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Abstract

This paper shows the different asymptotic behavior of the solution of equivalued boun­
dary value problems for nonlinear equation from the solution to linear one, while the boundary, 
on which the equivalued boundary value is carried, shrinks to afixed point.

§ 1. Introduction

In  this paper we study the behavior, as Г 2 shrinks to a point, of solutions of the 
following problems:

Au= |м[ p_1w, ж£Д , 

u I r, =  0, 
и | гг= const.,

f ~ & -l,Jra 8n
Au=0} (c£Q,
м1*ч—0, 
и  | r ,—const., 
f du

(1)

(2)

Jr* dn ds= l,

where Q=Q1\Q2> Д. and Д2 are open bounded sets in E" with smooth boundaries Г г
. p i

and Q2, 6 2c f l i .  and —— denotes the differential operator in the direction of the exterioron
normal to the boundary of Q, p > l.  Since the (constant) value of и on Г 2 is unknown,

it will be determined together with the solution u. The value of ~ d s  can be any

other positive number, but it will not cause more trouble.
Our main results show that, as Д2 shrinks to a point % £ Д , (i) the solution of

(1) tends to zero if <p> but this solntion tends to a non-zero limit if ——t-n+1
n —2 n - 1
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, (ii) the solution of (2) approaches the solution of

Au=b(xf) in Q1}
л r  C?)и —0 on Г -l,

The section 2 is devoted to prove the existence and uniqueness of solution to (1) 
and so-called compact-uniformly boundedness of solutions to (1) or (2), while Г 2 
shrinks to a point. In  the section 3 we state the main results and their proofs.

I  would like to thank H. Br6zis who introduced me to this subject, and I  would 
like to thank also L. Veron and R. Rostamian for valuable discussions and suggestions.

§ 2. Existence and compact-uniformly boundedness

The existence and uniqueness of the solution of (2) are well known (see e. g.
[1]), now we prove the corresponding fact for (1). We consider an auxiliary Dirichlet 
problem as follows.

' Au= \u\р~ги, %£Q,
" (4)

U l r a=0.
The solution of (4) uniquely exists (see e. g. [2]), and following monotonicity pro­
perties hold.

Lem m a 1. I f  #>0, then the solution of (4) is non-negative, furthermore, i f  g2 
then for the corresponding solutions, we have and

f ^ d s > [  ds>0.
} Гг СП J Гг СП

Proof If u<0  at any point in  Q, then и must attain a negative minimum at some 
point in Q, so at this point Au>0, |m|2’_1m< 0. This is absurd.

In  the case g2‘>gi>0, we have Mi>0, u2>0. Obviously, и2—и1\Г,~ 0 , и2—щ \Гг 
> 0 , so if u2—Mj<0 at any point in Q, u2—u± must attain a negative minimum at some 
point in  Q, so that A(u2—Ui) > 0  an d . j Wa | p-:ty2 — I Щ. | =u%- m?< 0. This is absurd
again.

Furthermore, when o2></i>0, we know on Г 1} since w2>wi>0„
on on

Then from

we obtain f f 0.
J Гг 8n )Гг 8П

Lem m a 2. I f  и is the solution o f (4) with y>0 , v is a harmonic, function with 
v \r l'>0 a,nd v \r2= h, then h ^ g  implies v ^ u .

Proof w = v—u satisfies
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Aw=> — |w|p %, x£ Q f
(5)

.uj\P,= h -g > 0 .
Therefore, if ад<0 holds at a point in  Q, then w would attain a negative minimum in 
Q. But this will lead to contradiction: Aw>0, — \и\р~ги<0.

Proposition 1. There exists a mique solution of problem (1).
Proof We set u \r,=c and consider c as a' parameter, and let c vary from 0 to

Г du°infinity. Denote the solution of (4) by u°, then - ^ - d s  varies monotonously. Ob-
8u° ds( du° fviously, when c=0, we have mc= 0,then —— ds=0. Now we will show IJ J Гг dn ; Jr, dn

tends to infinity, when c->oo.
Since Г s is smooth, we can introduce the distance d to Г а as new variable in the 

neighborhood of Г а, Denote the isometric surface with distance d by Г 2i and the 
domain between Г 2 and Г  2й by Q2d) then we have

f  u°ds— f  u°ds= f  f  dsdt, Jr, Jr,„ JoJr,t on (6)

Here -Pff— ds is positive for each t. and if ta>h, we have )rn 8n * jr ,

If I ds is bounded, then the right side of (6) will be bounded, so from [ u° ds
Jr, on Jr,

8 u° (  - f l * .
Jr,tl on Jr,t, on

—>oo

we will have u°ds- Jr,,,
•oo and

-> oo.

but

this indicates that

f  (u°) pdx‘> b \  u° dx=Jc f  f  u° dsdt J Qid J J § J Af

f -vr~ ds> ( Au°dx=[ (u°)pdxJr, dn Jo Jo Jo,a
f du° 
Jr« dn ds cannot be bounded.

Combining this fact with 0 and the monotonicity of [ ds, we know there
J Pz СлЬ

exists at least one constant c0 such that the solution to (4) with g= c0 satisfies

1

du 
r, dn ds=1,

hence it is also the solution of (1).
The solution of (1) is non-negative. Otherwise, it will attain a negative minimum 

at a point in Q or on Г 2. For the same reason as that for solutions of (4), we know 
that the solution cannot attain a negative minimum in Q. Furthermore, if it attains

a negative minimum on Г 2> then < 0  on duГ 2 and PfL ds<,0, this contradicts theJr, dn
boundary condition on Г 2.

From now on we can write the equation of (1) as Au=uPu By Lemma 1 we know 
the solution should be unique. Thus the proof of Proposition 1 is complete.
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We are going to discuss the asymptotic behavior of the solution for problem (1) 
or (2), when A  shrinks to a point enclosed by A .  For convenience we assume A  
shrinks to the origin 0, the additional assumptions for A  are: A  is starshape With 
respect to 0 and the ratio of the measure of A  to dn_1 is bounded, where d is minimum 
distance from 0 to A .  From now on, we use the notation A~»0 to denote A  shrinks 
to the point 0 under these assumptions.

Definition. We call set of functions {w} compact-uniformly bounded in Of\0 i f  for  
any compact set К  in Qi\0, elements и in this set are uniformly bounded on К  (For the 
requirement of the definition we may often extend the domain of и to the whole Q1} preser­
ving its bound and continuity) ,

Proposition 2. When A -»0 , the set of solutions of (1), (or (2)) and their 
derivatives are compact-uniformly bounded in  ЙД0.

Proof The proof is very similar to that of Lemma 1 in [6]. For reader’s eonveni- 
ency we sketch it here.

Multiplying both side of (1) by и and then integrating on Q, we get

a0(u ,u ) +  f up+1dx= u\r„ (7)
Jo

where ao(u, v) = ^\/u> ^vdx .

Since A  is starshape, we can describe it as г= г(в ) ,  where 9 denotes the points on 
the unit sphere S n~x, If we denote the distance from 0 to A  along direction 9 by 
R(9), then the following inequality holds

L - .  D - 1 ( # ) ’ *  « х « 1 л .  с»)

Since и | n  = 0 we have

v - - ( m w dr,

\ < m ,  в) i ' ( £ ) * * + £  f r  *

where 6 is a constant and will be chosen below.
Integratinge (9) with respect to 9} using (8), we get

о>«-1'ц1г, < М а +  (n—2)b gF 5”* (10)

Choosing b sufficiently small and using the assumptions about Г 2} we have the estima­
tion on A

u<Or2~\ (11)
where О is an appropriate constant, whioh is independent of u. Using Lemma 2 we 
conclude that the estimation (11) is also valid in the whole Q,



The estimation (11) implies the compaot-uniformly boundedness of solutions of
(2), when ТУ-^О. The compaot-uniformly boundedness of the derivatives follows from 
Sohauder estimates. This completes the proof.

Remark 1. Since the singularity of the solution Q of (3) is the same as r a~", the 
similar inequality

u<C'G  in Q (12)
also holds.
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§ 3. Asymptotic properties

Now we are in a position to state the main results.

Theorem 1. Suppose n > S ,p > —— . When Г 2->0, the solution o f  (1) converges71— 2i
toO m  m y  compact set o f ДД0.

Proof According to Proposition 2, the set of solutions {«} of (1) with their 
derivatives is uniformly bounded in  any compact subset of ДД0. Using Arzela-Ascoli 
theorem we can choose a subsequence {tv}, which converges to v in any compact 
subset of ДД0. Obviously,the funotion v satisfies Av =  j v | in фДО, « > 0 and v | r,=0,
Using Br6zis and Veron’s result in  [3] on removable singularities we know that 
Av — j w | Р~Ч holds in the entire (we may need to asssign the value of v in point 0). 
Using uniqueness of solution of this Dirichlet problem we get v —0. By the same reason 
we can always choose a subsequence {tv*} from any subsequence {tv} of set {w}, such 
that итк->0 in any compact subset of ФД0, this impliea Theorem I.

We notice that maxw= и [ r, approaches infinity when Г2->0. This can be expla-

ined as follows. Let Q0 be a domain containing 0. When Г  2-->0, it will contain Q2 
eventually. Obviously

1=  f ^ - d s =  f f updx+ f uPdx, (13)Jr, on Jo Jo0no JO\S2c

If и is bounded, we can choose (20 small enough such that updx<e. by Theorem 1JOonQ
we know I up dx -■> 0, but this contradicts (13),J Q\0,

I t may seem strange that max и approaches infinity when Г 2->0, but и approa-*eo
ches G pointwise. We use the following example to explain this.

Assume I \  and jH2 are spheres with center 0 and radii R  and 5, and denote the 
solution of (1) by щ, which only depends on r. We claim that for any s> 0  and 0 < r0

< R . The inequality щ (r) will hold in Го<,г<Д , as long as 8 is sufficiently

small. Using Lemma 2 we only need to show щ (r) <  holds for some r= 81(8<:d1
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< r 0). Indeed, if this is not true, we can find numbers s, r 0, suoh that for any small

8, the inequality щ (r) holds in [8, r 0] , then
fp n

I —f -§^-ek+ f 4 ^ - r f s = f  M 8dx= \Jr» on Jr„ on Jr, on Jo J.
fro

> j 4 8P0>n̂ r

IA 8 n

-»+*-! dr

д*ИГ*£Го
u$dx

(14)

Because of p > n , the integration 8pa>n̂ 1r~p(n~2Hn~1 dr will tend to °o, when 8- n —2 Jd
0; so (14) is impossible.

Theorem 2. Suppose n>  3, » + 1 <P<- n Then as Г 2->0, the solution of (1)n —1 " n —2 *

converges to a non-zero lim it in m y  relatively compact open set of Q ffJ .
Proof As in Theorem 1, from any subsequence {ищ} of the solution set {u}, we 

can choose a convergent subsequence {wmJ ,  such that umf-*v, Bum̂ D v ,  when -T2->0. 
Obviously, v satisfies elliptic equation Av = vp. Therefore, if v=0  holds in some open 
set in ФД0, it should hold iu whole ДД0. But we can-show this is impossible. In  fact,

if <r =  0 for sufficiently large Jo, — f ^ m!‘-ds< ^r, Furthermore, because of (10), weJrx on о
P C ) f t n —( n - 2)i> -j

can choose 8i, such that ■ n~1/ - ..■-<—  = —, then for any Г  2. which is sufficiently near; n — (n—2)p 3
0, we hay©

f г4*й»<сй>л_1{ 'Г "г‘1"р(п-а>й4*<сй)я_1[п -р (» -2 )3 -18Г1’(№“2>==4-
J Ла, Jd о

where D8i denotes the domain between, surface Г а and Я8~г. Moreover, from um̂ >v = 0 
we can choose a sufficiently large To such that

1
'Utfnis *

Summing up above estimates, we would get the contradiction

' l . ^ d s < [  . < > + 4 -dn . Jo 3

<* dx+  < s d x + ^ <  1.Da, J Q\Da, О
(15)

Now we are going to show that all limit functions of subsequence (wmJ  are same. 
Firstly, the limit function v satisfies equation Av = | v | р~гх in  the domain Qf\0. Using 
(10) and Theorem 2 in [4], we know v (x) ~ a ra~n near 0. If vi, v2 are limit funct­
ions of different subsequences, there are two cases. The first case is vt(x) ~ а {га~п, at Фa2.

Assume a1> « 2. Then near 0 we have vt {x) > v2{x), so between j jo ld x —j

and 1 v id x—x ds at least one number does not equal to 1. IfJo Jr, on

dv1 
r, dn ds

f v \d x— f - ~ - d s >  1, 
Jo J r x on
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then we can choose sufficiently small 8, such that

f video— f
J Q\D$ j .

dvj
Гг дп d s> l. (16)

When Г 2 is near to 0 enough, the corresponding и in  the subsequence, which conv er- 
ges to Vx, will be sufficiently near to Vi, so

f updoo— f 
J Q\V$ J -

8 u
Гг 8n ds>±. (17)

Л
From (17) we will get j —— d s> l, which contradiets the faot that и is a solution ofJr, dn

8v a
Гг 8П $ s< l. we can use similar technique to

(18)

(19)

(20)

(1). On the other hand, if { video—\J Q J.
lead to a contradiction.

Now let us tu rn  to the case a1= a 2. Assume e> 0  is sufficiently small, Then Di+ 
sG satisfies

A(vi+ sG )= vl, a>£Qi\0, 
vi+ 8G \r1=0,

and if Г 2 is near to 0 enough, the following inequality will be valid
Vi+sQ>v2 on Г 2,

because of v2~ a r2~n near 0. For Vx+sG—Vs, we have
A(vi+eG —vf) = v l—vi, ce£Q,

Vi +  sG — V2 I Гг —
V i+ sG -v 2\rl> 0 .

By the maximum principle Vi+aG — va>0  in the whole Cl. Similarly, Vi~ sG—'y2< 0  
holds in Q, Therefore, we obtain the inequality

Vi—sG<V2<Vi+eG  in Q. (21)
Because s is an arbitrarily small number, Vi must be equal to v2 in. any compact set 
of Qi\0, it means Vi=v2 in ДД0, Therefore, all limit functions of subsequence of 
solution set {u} are the same and the whole set {u} approaches a unique limit, which 
is not zero as we have proved.

Remark 2. If we only know that the solution of (1) can not converge
m —1

to 0, but we don’t  know if it really converges.
Theorem 3. When Г 2—>0, the solution of (2) converges to G both in the sense o f

m iform  convergence of compact subsets ami in L9 (Clf) sense, where q< — .
7Ъ a

Proof I t is known in [5] that the solution of (2) converges to G in the sense of 
uniform convergence of compact subsets of and in the sense of distribution. By 
(12) we know

Iw-G K W G -L 8,
hence
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From the first conclusion of this theorem we know u->Gt almost everywhere in  Q±, so

by Lebesgue’s dominate convergence theorem we get immediately.
Readers can find the detailed description of Theorem 3 and the related consequences 

in  [5].

References

[ 1 ] Li Taqian, Chen Shuxing, Zheng Sunmu, Tan Yungji, Boundary value problems with complementary 
boundary conditions for self-adjoint elliptic equation, Fudan Journal {Natural Science), No. 2 (1978), 
49—60 (inChinese).

[  2 ] Ladyzhenskaia O. A., and Ural'tseva N. N ., Linear and quasilinear elliptic equations, (Translated from 
Russian) New York, Academic Press (1968).

[  3 ] Br6zis H ., and Veron L., Removable singularities for some nonlinear elliptic equations, Arch. Bat. Mech. 
Anal., 75 (1980), 1—6,

[ 4 ]  Veron L., Solutions singulieres d’dquations elliptiques semilroiaires, G. B. Acad. Sc. Paris, 288 (1979), 
867—869.

C 5 ]  L i Taqian and Chen Shuxing, On the asymptotic behavior of solutions of equi-valued surface boundary 
value problems for the second order self-adjoint elliptic equation, Fudan Journal {Natural Science) , No.4 
(1978), 6—14 (in Chinese).


