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Abstract

Let G be a simply connected semisimple linear algebraic group over an algebraically
closed field of positive characteristic p, B its Borel subgroup, and b, the r—th standard subal-
gebra, of the hyperalgebra of B. Assume the roots in B to be negative.

Using the coinduced representations, in this paper the author proves:

Q) J(r, A)=St,@((p"~1)0+2) is the b,~injective envelope of the one-dimensional
b,~module A, where St, is the r—th Steinberg module of G, and & half the sum of the positive
roots.

(@ With respect to the natural homomorphism p,: J (r, M) (s, A)(r <s), J (o0, A)
=limJ (#, A)is the B—injective envelope of B-module A.

__?_[‘he above conclusions positively answer two questions posed by J. H. Humphreys at
Shanghai in 1980. Moreover, this paper gives a complete description of injective b,~modules.

§ 1. Notation and introductory remarks

Let @ be a simply connected semisimple linear algebraic group over an algebrai-
cally closed field % of characteristic p>0, T' a fixed maximal torus of @. Ohoose an
ordering of the root system ®=@(G, T'), and let B~DT be the Borel subgroup
corresponding fo the negative roots. It is known that B-=U-T (semidirect product),
where U~ is the product of the root subgroups associated with the negative roots. The
produet of the root subgroups associated with the positive roots is denoted by U+*. We
consider @ as the Chevalley group constructed by reduotion modp from the
corresponding complex Iide algebra g. Then g has a corresponding decomposition
g=n"@H@n*, where § is a Cartan subalgebra and n~ (resp. n*) the direct sum of the
root subspaces associated with the negative (resp. positive) roots. Let % be the uni-
versal enveloping algebra of g. Owing to the Poincaré—Birkhoff-Witt theorem (cf. [8,
§ 17.81), U= N"Q¢H RN+, where N~ (resp. H, N") is the enveloping
algebra of n~(resp. §, n*). Ohoose a Chevalley basis {Y., H;, X.(a€ED*, 1<i<rank
vg-)} of g. The subring %, generated by X%/m! and ¥'7/m! (m€Z*) is the Kostant
Z—form of % and has a corresponding decomposition U= A"7XzH 7N "%. Let
U= U s RDgk. A and 5, are defined s1m11ar1y, lot By =N"5@p#%. Then %, (resp.
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N5, H, By) is the hyperalgebra of G (resp. U*, T, B~) and has a standard filtra—
tion by its finite-dimensional subalgebras %, (resp. n7, h,, b;), r€Z*, The subal-
gebra #; (resp. k,, n}) is generated by Y,,n (resp. Hiym, Xom) with 0<m<p", and
by =n; Quh,, u,=br@un;, where '

¥ opnm (V2/m1)@L, Xomm (X2/m1)@L, Hym (m‘)@i,

»
.

For convenience we shall omit the symbol “—

Let X be the weight lattice of @, which may be identified with the character group
of T or B, or congidered as the character group of 5% or %, Therefors, for the above-
mentioned groups or algebras (and its subalgebras), the one-dimensional module
determined by A€ X is also denoted by A. Let

={AE X |0<<<A, ap<p’, V simple roob a},

where (, ay=2(A, @)/(a, «) and (
addition, & be half the sum of the positive roots.

Denote by 4[U] the affine algebra of U. Using the fact that U is a normal
: subgroup of B, we define a rational B—module structure on 4[U] as follows:

(tw. f) (v) =f (& vtu), Yu, €U, tET FERU].
1t is known that B-module A[U]®A is the B~1nJect1ve envelope of B-module A (cf.
[10, §6]1). It was also proved by Cline, Parshall and Scott[3] that
KU A= tht,@((p —1)3+A),

Y is the Euclidean inner produect. Let, in

2

. Where Str is the r~th Steinberg module of &. But we do not know if the above direch
limit ig taken with respect to the natural linear ordering, When giving his lectures at
_ Shémghai Normal University in the spring of 1980, J. E. Humphreys raised two
further questions: - _

€y Is St,®((p'—1)8+) the b ~injective envelope of br—‘module' A? (The casc
r=1 was setitled by himself [6].)

(2) Is the above direct limit taken with respect to the natural ordering?

In this paper we shall give the affirmative answers to these questions. In Section 2
we introduce the tool we shall nse, the coinduced representations. Section 3 is devoted
to a discuss of the first question, and Section 4 to a disouss of the second question,

For convenience, let

J(r, A) = St,@((p 1)8—]—?\.) and J(oo 7\.) EUI®A, .

§ 9. Coi‘nduced representatio’ns

Tn th1s sectlon R and S are rmgs with 1 (nob neoessarlly commutatlve) and o
S-—> R a ring homomorphlsm preserving 1. Thus, a left R—module V may” be consi-
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dered as a left S-module viap. This S-module, denoted by Res, V', is called the
restriction of ¥ to 8. When no confusion arises, the symbol Res, is offen omitted. The
functor Res, from the category of lefs R—modules to the category of left S—modules has
a loft adjoint, which ig called the induced functor. This functor is familiar to us: for a
left S~module W, Ind, W=R®sW, where R is considered as a right S—module via ¢
and the action of B on Ind, W is the multiplication on the left factor.

From the category of left S—modules to the category of left E-modules, we can
define another functor, called the coinduced functor and denoted by Coind,, as follows:
Qoind, W =Homg (R, W),

where B is considered as a left S—module via @, and the action of B on Coind, W is
(@. f) (y) =Ff(y=), Yo, yER, f€Coind, W.
Of course, we have to verify that », f EOomd W and that Qoind, indeed hecomes a
functor. This is straightforward. ’
We have the following
Proposition 2.1. Ooind, is the mght adjoint of Resq,,
This is equivalent to the following
Proposistion 2.2 (reciprocity). For any left R-module V and left S—module
W, there exists & natural isomorphism
Homy, (V, Ooind, W) == Homg(Res, V, W),
In oxder to prove the above propositions, it is enough to prove the following
Proposition 2.3. The evaluation mapping Ev: Coind W—>W, which sends
f€Qoind, W to f(1), is a natural S-module homomorphism and has the following
universal property: for any R-module V and any S-module homomorphism 0: VW,
there ewists @ unique R-module homomorphism 8: V—>Qoind, W, mw/amg the followmg B
diagram commutative: |

~

6
V ~—— Coindy, W

N
o\ Ey
N

Proof (i) At first we prove that v is a natural S-module homomorphism. Let
f€C0oind, W, s€ S, then

Ev(p(s) -f) = (p()-f) (V) —f(qv(S))—s f@) =s Ew(f)

~ And, for an §-module homomorphism o: W—>W’, the diagram

Goind, W —-1-—-> Cotnd, W'
R

W —-—0——>’ /44

is cornmutatwe because for f GOomd W we have

coBo(f)=a(f1)),




360 . CHIN. ANN. OF MATH. Vol. 4 Ser. B

BEvooy (f) =0y (f) (D) =(oof) M) =0 (f (D).
(ii) The uniqueness of §, Let ¥ €V, then, for any © € R, we have
G(v) (@) = (@0 (@)) (1) =0 (w+v) (1) = (Bvof) (wev) =0 (5+).
Henot, §(v) is completely determined by 6 and v.

(iii) The existence of §, . We Olaim that the function §(v) defined by 8(v) ()
=@ (w+v) belongs to Coind, W, and that éis the required R-module homomorphism.

First, for s€ S, s € R, we have

0(v) (p()2) =0 (p()w+0) =58 (w+0) =5-0 (0) (&),
so that 8(») €Coind, W. Next, if #, yC R, v €V, then
i O(y+v) (@) =0 (wy+v) =B (v) (o) = (-0 (v)) (@),
so that 0 is an B-module homomorphism: Finally,
Eoof(v)=0(v) (1) =6 (2).

Corollary 2.4. If I is an injective S—module, then Ooindq,i' is an injective
R-module. : _ :

Corollary 2. 5. If Ry, Rs, R; are rings with 1 and : R;—> Ry and @: Ry—> Rj
are ring homomorphisms preserving 1, then Ooind,Ooind, = Coind,,.

Proof Ooind, Qoind, is the right adjoint of Res, Res,=Res,, (cf. [5, II, Prop.
7.1]), |

From the definition we immeédiately deduce the following

Lemma 2. 6. Ooind, és @ left ewact functor; it is ewact iff R is projective as an
S-module. o '

Remark 2. 7. If B and S are algebras over a field with R symmetric (and
finite-dimensional), it is easy to see.that Coind, and Ind, are equivalent. In particular,
a homomorphism between group algebras of finite groups is the case. It is this fact that
allows us to use two definitions of induced representations simultaneously in the
representation theory of finite groups. ’

Remarks 2.8. The rationally induced representations of algebraic groups are
indeed coinduced representations. They have the properties (2.1)~(2.5) and (2.8)
may be modified as follows: a ration-ally induced functor is left exact; it is exact iff
the quotient variety is affine (see[2, 8] or [10, § 5] for details).

§ 8. Injective modules for hyperalgebra b,

Now we apply the results of Section 2 to the embedding homomorphism j,: k<>b,,
and denote Odind,, simply by Coind,. In this section, all modules under consideration
ig finite-dimensional left modules. Noting that b, is a free &,-module and that a & basis
of m, is a free h,~basis of b,, we got the following

Lemma 3.1. Ooind, és an evact functor. Let W be an h,~module. then dim Qoind, W
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=™ dim W, where N =Card O+, ,
Proof Homy, (b,, W) =Homy(n,, W) =n;@,W, and dim te,=p",
Lemma 3.2. Coind, W s an injective b—module. moreover, if AE X, then
Ooind,\ és the b—injective envelope of b,—module A.
Proof Since k,—modules are completely reducible, the first conelusion follows from
(2.4). To prove the second conclusion, it is enough to note that for any p € X
dim Homy,, (1, Coind, A) =dim Hom,, (14, A)

N { 1, if w=A(mod p'X),
B 0, otherwise.

Lemma 3.3. 4sa b,—module, St, has a unique trreducible submodule — (p"—1)90,

Proof (following [10, §41) We prove a more general conclusion: if A €X ., bhen,
as a b~module, the irreducible G-module M () with highest weight A has a unique
irreducible submodule weh, where w, is the longest element of the Weyl group.

Let v~be a minimal vector of G-module M ()), then »~has weight weh. The line

ko~ is cértainly an irreducible b,—module. Let N be the b,—socle of M (), then kv CN.

Since the adjoint action of 7' stabilizes n, and k,, N is a T-submodule, hence a direct
sum of its T-weight subspaces. If N = kv~, we choose a T'-weight vector v of N such
that the weight 1 of v is minimal among the T—weights of N distinet from wh, The
commutative formulas (cf. [10, §4]) tell us that all ¥,,,,(mEZ*) preserve N stable.

In particular, Y ,,,-v €N, Bub Y, is a T-weight vector of weight u-ma<u, The

choice of v forces Y;,,m~fv=0 or pu—mo=1weh. For a simple root o;, the second case leads
m<p" (becauso w=weh+ma is a weight of M (L), and all such weights of M () are
in the a-string through weh: woh, woh + &, <+, wWoAh—<{woh, apa; A E X, forces
— {wgh, oy <p"—1).Therefore,Y ,, ,, €M, and we gob ¥y, mev =0 again,Hence, for a simple
r00b o, We aiways have ¥ a,m-/v=0,. Tt follows that » is a minimal vector of G-module
M(). This is a contradiction.

Theorem 3.4. As b—modules, J (r, A)is the injective envelops of A.

Proof Since A appears as a T—weight of J(r, A) exactly once, we can (essentially
uniquely) define a T-module homomorphism #: J(r, A\)—>A. @ is injective when
restricted to the b,—socle of J (r, A). Now the commutative diagram

5
J(r, A)——— Coind, A

\
>\\ v
TN
M

gives a b,—~module homomorphism g: J(r, A)—>Coind, A. The restriction of § to the

:b~socle of J (ry A) musi be injective, henee it is injeotive itself. Now the dimension .
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comparison
dim J(r, A) =dim St,=p",
dim CQoind, 7&=p’N (by (8.1))
ensures that § is an isomorphism.

Note that if we identify J (r, A.) with Coind, A via 8, the evaluation mapping ig
just 8, which is a T-module homomorphism. : v

Corollary 3.5. Hwery injective b—module 4s a direct sum of certain J (v, 7\,) 8.
Hence, it has o natural B—module structure and a natural bs—module structure for all
s>r. {(J(r, A), ANEX,} is a complete representative system of isomorphic classes of
indecomposable injective b—modules. Moreover, if A= o+ pus+ -+ (s € X 1) 4s the p-adic
expression of AE X, and A, = o +pﬂ1+--~+p"1,u,,_1, then there are b,—moddlé Ls0mor-
phisms )

I, NI @, MIA, w0, p)P@ @ 1, pe-) ™,
Proof The only .non—trivia,l fact is the last isomorphism, However, the definition
of J (r, A)and the Steinberg’s tensor product theorem (cf. [10, §8]) give the following
B-module isomorphisms
J(r, M) =8tQ((p"—~1)d-+1,)
=8t @SHP @ @S @ ((# —1)8+1.)
= (SH®((p—1)8+ o)) (Bt ((p—1) 8+ 1) ) P -+
@ Eu@ ((P—1)8+p-)) T

=J(1, wo)@J (1, p) PR+ @J (L, pr-1)?,

Remark 8.6. Although b, is a Frobenius algebra (because it is a finite-dimensional
Hopf algebra), and its injective modules are just projective modules, but we think
that it is more convenient and natural for our questions to discuss injective modules
~ direc-tly applying the tool introduced in Section 2. And we believe that the tool is
also usefull for the discussion of injective modules over a ring.

§ 4. Rationally injective B-modules

It is known that J (o0, A), which is the B-injective envelope of B-module ?» is

(co) induced from 7-module A. That is
J (o0, A) = {regular function f: B—>k|f (tz) = X(t) f(@),
VieT, € B},
Theorem 4.1. Let s, r €4+ | {oo} with s<r, then
dim HomB(J(s A), J(r, M) =1,

and, the non-zero homomorphism pg: J (s, A)—>J (v, A) is injective.

Prodf (1) The existerice, of an injective. B~module homomorphisr. Agsume for a -
moment that s<<r< e, r—s=i. Owing 0 the Steinberg’s tensor- produet theorem we
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have a G’—module 1somorph1sm St, 2 St,XS4, and hence we have B-module isomor-
phismg '
- J(r, W) =85 ((p'—1)0+4)
285, ((°—1)0+1) BSH® (p* —~1)p*d
J (s, MRS (¢, 0)@,
Noting that J (¢, 0) has a trivial one-dimensional B-submodule, wo see thal J (s k)
is isomorphic with a B—submodule of J(r, A),

Now let <o —oco. Since J (oo, A) is the B-injective envelope of B-module A,
while J (s, A) has B-socle A, we get an injective B-module homomoi'phism Ps== Psoot
J(s, Nrd (oo, ), |

(ii) The uniqueness of non-zero B-module homomorphlsm. Let 3¢ J (s A)—>
J(r, &) be a non-zero B-module homomorph1sm Since eaeh of these modules has
B-socle A and A appears as its weights only once, the restriction of A to the socle must
be injeotive. Therefore, T—module homomorphism Evo7=7 is non-zero. However, up
to scalar factors, there exists a unique non-zero T-module homomorphism from J/ (s, A)
to A. Now 7 is the b,~ (or B-, for r=o0) homomorphism makmg the following diagram
oornmutatlve

J (s, x)—f-» J(#, A)

AN
v \\ Ev

AN
N
A

When 7 is given, 7 is unique.
Remark 4.2. For the uniqueness, it is enough to give a proof for r=oco. How-
ever, this does not simplify the argument. '

Corollary 4.3. For the linearly ordered system {J (r, N), ps(s, r€&* and s<r)},

we have
’ J (o0, M) =limJ(r, A),
-

Proof It remains to prove only that J (oo, A) =|JImp,. This can be done as

follows: for any w€ X, there exists a large r such that the weight appears in J(r, A)
as many times as in J (co, A). For the defails see, for example, [8]or [10, §6].

Remark 4.4. (8.5) and (4.8) has the same form as the correspon-ding result
about dr and G. The latter, of course, is much more complicated and difficult, and so
far i has been settled onld for p>>2h—2, h being the Coxeter number, This is known
as the Humphreys-Ballard-Jantzen’s theorem (cf. [1, 11] or[12]).
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