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Abstract

Let G be a  simply connected semisimple linear algebraic group over an algebraically 
closed field of positive characteristic p, В  its Borel subgroup, and br the r - th  standard subal­
gebra of the hyperalgebra of B. Assume the roots in В to be negative. .

Using the coinduced representations, in this paper the author proves:
(1) J  (г, Л) = S tr® ( ( p r —1 )5 +Я ) is the br-injective envelope of the one-dimensional 

br-module A, where Str is the r - th  Steinberg module of G, and 5 half the sum of the positive 
roots.

(2) W ith respect to the natural homomorphism pn \ J (r , X)^*\J(s, X) ( r < s ) ,  J (oo, A) 
= lim  J  ( r ,  A,)is the B-injeetive envelope of В-module X.

The above conclusions positively answer two questions posed by J .  E. Hum phreys at 
Shanghai in  1980. Moreover, this paper gives a complete description of injective br-modules.

§ 1. Notation and introductory remarks

Let G be a simply connected semisimple linear algebraic group over an algebrai­
cally closed field h of characteristic p> 0, T  a fixed maximal torus of G. Ohoose an 
ordering of the root system Ф=Ф(&, T ), and let B~zdT be the Borel subgroup 
corresponding to the negative roots. I t is known that B~ = U~T (semidirect product), 
where U~ is the product of the root subgroups associated with the negative roots. The 
product of the root subgroups associated with the positive roots is denoted by U+. We 
consider G as the Chevalley group constructed by reduction modp from the 
corresponding complex Lie algebra g. Then g has a corresponding decomposition 
g= n- ©lj@n+, where  ̂ is a Cartan subalgebra and n" (resp. tt+) the direct sum of the 
root subspaces associated with the negative (resp. positive) roots. Let be the uni­
versal enveloping algebra of g. Owing to the Poincar6-Birkhoff-Witt theorem (cf. [8,
§ 17.3]), ^= ^ V '~ ® Ĝ ® e ^ +, where j V~  (resp. Ж, Ж * )  is the enveloping 
algebra of n“ (resp. 1), n+) . Ohoose a Ohevalley basis {Y«, H h Х а(а£Ф +, l< i< ra n k  
g)} of g. The subring generated by X™lm\ and Y%/m\ (m £ Z +) is the Kostant 
Z-form of and has a corresponding decomposition =  ̂ ‘z ® z ^ z ® ^ i -  Let 
<% =  and are defined similarly; let 08* Then ^ (re sp .
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is the hyperalgebra of Gf (resp. U±, T, B~) and hag a standard filtra­
tion by its finite-dimensional subalgebras ur (regp. n f , h r> b j), r"£Z+. The subal­
gebra П7(resp. h r, n t)  is generated by Y a,m (resp. H i>m, X a,m) with 0<tm < pr, and 
br = n r® J ir> ur=b~0 kn t ,  where

F„,m= ( F - /m ! ) ® l ,  X a,m= (X : /m O ®  1, Я , , * - ^ ) ® 1 .  ■

For convenience we shall omit the symbol
Let X  be the weight lattice of Ф, which may be identified with the character group 

of T  or B, or considered as the character group of or £8*, Therefore, for the above- 
mentioned groups or algebras (and its subalgebras), the one-dimensional module 
determined by К £  X  is also denoted by A. Let .

X r= {X£-5T|0<<A, a )< jf, V simple root a}, 
where <A, a> =  2(X, «)/(« , a) and ( , ) is the Euclidean inner product. Let, in
addition, 8 be half the sum of the positive roots.

Denote by Jc[U] the affine algebra of U. Using the fact that U is a normal 
subgroup of B, we define a rational B-module structure on h [U] as follows:

(to. /).(«) «$**), V«,■ ®€t7, t £ T ,  f e K U l .
I t  is known that Б -module Jc [C7] ®X is the JB-injective envelope of S-module К (of. 
[10, §6] ) , It was also proved by Oline, Parshall and Scott [3] that

£[U]®X=HmStr® ( ( / - l ) S + A ) ,

where Sty is the r - th  Steinberg module of (?. But we do not know if the above direct 
limit is taken with respect to the natural linear ordering. When giving his lectures at 
Shanghai Normal University in the spring of 1980, J. E. Humphreys raised two 
further questions:

(1) Is Str® ((^ ’- —1)8+X) the fey-injective envelope of 6r-module X? (The case 
r — 1 was settled by himself [6] .)

(2) Is the above direct limit taken with respect to the natural ordering?
In this paper we shall give the affirmative answers to these questions. In Seotion 2 

we introduce the tool we shall use, the ooinduced representations. Section 3 is devoted 
to a discuss of the first question, and Section 4 to a discuss of the second question.

For convenience, lot ■
J  (r , K) = Str®  ( (pr — 1) 8+ X) and J  (oo, X) =  h [C7] ®K .

§ 2. Coinduced representations

In  this section, R  and 8  ̂are rings with 1 (not necessarily commutative), and <p\ 
8 ->R  a ring homomorphism preserving 1. Thus, a left i?-modulo F  may bo consi­
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dered as a left ^-module via^o. This ^-module, denoted by Res,, V, is called the 
restriction of V  to 8 . "When no confusion arises, the symbol Res,, is often omitted. The 
functor Res,, from the category of left й -modules to the category of left ^-modules has 
a left adjoint, which is called the induced functor. This functor is familiar to us: for a 
left ^-module W , Ind,, W —i?®sTP", where Й is considered as a right ^-module via q> 
and the aotion of R  on Ind,, W  is the multiplication on the left factor.

From the category of left ^-modules to the category of left й -modules, we can 
define another functor, called the coinduced functor and denoted by Goind,,, as follows:

Goind,, TF==Homs (Й, W ),
where Й is considered as a left ^-module via <p, and the action of Й on Goind,, W  is 

, <>• / )  (.У) —f  (У®), V®, 2/ 6 Й, f e  Goind,, W.
Of course, we have to verify that x, f  £  Goind,, W  and that Goind,, indeed becomes a 
functor. This is straightforward.

We have the following .
Proposition 2.1. Goind,, is the right adjoint of Res,,
This is equivalent to the following
Proposistion 2.2 (reciprocity). For any left R-module V  and left 8-module 

W, there exists a natural isomorphism
HomB (F , Goind,, IF) sH om s (Res,, V, W ),

In  order to prove the above propositions, it is enough to prove the following 
Proposition 2.3. The evaluation mapping Ev: C o i n which sends 

/ 6  Goind,, W  to / ( 1 ) ,  is a natural 8-module homomorphism and has the following 
universal property: for any R-modvle V  and any 8-module homomorphism в : V—>W, 
there exists a unique R-module homomorphism 9: V —>Ooindv W, mahing the following 
diagram commutative:

V
e

\
Coind,,

\
6>\ Ev

\  V
w

w

Proof (i) At first we prove that Ev is a natural ^-module homomorphism. Let 
/£C oind„F ', s£j 8, then .

Ev(jp(s) •/) -  (<p(s) • /) (1) -/(*>(*)) = s . / ( l ) = S.A 4 / ) .  .
And, for an ^-module homomorphism cr: W—>W', the diagram

Coind,, W

............  i Bv
. ■ ; ; ... ........W  .

is commutative, because for /£O oind„ W  we have
. : . £TOjB'l)(/)=(r(/(l)),

-> Coind,, W'

I*»
* W'
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Ev°ar*(f) =cr* ( / )  (1) =  (arof) (1) = < r(/(  1)).
(ii) The uniqueness of 6. Let v £ V ,  then, for any x £ R ,  we have

9(v) (®) — (ог-̂ С-у)) (1) = @(x>v) (1) = (Ev°§) (x^v) ~ 9 (x'V).
Henct, 6(v) is completely determined by в and v.

(iii) The existence of §. We Olaim that the function 6(v) defined by @(v) (x) 
— 9(x-v) belongs to Ooind,, W, and that в is the required R-module homomorphism.

First, for sG$, ® £  R, we have
@(v) (q>(s)x) ==9(p(s)x>v) — S*9(x>v) =s>§(v) (x), 

so that 6(v) GOoind ,̂ W. Next, if a?, y £ R , v £ V ,  then
§(y • <o) (a?) =  0 (xy . «) =  0 0 )  (ад/) = (?/ • § (v) ) (ю), 

so that 6* is an R-module homomorphism i Finally,
Ev°§(v) = 8(v) (1) — 9{v),

Corollary 2.4. I f  I  is an injective 8-module, then ОотЛД is cm injective 
R-modvle.

Corollary 2 . 6 .  I f  R lf R 2, R 3 are rings with 1 and ф: R 1-^ R 2 and cp: R 2-* R 3 
are ring homomorphisms preserving 1, then Ooind^Ooind^, = Ooind,^.

Proof Ooind,, Coind^ is the right adjoint of Res^ Res„= Res„„, (of. [5, II, Prop. 
7 .1 ]).

From the definition we immediately deduce the following
Lemma 2. 6. Ooind„ is a left exact functor; it is exact i ff  R  is projective as an 

8-module.
Remark 2. 7. If В and 8 are algebras over a field with R symmetric (and 

finite-dimensional), it is easy to see that Coind^and Ind„ are equivalent. In  particular, 
a homomorphism between group algebras of finite groups is the oase. It is this fact that 
allows us to use two definitions of induced representations simultaneously in  the 
representation theory of finite groups.

Remarks 2.8. The rationally induced representations of algebraic groups are 
indeed coinduced representations. They have the properties (2 ,1 )~ (2 .5 ) and (2.6) 
may be modified as follows: a ration-ally induced functor is left exact; it is exact iff 
the quotient variety is affine (see [2, 3] or [10, § 5] for details).

§ 3. Injective modules for hyperalgebra br

Now we apply the results of Section 2 to the embedding homomorphism j r: h/-*br, 
and denote Ooind^ simply by Ooindr. In  this section, all modules under consideration 
is finite-dimensional left modules. Noting that br is a free ^-module and that a h basis 
of n r is a free Ar-basis of br, we get the following

Lemma 3.1. Ooinct is an exact functor. Let W  be an h r-mo<Me. then dim Ooind,. W
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=prN dim W, where N =Oard Ф+.
Proof HomA>.(br, W ) ^H om fc(w0 W) ^n * ® kW, and dim n r=prN,
Lemma 3.2. Coind,. W  is an injective br-module. moreover, i f  A £ -XT, then 

OoindrA is the br-injective envelope of br-module A.
Proof Since /^-modules are completely reducible, the first conclusion follows from 

(2.4). To prove the second conclusion, it is enough to note that for any 
dim Homft,(/A, Oomdr A) =dim Н отйг(/л, A)

f l ,  if //,=A(mod prX ) ,  
1.0, otherwise.

Lemma 3.3. .4s a br-module, Str has a unique irreducible submodule — (p'—1)8.
Proof (following [10, §4]) We prove a more general conclusion: if A £ X r, then, 

as a 6r-module, the irreducible 0-module M  (A) with highest weight A has a unique 
irreduoible submodule w0%, where w0 is the longest element of the Weyl group.

Let «-be a minimal vector of 0-module M (A), then orhas weight w0A. The line 
kv~ is certainly an irreduoible 6r-module. Let N  be the 6r-soole of M (A), then 
Since the adjoint action of T  stabilizes n r and h r, N  is a Г-submodule, hence a direct 
sum of its Г-weight subspaces. If N ФЫ~, we choose a Г -weight vector v of N  such 
that the weight ju, of d is minimal among the Г-weights of N  distinct from w0%. The 
commutative formulas (cf. [10, §4]) tell us that all Y a,m(m £ Z +) preserve N  stable. 
In  particular, Y a,m'v€ .N . But Y a,m-v is a Г-weight vector of weight jjb-ma<ii,, The 
choice of v forces Y a,m-v — 0 or /л —m a=w 0A. For a simple root a, the second case leads 
m <pr (because fb=w0X+ma is a weight of M (A), and all such weights of M (A) are 
in the «-string through w0A: w0A, w0A +  «, w<A- <w0A, «)«; A G I ,  forces
— <w0A, a}< pr—1).Therefore, Y a> m £  n r, and we get Y Uim‘V = 0 again.Hence, for a simple 
root «, we always have F o>m*i> =  0. I t follows that v is a minimal vector of 0-module 
M (A). This is a contradiction.

Theorem 3.4. As b,-modules, J ( r ,  A)is the injective envelope of A.
Proof Since A appears as a Г -weight of J  (r, A) exactly once, we can (essentially 

uniquely) define a Г -module homomorphism 9: J (r ,  A)-»A. 9 is injective when 
restricted to the 6r-socle of J  (r, A). Now the commutative diagram

gives a 6r-module homomorphism 9: J  (r, A)->Ooindr A. The restriction of 9 to the 
6,-socle of J  (r> A) must be injective, hence it is injeotive itself. Now the dimension



comparison
dim J  (г, X) =dim  St,.= prN} 
dim Ooind,. X*=prN (by (3 .1)) 

ensures that 6 is an isomorphism.
Note that if we identify J  (г, X) with Ooind,. X via 9, the evaluation mapping is 

just 9, which is a T-module homomorphism.
Corollary 3.6. Every injective br-module is a direct ’mm o f  certain J  (г, X) ’s. 

Hence, it has a natural В-module structure and a natural bs-module structure for all 
s>r. {J(r,  X), X £ X r} is a compete representative system o f isomorphic classes o f  
indecomposable injective br-modules. Moreover, i f  X=fio+Pf*>i+ ••• (tM 6  X f)  is the p-adic 
expression of X £ X ,  and Xr =  p,0 + p/ii+• • • +pr~1fir-t, then there are br-module isomor­
phisms

J{r,  X ) ~ J ( r ,  Xr)GZJ(l, (1, P r-l)™ .
Proof The only non-trivial faot is the last isomorphism. However, the definition 

of J  (r, A,) and the Steinberg’s tensor produot theorem (of. [10/ §3]) give the following 
U-module isomorphisms

J ( r ,  Ar)= S tr® ( ( # - l ) 5 + V )
- ® S tr l)®  ( {pr- l )S + A r)

^ ( 8 ^ ® ( ( р - 1 ) з + ^ о ) ) ® ( в ^ ® ( ( р - 1 ) а + ^ ) ) (й® ...
' • • • ®  (Sti® ( ( p —1) 8 + /Лг-i) )

s / ( l ,  a*o) ® ^ ( 1 ,> i) <p>® - ® ^ ( 1 ,  Vr-iY™ .
Remark 3.6, Although br is a Frobenius algebra (because it is a finite-dimensional 

Hopf algebra), and its injective modules are just projeotive modules, but we think 
that it is more convenient and natural for our questions to discuss injective modules 
direc-tly applying the tool introduced in Seotion 2. And we believe that the tool is 
also usefull for the discussion of injective modules over a ring.

§4. Rationally injective JS-modules

It is known that J  (o o , X), which is the B-injective envelope of В-module X, is 
(со) induced from T-module X. That is

J  (o o , X) = {regular function f :  B->h \ f ( tx) =X(t)f(x),
\ / t£T ,  x £ B } .

Theorem 4.1. Let s, r  £Z+ U {oo} with s < r ,  then
dim Н отв( /  (s, X), J ( r ,  X)) =  1, 

and the non-zero homomorphism psr: J(s,  A)—> / (г, X) is injective.
Proof (i)  The existence, of. an injoctivo B-modulo homomorphism. Assume for a 

moment that s<r<QQ, r —s=r.t. !Owing to the Steinberg’s  tensor product theorem, we
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have a (^-module isomorphism Str^ S ts®Stps:), and henoe we have Б-module isomor­
phisms

J{r ,  A) =  St,®  ( Q / - 1 )8 + A)

■ s / ( s ,  A)®/(*, 0)<*\
Noting that J  (f, 0) has a trivial one-dimensional Б-submodule, we see that J  (s, A) 
is isomorphic with a Б -submodule of J  (г, A).

Now let s< i =oo. Since J ( oo, A) is the Б -injective envelope of Б -module A, 
while /  (s, A) has Б -socle A, we get an injeotive Б -module homomorphism ps—psx,' 
/ (s, A ^ J ^ o o , A).

(ii) The uniqueness of non-zero Б-module homomorphism. Let t : J (s, A)-» 
J (r, A) be a non-zero Б -module homomorphism. Since each of these modules has 
Б-socle A and A appears as its weights only once, the restriction of A to the socle must 
be injective. Therefore, T-module homomorphism Ev°?= t is non-zero. However, up 
to scalar factors, there exists a unique non-zero T-module homomorphism from J  (s, A) 
to A. Now т is the Ьг-(рт Б -, for r= oo ) homomorphism making the following diagram 
commutative:

J(s, X)------ >J(r,  X)
\

\

\
\

ш

When т is given, т is unique. .
Remark 4.2. For the uniqueness, it is enough to give a proof for r  =  oo. How­

ever, this does not simplify the argument.
Corollary 4.3. For the linearly ordered system { J (r, A), pSi-(s, r £!§+ and s< r)} , 

we hare
J  (°°, h) =  lim J  (r , A).

Proof It remains to prove only that J  (oo, A) =  U  Im pr. This can be done as
. r

follows: for any p,£  X ,  there exists a large r  such that the weight appears in J (r, A) 
as many times as in  J  (oo, A). For the details see, for example, [3] or [10, §6].

Remark 4.4. (3.5) and (4.3) has the same form as the correspon-ding result 
about Ur and Gf. The latter, of course, is much more complicated and difficult, and so 
far it has been settled onld for p > 2h — 2, h being the Ooxeter number. This is known 
as the Humphreys-Ballard-Jantzen’s theorem (cf. [1, 11] or [12]).
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