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Abstract

This paper shows the different asymptotic behavior of the solution of equivalued boun
dary value problems for nonlinear equation from the solution to linear one, while the boundary, 
on which the equivalued boundary value is carried, shrinks to afixed point.

§ 1. Introduction

In  this paper we study the behavior, as Г 2 shrinks to a point, of solutions of the 
following problems:

Au= |м[ p_1w, ж£Д , 

u I r, =  0, 
и | гг= const.,

f ~ & -l,Jra 8n
Au=0} (c£Q,
м1*ч—0, 
и  | r ,—const., 
f du

(1)

(2)

Jr* dn ds= l,

where Q=Q1\Q2> Д. and Д2 are open bounded sets in E" with smooth boundaries Г г
. p i

and Q2, 6 2c f l i .  and —— denotes the differential operator in the direction of the exterioron
normal to the boundary of Q, p > l.  Since the (constant) value of и on Г 2 is unknown,

it will be determined together with the solution u. The value of ~ d s  can be any

other positive number, but it will not cause more trouble.
Our main results show that, as Д2 shrinks to a point % £ Д , (i) the solution of

(1) tends to zero if <p> but this solntion tends to a non-zero limit if ——t-n+1
n —2 n - 1
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, (ii) the solution of (2) approaches the solution of

Au=b(xf) in Q1}
л r  C?)и —0 on Г -l,

The section 2 is devoted to prove the existence and uniqueness of solution to (1) 
and so-called compact-uniformly boundedness of solutions to (1) or (2), while Г 2 
shrinks to a point. In  the section 3 we state the main results and their proofs.

I  would like to thank H. Br6zis who introduced me to this subject, and I  would 
like to thank also L. Veron and R. Rostamian for valuable discussions and suggestions.

§ 2. Existence and compact-uniformly boundedness

The existence and uniqueness of the solution of (2) are well known (see e. g.
[1]), now we prove the corresponding fact for (1). We consider an auxiliary Dirichlet 
problem as follows.

' Au= \u\р~ги, %£Q,
" (4)

U l r a=0.
The solution of (4) uniquely exists (see e. g. [2]), and following monotonicity pro
perties hold.

Lem m a 1. I f  #>0, then the solution of (4) is non-negative, furthermore, i f  g2 
then for the corresponding solutions, we have and

f ^ d s > [  ds>0.
} Гг СП J Гг СП

Proof If u<0  at any point in  Q, then и must attain a negative minimum at some 
point in Q, so at this point Au>0, |m|2’_1m< 0. This is absurd.

In  the case g2‘>gi>0, we have Mi>0, u2>0. Obviously, и2—и1\Г,~ 0 , и2—щ \Гг 
> 0 , so if u2—Mj<0 at any point in Q, u2—u± must attain a negative minimum at some 
point in  Q, so that A(u2—Ui) > 0  an d . j Wa | p-:ty2 — I Щ. | =u%- m?< 0. This is absurd
again.

Furthermore, when o2></i>0, we know on Г 1} since w2>wi>0„
on on

Then from

we obtain f f 0.
J Гг 8n )Гг 8П

Lem m a 2. I f  и is the solution o f (4) with y>0 , v is a harmonic, function with 
v \r l'>0 a,nd v \r2= h, then h ^ g  implies v ^ u .

Proof w = v—u satisfies



THE COMPARISON OP ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF EQUIVALUED BOUNDARY
No. 3 VALUE PROBLEMS FOR NONLINEAR AND LINEAR ELLIPTIC EQUATIONS 375

Aw=> — |w|p %, x£ Q f
(5)

.uj\P,= h -g > 0 .
Therefore, if ад<0 holds at a point in  Q, then w would attain a negative minimum in 
Q. But this will lead to contradiction: Aw>0, — \и\р~ги<0.

Proposition 1. There exists a mique solution of problem (1).
Proof We set u \r,=c and consider c as a' parameter, and let c vary from 0 to

Г du°infinity. Denote the solution of (4) by u°, then - ^ - d s  varies monotonously. Ob-
8u° ds( du° fviously, when c=0, we have mc= 0,then —— ds=0. Now we will show IJ J Гг dn ; Jr, dn

tends to infinity, when c->oo.
Since Г s is smooth, we can introduce the distance d to Г а as new variable in the 

neighborhood of Г а, Denote the isometric surface with distance d by Г 2i and the 
domain between Г 2 and Г  2й by Q2d) then we have

f  u°ds— f  u°ds= f  f  dsdt, Jr, Jr,„ JoJr,t on (6)

Here -Pff— ds is positive for each t. and if ta>h, we have )rn 8n * jr ,

If I ds is bounded, then the right side of (6) will be bounded, so from [ u° ds
Jr, on Jr,

8 u° (  - f l * .
Jr,tl on Jr,t, on

—>oo

we will have u°ds- Jr,,,
•oo and

-> oo.

but

this indicates that

f  (u°) pdx‘> b \  u° dx=Jc f  f  u° dsdt J Qid J J § J Af

f -vr~ ds> ( Au°dx=[ (u°)pdxJr, dn Jo Jo Jo,a
f du° 
Jr« dn ds cannot be bounded.

Combining this fact with 0 and the monotonicity of [ ds, we know there
J Pz СлЬ

exists at least one constant c0 such that the solution to (4) with g= c0 satisfies

1

du 
r, dn ds=1,

hence it is also the solution of (1).
The solution of (1) is non-negative. Otherwise, it will attain a negative minimum 

at a point in Q or on Г 2. For the same reason as that for solutions of (4), we know 
that the solution cannot attain a negative minimum in Q. Furthermore, if it attains

a negative minimum on Г 2> then < 0  on duГ 2 and PfL ds<,0, this contradicts theJr, dn
boundary condition on Г 2.

From now on we can write the equation of (1) as Au=uPu By Lemma 1 we know 
the solution should be unique. Thus the proof of Proposition 1 is complete.
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We are going to discuss the asymptotic behavior of the solution for problem (1) 
or (2), when A  shrinks to a point enclosed by A .  For convenience we assume A  
shrinks to the origin 0, the additional assumptions for A  are: A  is starshape With 
respect to 0 and the ratio of the measure of A  to dn_1 is bounded, where d is minimum 
distance from 0 to A .  From now on, we use the notation A~»0 to denote A  shrinks 
to the point 0 under these assumptions.

Definition. We call set of functions {w} compact-uniformly bounded in Of\0 i f  for  
any compact set К  in Qi\0, elements и in this set are uniformly bounded on К  (For the 
requirement of the definition we may often extend the domain of и to the whole Q1} preser
ving its bound and continuity) ,

Proposition 2. When A -»0 , the set of solutions of (1), (or (2)) and their 
derivatives are compact-uniformly bounded in  ЙД0.

Proof The proof is very similar to that of Lemma 1 in [6]. For reader’s eonveni- 
ency we sketch it here.

Multiplying both side of (1) by и and then integrating on Q, we get

a0(u ,u ) +  f up+1dx= u\r„ (7)
Jo

where ao(u, v) = ^\/u> ^vdx .

Since A  is starshape, we can describe it as г= г(в ) ,  where 9 denotes the points on 
the unit sphere S n~x, If we denote the distance from 0 to A  along direction 9 by 
R(9), then the following inequality holds

L - .  D - 1 ( # ) ’ *  « х « 1 л .  с»)

Since и | n  = 0 we have

v - - ( m w dr,

\ < m ,  в) i ' ( £ ) * * + £  f r  *

where 6 is a constant and will be chosen below.
Integratinge (9) with respect to 9} using (8), we get

о>«-1'ц1г, < М а +  (n—2)b gF 5”* (10)

Choosing b sufficiently small and using the assumptions about Г 2} we have the estima
tion on A

u<Or2~\ (11)
where О is an appropriate constant, whioh is independent of u. Using Lemma 2 we 
conclude that the estimation (11) is also valid in the whole Q,



The estimation (11) implies the compaot-uniformly boundedness of solutions of
(2), when ТУ-^О. The compaot-uniformly boundedness of the derivatives follows from 
Sohauder estimates. This completes the proof.

Remark 1. Since the singularity of the solution Q of (3) is the same as r a~", the 
similar inequality

u<C'G  in Q (12)
also holds.
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§ 3. Asymptotic properties

Now we are in a position to state the main results.

Theorem 1. Suppose n > S ,p > —— . When Г 2->0, the solution o f  (1) converges71— 2i
toO m  m y  compact set o f ДД0.

Proof According to Proposition 2, the set of solutions {«} of (1) with their 
derivatives is uniformly bounded in  any compact subset of ДД0. Using Arzela-Ascoli 
theorem we can choose a subsequence {tv}, which converges to v in any compact 
subset of ДД0. Obviously,the funotion v satisfies Av =  j v | in фДО, « > 0 and v | r,=0,
Using Br6zis and Veron’s result in  [3] on removable singularities we know that 
Av — j w | Р~Ч holds in the entire (we may need to asssign the value of v in point 0). 
Using uniqueness of solution of this Dirichlet problem we get v —0. By the same reason 
we can always choose a subsequence {tv*} from any subsequence {tv} of set {w}, such 
that итк->0 in any compact subset of ФД0, this impliea Theorem I.

We notice that maxw= и [ r, approaches infinity when Г2->0. This can be expla-

ined as follows. Let Q0 be a domain containing 0. When Г  2-->0, it will contain Q2 
eventually. Obviously

1=  f ^ - d s =  f f updx+ f uPdx, (13)Jr, on Jo Jo0no JO\S2c

If и is bounded, we can choose (20 small enough such that updx<e. by Theorem 1JOonQ
we know I up dx -■> 0, but this contradicts (13),J Q\0,

I t may seem strange that max и approaches infinity when Г 2->0, but и approa-*eo
ches G pointwise. We use the following example to explain this.

Assume I \  and jH2 are spheres with center 0 and radii R  and 5, and denote the 
solution of (1) by щ, which only depends on r. We claim that for any s> 0  and 0 < r0

< R . The inequality щ (r) will hold in Го<,г<Д , as long as 8 is sufficiently

small. Using Lemma 2 we only need to show щ (r) <  holds for some r= 81(8<:d1



378 ОНШ. ANN. OF MATH. Vol. 4 Ser. В

< r 0). Indeed, if this is not true, we can find numbers s, r 0, suoh that for any small

8, the inequality щ (r) holds in [8, r 0] , then
fp n

I —f -§^-ek+ f 4 ^ - r f s = f  M 8dx= \Jr» on Jr„ on Jr, on Jo J.
fro

> j 4 8P0>n̂ r

IA 8 n

-»+*-! dr

д*ИГ*£Го
u$dx

(14)

Because of p > n , the integration 8pa>n̂ 1r~p(n~2Hn~1 dr will tend to °o, when 8- n —2 Jd
0; so (14) is impossible.

Theorem 2. Suppose n>  3, » + 1 <P<- n Then as Г 2->0, the solution of (1)n —1 " n —2 *

converges to a non-zero lim it in m y  relatively compact open set of Q ffJ .
Proof As in Theorem 1, from any subsequence {ищ} of the solution set {u}, we 

can choose a convergent subsequence {wmJ ,  such that umf-*v, Bum̂ D v ,  when -T2->0. 
Obviously, v satisfies elliptic equation Av = vp. Therefore, if v=0  holds in some open 
set in ФД0, it should hold iu whole ДД0. But we can-show this is impossible. In  fact,

if <r =  0 for sufficiently large Jo, — f ^ m!‘-ds< ^r, Furthermore, because of (10), weJrx on о
P C ) f t n —( n - 2)i> -j

can choose 8i, such that ■ n~1/ - ..■-<—  = —, then for any Г  2. which is sufficiently near; n — (n—2)p 3
0, we hay©

f г4*й»<сй>л_1{ 'Г "г‘1"р(п-а>й4*<сй)я_1[п -р (» -2 )3 -18Г1’(№“2>==4-
J Ла, Jd о

where D8i denotes the domain between, surface Г а and Я8~г. Moreover, from um̂ >v = 0 
we can choose a sufficiently large To such that

1
'Utfnis *

Summing up above estimates, we would get the contradiction

' l . ^ d s < [  . < > + 4 -dn . Jo 3

<* dx+  < s d x + ^ <  1.Da, J Q\Da, О
(15)

Now we are going to show that all limit functions of subsequence (wmJ  are same. 
Firstly, the limit function v satisfies equation Av = | v | р~гх in  the domain Qf\0. Using 
(10) and Theorem 2 in [4], we know v (x) ~ a ra~n near 0. If vi, v2 are limit funct
ions of different subsequences, there are two cases. The first case is vt(x) ~ а {га~п, at Фa2.

Assume a1> « 2. Then near 0 we have vt {x) > v2{x), so between j jo ld x —j

and 1 v id x—x ds at least one number does not equal to 1. IfJo Jr, on

dv1 
r, dn ds

f v \d x— f - ~ - d s >  1, 
Jo J r x on
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then we can choose sufficiently small 8, such that

f video— f
J Q\D$ j .

dvj
Гг дп d s> l. (16)

When Г 2 is near to 0 enough, the corresponding и in  the subsequence, which conv er- 
ges to Vx, will be sufficiently near to Vi, so

f updoo— f 
J Q\V$ J -

8 u
Гг 8n ds>±. (17)

Л
From (17) we will get j —— d s> l, which contradiets the faot that и is a solution ofJr, dn

8v a
Гг 8П $ s< l. we can use similar technique to

(18)

(19)

(20)

(1). On the other hand, if { video—\J Q J.
lead to a contradiction.

Now let us tu rn  to the case a1= a 2. Assume e> 0  is sufficiently small, Then Di+ 
sG satisfies

A(vi+ sG )= vl, a>£Qi\0, 
vi+ 8G \r1=0,

and if Г 2 is near to 0 enough, the following inequality will be valid
Vi+sQ>v2 on Г 2,

because of v2~ a r2~n near 0. For Vx+sG—Vs, we have
A(vi+eG —vf) = v l—vi, ce£Q,

Vi +  sG — V2 I Гг —
V i+ sG -v 2\rl> 0 .

By the maximum principle Vi+aG — va>0  in the whole Cl. Similarly, Vi~ sG—'y2< 0  
holds in Q, Therefore, we obtain the inequality

Vi—sG<V2<Vi+eG  in Q. (21)
Because s is an arbitrarily small number, Vi must be equal to v2 in. any compact set 
of Qi\0, it means Vi=v2 in ДД0, Therefore, all limit functions of subsequence of 
solution set {u} are the same and the whole set {u} approaches a unique limit, which 
is not zero as we have proved.

Remark 2. If we only know that the solution of (1) can not converge
m —1

to 0, but we don’t  know if it really converges.
Theorem 3. When Г 2—>0, the solution of (2) converges to G both in the sense o f

m iform  convergence of compact subsets ami in L9 (Clf) sense, where q< — .
7Ъ a

Proof I t is known in [5] that the solution of (2) converges to G in the sense of 
uniform convergence of compact subsets of and in the sense of distribution. By 
(12) we know

Iw-G K W G -L 8,
hence
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From the first conclusion of this theorem we know u->Gt almost everywhere in  Q±, so

by Lebesgue’s dominate convergence theorem we get immediately.
Readers can find the detailed description of Theorem 3 and the related consequences 

in  [5].
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