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Abstract

This paper shows the different asymptotic behavior of the solution of equivalued boun-
dary value problems for nonlinear equation from the solution to linear one, while the boundary,
on which the equivalued boundary value is carried, shrinks to afixed point. ‘

§ 1. Introduction

In this paper we study the behavior, as I'; shrinks to a point, of solutions of the

following problems: . | ,
(du=|u|?u, s€Q,
ulf':=0) .
- Y %/ r,==const., _ @
LL’ —Z—n?ﬁds=1,
( du=0, s€Q,
u|r, =0, -
Y %| p,=const., (2)
U g
LJI‘: -%ds.—l,

where Q=£21\'(22, Q, and Q, are open bounded sets in R" ‘with smooth boundaries I,
and 52, 0, Qy, and ?a%,‘ denotes the differential operator in the direction of the exterior
normal to the boundary of Q, p>>1. Since the (constant)value of u on I'y is unknown,

it will be determined together with the solution . The value of L %Z- ds can be any

~ other positive number, but it will not cause more trouble.

Our main results show that, as £, shrinks f0 a point ©€Q;, (i) the solution of

<

(1) tends to zero if p> ———5, but this solntion tends to a non-zero limit if 2
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<£—§, (i) the solution of (2) approaches the solution of

du=08(zy) in 4,
u=0 on Iy, - ®
The section 2 is devoted to prove the existence and umqueness of solu’olon to (1)
and so-called compaot-umformly boundedness of solutions to (1) or (2), while I',
shrinks to a point. In the section 8 we state the main results and their proofs.
I would like to thank H. Brézis who introduced me to this subject, and T would

like to thank also L. Veron and R. Rostamian for valuable discussions and suggestions.

§ 2. Existence and compacf—uhiformly boundedness

The existence and uniqueness of the solution of (2) are well known (see e. g.
[11), now we prove the corresponding fact for (1). We consider an auxiliary Dirichlet
problem as follows.

du= |u|?u, 2€Q,

%|p,=0, | 4

e -

The solution of (4) uniquely exists (see e. g. [2]), and following 'monlotonicit'y pre-i
perties hold. : _

Lemma 1. If g=0, then the solution of (4) is non-negative, furthermore, if ga
>¢,>0, then for the corresponding solutions, we have Uz =10 and

g >I ouy
L’ 2 s> P ds>0,

Proof If w<0 at any point in Q, then u must attain a negative minimum at some
pomt in Q, so0 at this point 4u>0, |u|?"*u<0. This is absurd.
In the case ga=>¢:=>0, we have u;>>0, u;=>0; Obvmus_ly, Ug—Uy | p, =0, Up—uy|p,

Al

>0, 8o if up—u; <0 at any point in Q, Ug =2y must attain a negative minimum at some
point in Q, so that 4(us—uz) =0 and |us|* s~ ug | uy=uf—uf<0, This is absurd

agam o
Furthermore when gg>g1/ %?ﬁf < aanui <0 on 1"1, smce u2>u1>0
Then from
| oy N P
| L‘a and‘-kj. nds I w? dw (q, 1, 2)
wo obtain - J' Ot ds>j duy ds>0
- ' ’ ‘ g : rg 6‘7’& . I's @n

Lemma. 2. -If w s the solution of (4) with 920, v 4s a harmonio Junction with
fvlp,>0 and v|p,=h, then h>g famplfaes v>u, '
Proof w=w—u satisfies EEEER




THE COMPARISON OF ASYMPTOTIO BEHAVIOR OF THE SOLUTION OF EQUIVALUED BOUNDARY
No.8 VALUE PROBLEMS FOR NONLINEAR AND LINEAR ELLIPTIO EQUATIONS 375

Iu!"'lu 2€Q, | -
’wlm>0 ' A . L )
: _ {w|n=h—g>0, :
Therefore, if w< 0 holds at a point in Q, then w Would atbain a negatwe minimum in
0. Bub this will lead to contradiction: dw>0, — .lulp‘1u<0 \
Proposition 1. There ewists a unique solution o f problem (1),
Proof We set u|p=¢ and consider ¢ as a parameter, and lef ¢ vary from 0 to

infinity. Denote the solutlon of (4) by o, thenj -—a%—ds vanes monotonously. Ob-

viously, When c= O we have u®=0,then J 20 o Now we o will show I 3u ds :

r, on
tends to infinity, when ¢—>oo, : A
Since ' is smooth, we can mtroduce the dlstance d to I'y as new Varlable in' the
neighborhood of I';, Denote the isometric surface with distance d by I'y; and the
domain between I'y and I'y; by Q2a4, then we have -

o e[ o = dJ _a_ui : ) 4
Jm u° ds L‘“u ds L . om dsds, (6)

Here j 2 g ig positive for each ¢, and if -t§>'t1, we ha,vej o d3>[ ou° ds
Iy; 37& : Tapy an Tae, an -

'Ifj ?; ds is bounded then the r1ght side of (6) will be bounded so from }' u* ds—>o0
Iy . O s .

we will hax_r_ef u ds—>oo and

Iag

L) (u")"dw>kjg o’ do="F KI u’ ds dt —> oo,

Iae

> C — LAY :] . 2 4
but L’a - ds> J - dw jg (u°) da:>L)“ () ? de,
this indicates that L aaqu ds cannot be bounded. _ -
Combining $his fact with 4°>0 and the mono’oonidity ofj —%%— ds, we know there
exists ab least one cons’aé,nt Co ,Such that the solution fo (4) with g=c, satisfies
. ,
. J I’y 5774* ds -~ 1,

hence it is also the SOlumon of (1).

The solution of (1) is non-negative. Otherwise, it will attaln a nega,tlve minimum
at a point in Q or on I'y. For the same reason as _that for solutions of (4), we know
that the solution cannot attain a negatlve minimum in" Q. Fu;:thermore if 1’0 attaing

ou ou

_ a negatwe minimum on Fg, then v Z=<0on 1’2 andj “n ds<0 ‘bhlS oontradlots the

Iy

houndary condition en I,

~ From now on we can write the equatlon of (1) as du=«?, By Lemma 1-we know
the solutlon should be unique. Thus ‘he proof of Proposition 1 is complete. - :
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We are going to discuss the asymptotic behavior of the solution for problem (1)
or (2), when Iy shrinks fo a point enclosed by I,. For convenience we assume Iy
shrinks to the origin 0, the additional assumptions for Iy are: I'y is starshape’with
respect to 0 and the ratio of the measure of I' to d** is bounded, where ¢ is minimum
distance from 0 to I"s, From now on, we use the notation I'5—>0 to denote Iy shrinks
to the point 0 under these assumptions. ‘

Definition. We call set of functions {u} compact-uniformly bounded in 2,\0 if for
any compact set K in .Q;\O, elements w in this set are uniformly bounded on K (For the
requirement of the definition we may often extend the domain of u to the whole Q4, preser-
ving its bound and continuity), '

Proposition 2. When I's—0, the set of solutéons of (1), (or (2)) and their
derivatives are compact-uniformly bounded in £:\0,

Proof The proof is very similax to that of Lemma 1 in [6], For reader’s conveni-

- ency we sketch it here,

‘Multiplying both side of (1) by u and then integrating on Q, we get
ao(u, )+ | wda=uln, M

where ap(u, v) = L)vu- vode,

Since Iy is starshape, we can describe it as r=1(6), where 4 denotes the points on
the unit sphere 8", If we denote the distance from 0 to I'; along direction 6 by
R(6), then the following inequality holds

R(©) ou\2 ou\2
n—~1 [ V&% < ou <
LI"-! Jr(o) " ( or ) ar dwa\jg( or ) dr<ap(u, w) <u

I'. 8

Since | p,=0 we have

wr®, 0)=-| " 22 ar,
® ou B9 1
Iu(fr(O) 0)|<bj o - <—a——> L(o) = dr
® 1
n—1
< Jr(o) ( ) I+ m=oE 2)b T ©)
where b is a constant and will be chosen below.
Integratinge (9) with respect to §, using (8), we get

| Wy -1U l Pagbu I 1"9+ Dn-1 1 p (10)

(n—2)b d"**
CLoosing b sufficiently small and using the assumptions about I's, we have the estima-
tion on Iy
u<Or®™, (11)
where O is an appropriate constant, which is independent of u. Using Lemma 2 we
conclude that the estimation (11) is also valid in the whole 2,
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The estimation (11) implies the compact-uniformly boundedness of solutions of
(2), when I'y;~>0, The compact-uniformly boundedness of the derivatives follows from
Schauder estimates. This completes the proof.

Remark 1. Since the singularity of the solution G of (8) is the same as r*~", the
similar inequality _ :
u<C0'G inQ 12)
also holds. |

§ 8. Asymptotic properties

Now we are in a position to state the main results.

Theorem 1. Suppose n=>38 p>-——-—§. When 1"2-—>0 the solution o f (1) converges

to 0 in any compact set of .Ql\()

Proof Accordlng to Proposition 2, the set of solutions {u} of (1) with their
derivatives is umformly bounded in any compact subset of 2,\0, Using Arzela-Ascoli
theorem we can choose a subsequence {u,}, which converges to v in any compact
subset of 2,0, Obviously, the function v satisfies dv=|v|?~*v in 2,\0, v=>0and »| =0,
Using Brézis and Veron’s result in [8] en removable singularities we know that
dv=jv|?%y holds in the entire £, (we may need t0 asssign the value of » in point 0),
Using uniqueness of solution of this Dirichlet problem weget v=0, By the same reason
we can always choose a subsequence {u,,} from any subséquenc_e {un} of sot {u}, such
that #,,~>0 in any compact subset of £2;\0, this impliea Theorem I.

We notice that nggaxu=ul r, approaches infinity when 7I'y—>0, This can be expla-

ined as follows. Let ©, be a domain containing 0, When I's~>0, it will contain @,
eventually. Obviously | |

e .Qu._ = -1 =§ i J 9
1 L’ " ds L) |]?~*udw o’ do+ w dw, (18)

20052 f23¥ 78

D02

If 4 is bounded, we can choose 2, small enough such that j wdu<<8, by Theorem 1

we know ja\a u?da-> 0, but this contradicts (18),

It may seem strange that max w épprdaches infinity when I',—0, but 4 approa-
ches 0 pointwise. We use the followmg example o explain this."

Agsume I'; and Iy are spheres with center 0 and radii B and 6, and denote the
solution of (1) by w,, which only depends on r. We claim that for any >0 and 0<r,

< R. The inequality u, <r<AR, as long as J is sufficiently

small, Using Lemma 2 we only need to shew us(r) <}—ﬂ-_7 holds for some r=298;(8<<d;
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‘<o)« Indeed if this is not true, we can find numbers- s, 7, such that for any small

8, the inequality ws(r) > 5 holds in [‘o‘ rol, then

I ‘jrs on ds> rn on ds+ rn on -ds QAu,;da_; asrgro‘ugdw

) 7o . . '
>L 8%y PO DER-1 g - - (14)

Because of p>——., the integration st"wn-ﬂ‘"”(”"” -1 dyr will tend to oo, when &—
8

2 F
0; so (14) is 1mpOSS1ble ,
Theorem 2. Suppose n=>8, n+1 <p< — LU 2' Then as I'3—>0, the solution of (1)

| converges to @ non-zero limvit in any relatively oompact open set of 2:\0,

~ Proof As in Theorem 1, from any subsequence {u,} of the solution set {u}, we
can choose a convergent subsequence {%,,}, such that dmk—>o Duy—>Dv, when I'y—>0,
Obvmusly, v satisfies elliptic equation dv=1?, Therefore if ¥=0 holds in some open
set 111 .(21\0 it should hold in whole £4\0, But we can show thls is 1mposs1b1e In fact,

ag;’;" ds<%—, Further_more, because of (10), we

'1f o)—O for sufﬁo1ently large k, _.[r

(n—-2)
oan choose 8y, such that 30)1;25—1_—_-2—)—2-}= 1 then for any F 2, WhlGh is sufﬁo1en1;ly near
0, we have :

. .

ul, dm<cco,,_1 r“‘i‘”(""’”dfr<ca>,,_1 [n p(n— 2) ] r =D = 1

v Ds * d 3
1.

_Where D,;, denotes the domam between surfaoe 1"2 and ”‘?, Moreover from umk—w =0
we can choose a sufﬁorently large b such that | |
» =
. . ; Ja\ Ds, u’""(,ia;< 8"

Summmg up above estimates, we would get the oontradloinon B
=§ﬁm_x___J _f’% J-p'_'l_
"Z L*., an'ds oAum"dw “Jr on ds< Qumkd¢+_ 3

1

=j %dwf ub, do+5<1, o (1B
Ds, A\Ds, 3 ‘

Now Wwe are going to show that all limit functions of subsequence {um} are same.
Firstly, the limit function » satisfies equation 4v= [ [p‘ifv in the domain 2;\0, Using
(10) and Theorem 2in [4] we know fv(w) ~ar?" near 0, If oy, ®, are limit funct-
ions of different subsequenoes there are two cases. The first case is , (w) ~ouTE" oy = aig,

6'2)1
noon ds

‘Assume 061>062 Then near 0 we have 'vl (w) >'v2(m) ) between J fvi’dw j-

| and L V8 da — jp aan% ds ab least one number does not equa.l to 1 If

a’vj_
2 oy —
L'vl_dm L‘ B ds>1
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then we can ohoore sufficiently small 8, such that

_ 6’0 . .
b4 - 1
JQ\DG’vl w"v ,{I’x 37?, ds>]_'. . (16>

When I, is near to 0 enough, the corresponding v in the subsequence, which conv er-
ges 10 v4, will be sufficiently near o vs, 80

L\Dsu”dw—jpl —ZZ— ds>1. D

From (17) we will get jp %ﬁ— ds>1, _whioh contradiots the fact that « is a solution of

(1). On the other hand, if JQ 8 dm-’-L 6;7:22 ds<1, we can use similar technique 10
lead t0 4 contradiction. ‘ ' | o

-Now let us turn to the case oy =aa, Assume g>0 is sufficiently small, Then o+
8@ satisfies

A(vy+ 8@ =0}, 2€2:\0, - (18)

v1+8G | r,=0,
and if I'; is near to O enough, the following inequality will be valid
1+ 8G>v, on I'y, 19)

because of v3~ar?~" near 0, For v;+sG—v,, we have
A1+ G —wg) =] — 18, s€Q,

v+ 6@ —wy|p,=0, _ (20)

w1+ 8G—wg| n,>0, ' |
By the maximum principle v;+ ¢G' — 20 in the whole £, Similarly, v;— &G —v,<<0
holds in £, Therefore, we obtain the inéquality

vy~ eG<wy<v1+¢Q in Q, (21)

Bocause ¢ is an arbitrarily small number, »; must be equal to v, in any compact sot
of 2,\0, it means wi%q)g in £2,\0, Therefore, all limit functions of subsequence of
solution set {u} are the same and the whole set {u} approaches a unique limit, which
is not zero as we have proved. '

Remark 2. If fp<—z—%, we only know that the solution of (1) can not converge

to 0, but we don’t know if it really converges.

Theorem 8. When I'3—> 0, the solution of (2) converges to G both in the sense of =

n
n—2°
Proof It is known in [5] that the solution of (2) converges to G in the sense of

uniform convergence of compact subsets and in L1(Q;) sense, where g¢<

uniform convergence of compact subsets of ©; and in the sense of distribution. By
(12) we know

lu—@|<0@ € Ly,
‘hence - ]u-—(z‘|‘1<O’Gq,
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From the first conclusion of this theorem we know w~>G almost everywhere in Qy, so

by Lebesgue’s dominate convergence theorem we get « E—) G immediately.
Readers can find the detailed description of Theorem 8 and the related consequences
in [B],
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