ZZ“) 1, do dit

sgn b, [, (FQ, 8, =S, 0, 1) pmdo di>o0, 4.1
Obviously | ‘

[[sen e 2. 222 gods— ([ sgm () -2 (49 u, a, 1
j - i §
Qr ) Oz

— Ak, o, ~t))__g§1' ;_~ j j sen @~ 1) (| iz, 0, d) 28 doas
(o o

=—l; J sgnkA” &, @, t) njdadt

2
- J sgn (u—F) (4" (u, 2, t)—A”Uﬁ’ @ 1) 32 oy Qo
szz » ) ’
t4e o
_ 44 , P14,
[Jommeu=n ([ etite, o, D) h doas

T

Hence

 tim| [ ogm (, — B o L. 21 dwd#“f [ s b, 0, 022 nydoas

€70, o 2 6:1:,-

T

/ '—-';Jsgn(u 1) (49, o, £)— 49 (b, o, D) 39”1 dodt
Qr

_ Jsgn(u k)(j ol (v, o, t)ch-) %, dwds, (4.2)

o

T

" Smce for fixed ¢, sgn (u—F) (4w, w, £) — A”(/c @, 1)) EBV(Q) and
o -———-[sgn(u k) (A (u, o, £)— A9 (B, o, )]

—sg (u~ )[4 5 0= A9, 9],
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we have
lim”sgn(u —k)a¥ e, 001 3y, g
Y on ow; 0y

-

=_."TJ' sgn kAY (b, ®, t) 3¢1.njd0'dt+rj sgn (yu—B) (4% (yu, @, £)
0Jz * o, 0J= y Wy
— A¥ 91 jwj Ny U Opy
Ak, =, 1)) o0, ny do di -+ }o[ ,Senu—k)a T dg)]dto (4.3)

Let o€ c? (Qr), Pa | =x0,T1= @1 | 3X[0,T7e Then
J‘ I p) 7 ¢1n6 dO' dt= ]’ 8 [Aue¢2 +—=— am‘ aw‘ ]dw dt

T

Using the equation (1.4), we obtain
T
limf f ( Ot +at aa s”>¢)1md0‘ dt

6,0 a(l' 4

Jj-_ ausn 8(792 - agt ¢ + w fi(usn’ wl t>¢2+g¢2]d/»vdt,
et .

a¥

=l L or; O

8n->0,

It is easy fo verify that

,

s ou,, 0O T J' P
atl Pen 9P2, - W Pa
E:J-i% “om; O dadt = ‘«(0 EA (v, @, 1) P do dt
Tr( ~_ou_ Ops
- 1 2
J 0 U o” “ow; Oy dw]dt

i [ G (s 0, ) g0

T

T

- —ﬁ'L 70, =, t)<p1n4do;dt+”[ 20s —fi(y, , t) 8<p2 +9¢a ]dmdt

Therefore
im (" Oy, 45 Oy,
E.E»%Jo L (6“ o, +a o, ) o do dt

T 7
= —joj A‘.’i('}lu, w, t) a¢2 n,dO'dfw—J I f‘(o’ w, t)gl)m;dadt

| _JTUQ u_Ou_ 0ps dw]dt—i—”[ 20— fi(u, o, 1) 202 +g¢2]dwdt (4.4)

0 aw, aﬁ;
Now the inequality (2.2) follows from (4.1) by letting ¢=¢,—0 and usng (4.3),
(4.4).

T
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