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Abstract

The author introduces a definition about the nondegeneracy of critical points of a differ­
entiable functional defined on a Banach space. Thus the Morse theory is estabished to these 
functionals on a Banach space with an equivalent differentiable norm. And by use of the 
Morse inequalities an exension of three critical point theorem due to Krasnoselski, Castro, 
Lazer and the author is provided. As an application, the multiple solutions of a quasilinear 
elliptic boundary value problems studied. , ,

Morse theory has been extended by Palais1-3-1 and Smale1-53 to Hilbert manifolds, 
and by Uhlenbeck1-7-1 and TrombaC0 to certain classes of functions on Banach Manifolds.

The main difficulty in developing a Morse theory on a Banach manifold is the 
lack of a proper definition of non-degenerate critical point. In  a Hilbert space, a 
critical point a?0 of a 0 s function /  is said to be nondegenerate if the Hessian d3/  (ж0) 
(considered as a self adjoint operator) is invertible, i. e., the inverse operator exists 
and is bounded. This definition fits for Hilbert space, because it ensures that all 
nondegenerate oritical points are isolated and that the Morse lemma holds. But for a 
Banach space the above definition does not work, because 3 f  is not isomorphic to

in general.
Uhlenbeck and Tromba tried to give answers for an reasonable definition. In  [7], 

a critical point x0 of /  is said to be weakly nondegenerate if there exists an hyperbolio 
operator L  (cf. § 1, Def. 3), and a neighbourhood U of %0, such that

<d/(a:), L ( x - x o) » 0  for x£U\{<*o}, 
where < •, • > denotes the duality between 3f* and Sf.

In  [6] , the B-nondegeneraoy is defined by a series of properties, which not only 
depends on the funotion / ,  but also depends upon the existence of a vector field, i. e., 
cc0 is B-nondegenerate, if there exist a neighbourhood U of ж0 and a 0 1 vector field 
V  (x) on U, such that

(1) <d/(x), V 0 » )» O  for x £ U \ {яо},
(2) The Frechet derivative of V  at a?0 is symmetric with respect to the Hessian
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daf ( x  o)
daf ( x 0) (dV (x0)x, y) =d*/(x0) (x, dV (xf)y), V(a>, у) 6  JTx^T,

(3) dV (xo): % is an hyperbolic operator,
(4) dsf ( x 0) (dV(x0)x, x) > 0  if <o€3T\Q,
In  this paper, we slightly modify the definition of the nondegeneracy. Our 

definition reads as follows:
Definition 1. A critical point cc0 of a CP function f ( x )  is said to be s-nondegenerate,

i f
(1) I t  is isolated;
(2) there exists an hyperbolic operator L = LXo. m d a neighbourhood U of x0

such that
V  da/ ( x 0) (Lx, y) =da/ ( x o) (x, Ly), \/x, y£3T, (0 .2)

daf( x f ) (L x i cc)>0, \jx&$r\Q, (0.3)
v d<(f(x), L ( x - x 0) '» Q ,'ix E fo C \ (U\a>o)> - (0.4)

where c = f(x 0) . ........
Definition 2. The index of a s-nondegenerate critical point is defined to be the 

dimension of the maximal negative subspace o f L.
; That the index is well defined, will be shown in § 1.

Obviously, a Б -nondegenerate critical point is a s-nondegenerate critical point, 
and a weakly nondegenerate critical point satisfies all conditions of a s-nondegenerate 
critical point except(0.2). In  fact, in[7], the proof of the Morse theory is incomplete. 
I  convince that the condition (0.2) is needed.
: / In  this paper, besides the Morse inequalities, a three critical point theorem, which 
is an extension of the work due to Castro, Lazor1-13 and K. 0. Chang119-1, is proved. As 
an application, we prove that the following PDE:

du
dxi

©:IIss

^ ) + A » - S r ( M) in QaB?,
(0.5)

has at least three solutions, under certain assumptions on the function g (of. § 4), 
where c > 0 , # > 2 .
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and IHES, when I  visited at the Oourant Institute of Mathematics Sciences from Jan. 
to March, 1981 and at IHES in April, 1981. The author wishes to express his gratitude 
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§1. Preliminary

Most material in this section can be found in [6] ,



In  the following, let be a banach space:,- L  be a linear continuous operator from 
into itself, and let &(«,•) be a bilinear continuous form over «ЗГх We say that b 

is commutative with L  if
Ъ(1м, v) = b (и, L %>), ■- (1.1)

By definition, there is a linear continuous operator В : Sf-bZZ'*, induced by b, such 
that

b(u, v) =  (Bu, u>, V (m, v) (1.2)
Thus, for b commutes with L  if and only if

BL=L*B'
Definition 3. A  linear operator L  is said to be a hyperbolic operator, i f  its spectrum 

<r(L) is contained m  two compact domains, one lies in the riff hi hand half open plane H +, 
and the other lies in the left hand half open plane H -,

If L  ss hyperbolic, the resolvent Rz= (z l  — L)~% is defined on the resolvent set 
p{L), and also , . , (

. !
According to Riesz, Nagy1-43, the projection operator

1
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P = a.js.
R* dz2mi j9D

is well defined for any domain D with a rectificable boundary 8D which does not inter­
sect with the spectrum cr (L ) . In  particular, let

<r (L) ==cr+ U'<r~j where o-±= tr(£ j 
then the projection operators P+ and P_ are defined by

r> i - I f- Rsdz,• J 9D±* 2av i ,
where D± is a compact domain containing <r±. We have i ; . : ;

[ P 2±= P ±,
■ P +P _ = P _ P + =  0, (
. P + + P _==/, , .. - . ,

and the Banach space ЗГ is decomposed into 3£+®3t-, where = P ±3f,
So is . .. .....
Let L I  =  L  |>±, Provided by the functional ealculus of the bounded linear operators, 

the oporator „, . . . . .  . .. . • ,

S + M  ^SM J9D± zR zdz*'" M i
is well defined, and commutes with:P ;t[ a ’ 1 - ••

Since Rz can be expanded as a power series cfi L, we haye
B R ^ R IB ,
BP±= PIB , r  "
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Proposition 1. Let the bilinear form  b be defined on Sfv. Assume that b commutes
with an hyperbolic operator L, satisfying

b(Lu, u) > 0 , VиФ9,

Then b is positive on and is negative on
Corollary 1. The index of a s-nondegenerate critical point is well defined. 
Corollary 2. In  the proposition 1, i f  further, S f- is finite dimensional then b is 

negative definite on i. e. there exists y > 0  such that

6 (w_,
Proposition 2. Let b be the bilinear form  defined in the Proposition 1, then \juQ.3£, 

we have the decomposition

b (u ,u )^ b (u +,u'+)A-b(u-,uS),

where u==u++ u-, w± €<3T±.
Proposition 3. Let L  be an hyperbolic operator on 2Г with the positive/negative

invariant subspace. Then there exists an equivalent norm | • | , with the same smoothness 
as the original norm fl • || of and a constant p> 0  such that 
and |®++®_| =*’j®+|+  |®_|, V(»+, £c_) G ^r +©«^’-,

|eMaj±|> ( l + p |« |)  I® *|/for ± t > 0 .
Proposition 4. Suppose, that the norm | • | on St is 0 1-differentiable) then \//л>0, 

we have
<fi\x+\ — pd\x^ \, L x }> p ‘min {1 , рь\ \x \, \jx£2F,

Proof Since d \x± \ € )  we have

<fi\x+\, Lx+У =чlim ~ ( |eLtx+1. — j®+1) > p | 1,■ J-++0 t

£®_>-lim - i- ( |e~Ltx_ | -  |® j|) > p |® .|,,
(-*+0 t

and (d \x±\ ,  Lx?} = 0 .:
Thus

<d|®+| —p d \x -\, Lx}p*p(\x+ \+ p ,\x-\)> pm in{l, p,}\x\,

§ 2. Deformation lemma and the handle-body decomposition

The main step in extending the Morse theory is to prove the so-called handle-body 
decomposition theorem in Banach space. Once it has been established, the whole theory 
carries over. To this end, a deformation lemma is need.

Throughout this section, we make the assumptions on a function / :  9Г—-> R1, as 
follows:

(1) /  is (^-differentiable
(2) /  satisfies the Palais Smale Condition (P. S. ) i. e. for each {х^а З Г , f ( x n) is
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bounded and d /( x n)-+9, implies
3  a convergent subsequence of {xn},
For each real number d, we denote by Д  the set {x(~3T\f(x) <d}.
Deform ation lem m a. Suppose that c is the only critical value o f a Ca~°-function 

f:  JT -^B 1 in /~ г[а, 6] . Assume that /  satisfies the P. S. condition, and has only isolated 
critical points in  / -1  [a, 6] .  Then /  has only finite number of critical points in  [a, 6],
and f 0 is a deformation retract of Д .

Proof The first conclusion follows from the P. S. condition directly. We shall
prove the second.

1. Define a flow as follows
• ( / ( x 0) - c )v (x )

(dfi(x), v(x)} '
■ cr(0 , Ж о)=*о€Д\Д,

where ф (ж) is the pseudo-gradient veotor field of Д  I t  is easily seen
d
dt f(or(t, xo)) =  -  (/(a?o) -  c),

or f(or(tJ x0)) = ( l ~ t ) / ( x 0)+ ct,
This implies that cr(t, cc0) is defined for [0, 1 ] x (Д \Д ) , and

lim/(cr(tf, x0)) — c.«-*1-0
However, the right hand side of the ODE approaches to 0 as cr approaches to a oritioal
point, it is not obvious that lim a(i, ccq) exists.«-*1-0

2. We shall prove that the limit limy ( t ,  &0) does exist. Let {Zi}f be the oritioal 

points in / - 1 [a, 6] . Then either
«-♦1-0

(a) inf 1|оД , x0) - 2i|| > 0 , V<—1, N  
te to.i)

(b) inf Ij a (t, xq) -«dl = 0 , for some i,«€[0,1)
In  case (a), we have d > 0  such that in f ||d f(a ( t ,  x0) ) ||>d, and

<6 [0,1)

k (< a, -« • & / и )  I« ; £  | ( / w  - c )  £

^  <«o) ~o) (ta—tf),

which implies the existence of the limit lim cr(t, a?0).

*=0-(«/«o)
dt

«-*1-0
In  oase(b), we shall prove

lim cr(t, Xo) —«{.«-♦1-0
If not, there exists e> 0 , such that for an infinite sequence of disjoint intervals 

\th tj+J с  [0, 1) wither 0 , a?0) €£(>«, 2 в)\В(г<, s) for [tit #y+1], where В {x, 8) is 
the ball centered at x with radius 8 > 0 . The s can be chosen small enough suoh that
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inf Id/  (or ( ts x0) ) I > d > 0 .

Then we get a contradiction
fi

x0) - t r ( t h (Co) 1 <
J i
Ijil
ti­

de
di dt

2 ,-  
d hi-  ̂ )—»o.

3 .Now we define a deformation retract by
a(t, x), i f cc) e  [0, 1) X (A \/o),

T(t, cc) lim a(t, <c), if (t, <c) £  {1} X (A \/o ),t-* 1-0
vcc, if (t, x) £  [0, 1] X/o.

We only have to verify the continuity of v. Four cases axe distinguished:
(a) (t, x) £  [0, 1 ] Х Л
(b) a  ® )€ [0 , 1 ) x (Л \Д ) ,
(о) (Ь <*>) €{1} х (A \/o ), • ’
(d) (t, x )£ \Q , l j x / ' V  . r
Case (a) is trivial; case (b) is easily verified by the fundamental theorem of ODE. 
Verification for the case (с) ' ’ ' ’ ' '
Let x* =  lim v(t, x), we shall prove: Vs>0, 35>0, such that

lk o - 2/||<S  and 1 - S < t  imply 
lk(*, 2/)-ж * 1< е .

We choose suitable Si> 0  and d2= S2 (§i) > 0, such that

■ y) - 0*1 < Y  for fi/—a?0|| < K

I t  is avaliable, because we have 5 i> 0  such that

\n(t, xo)-<c\*\<-~ for t £  1 ),

and we have S2> 0  such that

J r(t, Xo) - r ( t } y) |< - |-  for \y  — (Co\ < § 2, tG  [0, 1 - S J .

These imply that; ,

No loss of generality, we may assume that no critical points are in В (x*, e) \  

B ( S .  4 ) .  Thus

d '— . inf . ; • .jd/ Ш  > 0 ,
«бВ(«*.е)/в(к!М)

Determine S1> 0  so small, such that

: .... ' ’к ”  ; V
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Then we shall prove
\x(i, y) -x*\\< e  for 1 ), \xQ- y \ < § 2.

If not, 3 t'< t" , and уъ(~В (ж0, §a), such that

with

This implies that

Y < ||t (*, 2/o)~a*||<e for t e  \t', *"]с=[1 - 8а, 1 )

\< * ,y o )-e* « -e .

y <  Уо) -* (* ', 2/o) (I <  | {/ J
do
dt dt

(b -c )d 1< f .  /

This is a contradiction.
Case (d) will be verified in the same way. Since now x*<=x0, y0 is initially chosen 

in the ball В (x0> only the last part of the above proof is applied.

Then we shall state the handle-body decomposition theorem and prove it.
Theorem  1. Suppose that B f is a Banach space with an equivalent differentiable 

norm. Suppose that /  is a G2-function, satisfying the P.'S, condition on BG\ Assume that 
c is the imique critical value in  / _1 [a, b ] , which corresponds only s-nondegenerate critical 
points with finite indices. Then there exists a handle-body decomposition. Namely, 
let{Zi}[ be the critical points, {mi}{ be the corresponding indices; there exists e> 0  such 
that

Д ~ / 0_е {jhifiD™1)  (J -'\Jhi(J)mi),
where hi is a homeomorphism o f mrdimensional disk into ВГ'В X {gi+}, {BF™' is the 
negative space induced by LZi and'Zi=Zi++ 2t-.) with

h{B) = 2{
and / 0_6 П h  (Dm<) =  / - 1 (c~ s)f]h i  (aZT‘) ,
where Dk denotes the к-dim. disk.

Before starting the proof, we need a lemma
Lem m a. Suppose that f  is a C2 function on a Banach space Bt. Suppose that В is a 

s-nondegenerate, finite index critical point of /  with a hyperbolic operator L. Then there 
is a cone neighbourhood

О ь =  {(%, *-). G ЗГ+@ВГ-. 11 cc+ 1 < / i  I x. ||, I 1 < 8}, 
where fi, 8 > 0 , such that

(a) (d f( x ) ,  xB>< — ̂ \x - .\\2 for some p>0,

(b) <й/ (ж), Lx} > —  |j a?- ||a, :

(c) / ( x ) <
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in  Op,s\e.
Proof The negative space induced by L  is finite dimensional, daf  (9) is negative 

on 3C-, so we have v> 0  such that
da/  (в) («_, x f)< ~ V  I (G- 1 2, 

and daf(9 ) (L x - , x P » v \\x .\\a.
Since daf ( 0 ) is bounded, there is a constant M >  1  such that

daf ( 9 ) ( x +, x+)< M \\x+\\a.
No loss of generality, we may assume ||Л ||< 1 ,
(a) For given positive e<p/8M (1+/P)2, we have 8 > 0  such that 

\d f(x )  —daf(9 )x \  < s  ||a;|| for 0 <  ||со|| < 8 .
This implies

(d f  (x) , a?_> -  daf  (i9) (»_, ®_) <  в Ц« || f ®_ | |< ( 1 +/л)е || ж_ fl3 for x £  s,

Thus <df(x), L x )> ^ \\x J \a, Va€O*,s\0.

(b)
( d f  (со), Lx> - d2/ (0) (Lx, x )>  — e \x ||2>  — в (1 + /л)21 | | |2, V*€ G>,a.

Thus

(c) From 

it  follows

( d f  (x), L x } > ^ \x „ I2, Vx£O„,6\0.

f ( x ) - f  (9) - daf  (0) (x, x) < в |И 2 for ||®Ц<8,

/ ( » ) < / ( # ) - x l k -Г , v ® e o ^ 4\e,

with /A<min

The proof o f the theorem 1
We may simply assume that 9 is the unique critical point with critical value 

c = 0 , because the critical points of f  are isolated; they can be decomposed individually. 
Suppose that L  and £f ± are understood for daf ( 9 ) . Let 8 > 0  be so amall such that

( d f  (x), Lx} > 0 , \/x £  f 0 П (Ds x D t \9 ),
where D$ is the disk with the radius 8 in & ±, Let the cone neighbourhood 0 ^ а be 
defined as in the above lemma. The deformation retract will be constructedby the 
following three steps:

(1) Provided by the deformation Lemma, f b—/о,
(2) We shall prove in the latter that

(3) f - e UA 'X  {Of is obviously a deformation retract of /_ e (J 4, provided by 
the facts that d f  ЖДГ X {9+}, and that D& is finitely dimensional; if <5>0 is sufficiently 
small.
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' O - f t

Since dim X - is finite, and /\&_ has a local minimum at we may choose e> 0  

so small such that e, 0) is radically homeomorphic to the disk D l  i n ^ l .
Therefore the proof will be complete if (2) is proved.
Now we shall prove the existence of the deformation retract: where

0 « s « - i - 83.

According to (c) of the lemma, it is seen that
sup { /(«) |a> |« c _ |= 5 } < -s

i. e. С^,й П 8D$ x iT+c :/_ e„ Choosing (0 , 5) such that
sup { / 0 ) \ x £ 0 M,s, | |  —5i}< — s.

We define а Сг~° function with support outside x D  ^ 1:

1 , | | > 5  or | x+ 1

| X-1  < 8i and | x+ 1 

and linear in \x+\ and j a?_ ] in D jx  x D ^l0
Let %(x) =  ( l —p(x))L x+ p(x)v(x),

where v (x) is the pseudo-gradient vector field of /  in /~ г [а, Ъ]. The following flow:

ra (t, x) = -%(<r(t, ж)), t> 0, 
t  or (0 , x) =  x  6  /o \ (/„  U {0})

is well defined, and will be applied to the deformation, because /o<j(^)is decreasing.
Let [(9, /3) be the maximal interval for the existence of the flow, where fi= fi(x) 

is equal to oo or not. We shall prove after a finite time
<r(<, x) e U C7M,„ Vx€  A \  (Д  U {0» .

The proof is divided into the following cases:
Case 1.

inf dist (Лв X D^s1} <r(t, ж))>0„
teto,в)

In  this case, 38 i> 0  such that
p(cr(t, x ))> H ,

d (/°a )  (t) =  <d/, <r> (t) =  -  <d/, (f)
<  - B iW , v°cr)(t) < -  Si||d/(o-(t)) i3 

< - e i d a„

and then

It follows

e1^ 2< s 1 J0 |d /(< r(r)) II2 d r < / (ж)- /(o -(O ) .
(■<8

We conclude: either lim f°cr(t) =  — со or $  is finite and ||d/(cr(r)) ||2 d r< + o o . If
t-»/3 Jo

lim /°<r(t) =  — oo, then after a finite time У £  [0, /3), we get u (T } x) £ /_ e. 

Otherwise, from
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/{тб[0,й)|ррсг(т)=1)
\x(or(T))\\dt=( 

J i{Т€[0,/б)|роо>(г)=1> |4>°сг(тг) \ dm
i

< 2 ^  \ d / ( a  ( т ) )  I d r  < 2  j/3 ( |d /(c r(r))  \\s dr  j  <  + o o e

f/3
We have I ||a (r) || dzr =  I j|# (cr( r ) ) || d r< + o o ,

because (| % (cr (r) ) || is bounded for those r  6  [0 , 0), where р°<г(т) < 1 .
Then the limit lim cr (t, x) exists in x D ^  which condradicts with thei->yS

maximality of /3.
In  one word, a fter afinite time, cr(i, as) enters into in this case. 
Oase 2 .

inf dist(Z>Slx Dfylf <r(t, as)) = 0 ,ге№,/3)
Logiclly, there are only two possibilities; either lim dist (Dl xD+a,, cr(t, as)) =0,

t -*0

or 3 S2£  (o, — (8 —8i)^, and infinitely many disjoint intervals[a^, &], j = l ,  2, •••, 

such that
cr(t, as) £D i i+2Sj X -Од(5г+26а) У-^+Зз X HJ(8,+8a) &>г < € [<ty, A] .

But the latter can not happen except cr (t, as) enters into /_ s after a finite time. In 
fact, 3  d t> 0  such that

pO O , ®))>dx for t e  \ah A ], j  = l ,  2, - ,
on one hand

/(as) — l-im /O O , a?)) =  — [ d (/°a )  (t)t-+/3 Jo

> 2  f ' O A  Ut) d t> d 4 i ^ ( 0 s~-a0,
} Jaj j

i. e. 2 ( A -  a3) < + o o  on the other hand
i

82< | |сг(/Зь as) - a ( a h e ) | |< f  '
J Ctj

where M  =  sup || % (as) ||, This is a contradiction.
®еПбХД!;6

dcr
dv c h ^ M  ( fij— ai),

Now we tu rn  to the former one
lim dist(Dj x  DJs a(x, t) )=  0 .t-*e

We shall prove: 3 a finite T £  [0, 0) such that cr(T, as) £1)^ xD 0 r  Then, according 
to the Proposition 3, after a finite time, <x(t, as) enters into We prove the existence 
of T  by contradiction. Suppose that such a T  does not exist. Since for each 83> 0, 
3 TiG [0 , 0) such that

(r(f, x) £ D&l+Sax BJ(5l+58)\Djl x D ^l for f>T%
IK®) || <  р /(ж )  1 < K / ( 0)®|| +o(\\x\\), ■

\Lcr-v(cr) | «C/JfjJcrO) I,
and
it follows
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where Ж-! is a constant. Observing the equation
cr(t) = — Lor+ p (cr) [Per — v (cr) ],

we obtain
<r(t+At)=e-LM(r(t) +

According to the Proposition 3
| P_cr (t+At) | — | P_cr (i) |

ft+At
>  \e~LMP-<?(t) | -  \P.<r(t) [ -S sM A  I !,

J t
where e3=  sup p (ж),

®6 De1+5?xOJ(a1+is,

Thus ~-\P„cr(t)\>p\P-<r(i) | - в 3Жа|сгр) | 0

Similarity^ we have

(o-) [Per - -y (cr) ] dr.

-^-1 P+ff(0 [ < -p \P + 0-(t) | +  ssMx|< r(0 |. 

Choosing <53> 0  sufficiently small, such that

we obtain 

where

s3< W>
Ж г ’

~-(\P -< r(t) | -  |P+o-(0 \)>a\cr(t) |, \li>Tu

a —p —2Mis$>0,
Then we arrive at the inequality

(IP-о(O'I -  |p+<r(0 I) -  (IР 1 < т . ( Т 0  I -  IP^TO |)>4I И О :|<fc. (.)
But (*) cannot hold. Because the LHS of (*•) is finite, and |cr (i) | > рьЬг for t>T% 
these imply J3< + o o # Then 4

f |сг(т)|йг=[ ty(«r.(v)) |cfor< M ( |<t (t) | d r < + o o ,
J 2\ J 24 JTi

This implies that lim cr(t) exists in /<Д (Dj, X РД,) ° which contradicts with the maxi-
t->e

mality of /3. . .
In  summary, we have proved that there is a finite T £ [ 0, 0) such that <r(T, ж) 

G /-e U Lot us denote by yx the first time which makes cr (t/as) .entering into 
/ - s  U -

The function is continuous in / o\0. Because .
<,d/(x), W G /o \0

implies % Ж ( в ) , and • * ■ ■ ■ ^  ̂-  s ' > -
|ж+ J — рЛ |ж_ | , Рж>>рm in {1 , p,}|ж| , \jx

implies %'r¥\80fi,s\ ( /_ eU {#}) (the tangent" space of 8 0 ^  \ ( / - e\J {9}) =  ker (d|a?+j 
—p>d | ж_ |), and # (ж) =  Lx, \/x 6  dCy,Д (/..„0 {#})). And insicle Ds, X P ^ ,, cr =  — Per, 
which implies
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lim <r(tyx, to) =9 uniformly in t £  [0 , 1 ],
x->e

Henoe the function

и  \ (o'Or*, *), i f
l в, %f a>=9

defines a deformation retract of Д  into
/-e  U Op, 6) where (t, as) £  [0 , 1 ] X / _e|> , 0].

§ 3. Morse inequalities and a three critical point theorem

In  this section, we briefly sketch the outline of the proof of the Morse inequalities, 
and then tu rn  to an extension Of our three critical point theorem to Banach space.

Definition Let f  be a O1 real function, satisfying the P. 8. condition, defined on a 
Banach manifold. Let a, b be regular values of / .  Suppose that /  has only finite critical 
points, with critical values Gi<C2< ‘--<Om in  / -1  [a, 6] . The number

m
Mк ~  rank Hft (fict+e, f  Ci-a)

i=1 
■J

with 0 <s<-=- min (0(+1—0 {) is called the k-thMorse type number of /  on / _1 [a, 6] ,

yfc=0, 1, •••, where H fiA , B) is the relatively singular homology group.
According to the well known deformation lemma, the numbers Mk) k —0 ,1 , •••, 

are well defined, i. e. they do not depend on the Special choice of the real number s, 
If  all critioal points of a 0 2-ftinotion, satisfying the P. S. condition, are $-nondegen- 
erate with finite indices, then

Я * (Д +в, Д (_е) -H ft i f^ U h x C ir b )  и - U к(ТГ>), A _ e)

= H ft( \)h fiD ^ ) ,  U
, M=1 1=1 >

= © S S , f t ( » ' i  h ^ v ) )
1=1

- ® 2 Я , ( П  вЛ“< ) - © 2 8 » Д
1=1 1=1

where (mi, •••, mi) are indices corresponding to the critioal points on the level c<; 
and G is the coefficient group. This provides a geometrical interpretation of the Morse 
type numbers. In  this case, Mk is the number of oritical points, whose indices are 
equal to к

Followed by the exactness of the homology sequence, one obtains the following 
Morse inequalities

M i  — M o ^ f i i — f a .
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Mn—Mn̂  !+•••+ ( —1)”Жо>/Зп—/3,1-1+*•• +  (~-i)"A>,

where ••*, are the Betti numbers of the manifold / -1 [а, b], i. e.

& = г а п к Я й(Д , A ).
The three critical point theorem reads as follows:
Theorem 2. Suppose that S f  is a Banach space with an equivalent differentiable 

norm. Suppose that /  is a 0 s function, satisfying the P. S. condition. Assume that
(1 ) f  is bounded from  below,
(2) в is a s-nondegenerate critical point, which is not a global minimum, but with 

finite index,
then /  has at least three critical points.

Proof The function /  is bounded below, and satisfies the P. S. condition. The 
global minimum exists, say m —min. { /(x )  \ x £ £ )  — f ( x 0). No loss of generality, we 
may assume that there is only one global minimum. For otherwise the proof is 
through.

Suppose that /  has no critical points other than 9 and x0 Let c = f(9 ) .
Taking b>c arbitrarily, there is no critical point outside Д .
For any pair of topological spaces (X , Y ) with Y  a  X ,  let %(X, Y )  be the Euler 

characteristic of the topological space pair, i. e.

x (X ,  F ) =  2  ( - I f f  rank H U(X , Y ) ,
k=0

I t is known that for ^ c F c X ,  if both %(Y, Z) and %(X, Y )  are finite, then
x ( X , Z ) = x ( X ; Y ) + x ( Y ,Z ) ,  (**)

Now we take (X , Y , Z) — ( / b, f c-e, 0), where c> m + e. According to the 
handle-body decomposition

х (А , A-«) =  2  ( - 1 ) ’5 rank H h( f b, Д -e) =  ( - l )* ,h—0
where j  is the index of /  at 9. Since x0 is a minimum, there is a small ball B(x0, 8) 
C / H l We have

x(fc-*, 0) -  2  rank Я й(А-а)fc=0

=  S  ( —I f f  rank; H lc(B(x0, 8)) =1.
fc-0

But the left hand side of (**) equals to

*(Л , 0 ) - 2  ( - 1 ) Кг а п к Я ,(Г ь)
fc=0 . . . . .

=  2  ( — 1 ) rank
fc=0

because Д  is a deformation retract of St,
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§ 4. Application
In  this section, we present an application of the above abstract theory to study 

the following PDE:
А  д ( I 0 u 8u  \ ,■ ;  '• M . . rt  . ■c>j —— ( I —  + /Ь = в(м ) m fl,
i = i  дщ  \ |  8щ 8xi / ( * )

w|afl=0,
where Q is a bounded open domain in  R”, with sufficiently smooth boundary dQ3 c>0 
is a constant, and £>>2 . The function g satisfies the following conditions:

(1) gtzC1 (R1) with g (0) =  0 ;

(2) |j 4 0 k {
Of2+C?1 | i | a“1, i fp<,n 
no restriction in growth, if p>n,

where «<■ np
n —p •1 ;

fU(3) Let G(u) = \ g(t)dt, we assume that 
Jo

ОG(u) > - C 4\u \ » - 0 3 with C4< ^- 01,
P

where Oj is the best constant such that

W O T (X 2),

(4) Let the eigenvalues of the-d with o-Dirichlet data on О be 
We assume that there is an integer i > l  such that

— g' (o) ■
°

Let us take the Sobolev space W \(O ), p > 2, and consider the functional on 
W l(a )

/  W - } 1 |'+-1-J'(v«)3+|e («).
Obviously, в is a critical point of / ,  In  order to verify the s-nondegeneracy, we 

should check the following inequality
(d /(u ), Lu}>0, for и £ В (9 , Ъ)\9, S>0 small,

where L  is an hyperbolic operator from Wp (O) into itself. To this end, some estimates 
are needed. We devided them into the following lemmas.'

Lemma 4.1. There exist constants
£=/3(w, p) £  (0, 1], and M = M (n, p) >0,

such that

Note: Hereafter we write
|Vw[i> = 2S«1

8u
dXi



<8
(1)

! Bp '

o (1 j */LIwi ’) -=ж {(L i -1a )/(L i 1 s)}a
for all u£W l(tl)\& , where 2,
Proof Provided by the well known Gagliardo-Nirenberg inequality, we have

. /3 = _____g ? - —
np—2n+2p’

and a constant О—0 9,„ such that 

Combining (1) with the Holder inequality 

we obtain the desired inequality
Let E tc be the eigenspace of — d corresponding to the first & eigenvalues 

Then Ejc is finitely dimensional. Let P fc be the orthogonal projection onto Щ  in La (O),
о 0

then it oan be restricted on W l(O ), and maps onto E^ciW l(11). Let К  be the opera­
tor ( —d)_1.

Lemma 4.2. The functional

/ ( « ) -  f ±  p -  ^  ~  K uw  Jaiti da>i
О

is defined on W l(O f . Рог еасД e > 0 , Йеге is an integer N > 0 smcA that

J  (Pnu) <  s |  j V p au 1 w  €  w \ (a) 

as n> N , where P„= I — Pn>
Proof According to the Holder inequality and the D  a priori estimates
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p-1

' « • « S d l s H ' n i l s H T
P - 1

4 0 ( J |V tt |* )  '  1£ и |ч < 0 | « | »  И и

where, and hereafter, we denote by О various constants. Hence J  (u) is defined on
О

TFp(X2). And we havo1 _
p - i  i

1 ( Р ,и ) < о ф ч Р пи \ ^  P ( | |Я .« |» у .

Due to the Lemma 4.1, we obtain
' 0

[f|£>|2/ {  I |3 J!
Since X„->+oo this proves the lemma

Lemma 4.3. Let g be a real fumtion, satisfying the conditions (1) and (2). Then 
fo r  each s>Q,
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there exists 8>0 such that

|J fi[0 (w)-/(O)w]a> <e[|w|Tnl'y||w$ +  lw |^ 1 , lbllwj] (2)

fo r all u, v £Wl(Q-), with ||w||wi < 8, p > 2 .
Proof If p> n  according to the Sobolev embedding theorem, then we have

J| lg (u) — g '(0) u\v  < е |м ||1,«в||'у|ь« asH fy .< 3 ,

(2) is obvionsiy true. In  the sequel, we assume p<,n. Since g^O 1 \/8i > 0  there is a 
7̂= 7j(ei) > 0  such that

lfl,(w )-5 ,'( 0 ) « l< s ik | for \u\<7).
Let E v be the set {x£Q \ \u(x) | < 07}, and E'n= Q \E n, it is easily seen that

mes (E'f) <  (OI w! /??)p
and

If [g (u )-g '(0 )u ]v  < S if  |^ |<SiO ||M ||(7||'y ||W|.  (3)
I J ®l) J

Applying the inequality
\g (u )-g '(0 )u \< a ( | l +  H “),

where 

we obtain

However

« + ! < ? : np
n —p

If lg(u)-g'(0)u]>v < c [ [  M + f  M “M l
U s;, jE i ,  j

1 a
<0|«|- ML mesTÔ  т

< 6 ! e b « » L I «
Similarly, we have

W < a \u K l  M n l « l ^ / 4 J .

(4)

For each s > 0  choose 6 i< f-  firstly determine rj, and then fix it. Then we obtain § > 0
(J

such that (2) holds provided by (3) and (4).
Now we shall prove
Theorem 3. Under the assumptions (1)—(4) on g, the equation (*) has at least 

three solutions for р> 2, с>0щ
0

Proof Let SC be the Banach space TFp(Xl), and let

■■/(«)- j j l  Y « | '+ i  |( 7 « )* + |а (« ) ,

we shall verify a series of conditions on / ,  whioh are needed in applying the Theorem2 .
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1. /  £  G2. We denote by < , )  the duality between Wl and its dual space. It
is easily proved that

р-а г Л д и  xh  
) doc, doc. -g(u)v0

Applying the Lemma 4.3, we get

* /« ( ., c* -o |£
2 . /  is bounded from below. This is due to the condition (3)

M p—0 3 mes (O)

i | ( V « ) s - 0 e me8(O )+(-2- a . (5)2 Г " ~ '  V“V ' \ p  Q,
3. /  satisfies the P. S. condition.
The operator К  =  ( —А)-1 (W r1, W l), and then is compact in J?(Wl, Wl)

1 1  1for l< r < o o ,  The eigenvalues of A" a r e L e t
A± Ад A {

and let
uh>g(u) .

p- 2 du 
dec,D

+u

According to the sequences

W\-
&

I f 1 — > Ы  — » W;1 — > Wl.,
and

w i- •(I
du

8a>{ VI
p-2 du \

dxt J
> w ?1 W lf!

, 1 . 1  - i __ J  1  1 1where q±<q. c t= q i/q \,----- 1— r  = 1 , and— f  —= 1 , we have
qi q\ p  p

\d / ( u ) ,  vy = <,Ru+K&(u),
О

Suppose that {«„} is a sequence in  W \ such that
f /(«n) is bounded, and
l Я(щ) + К Щ ц )—>e (in Wl) .

о
Then {24} is bounded in  Wl, provided by (6). We have a subsequence {un}  such that

О

К  W(un)  is strongly convergent in W \  say to <w*. This implies that
Й К ) - — >~W* (in W l).

However, the operator R  is strongly monotone

P ~ S  &ИУ - '8 й
doc.

»-a du dv
doci doc.

> l ^ - 2j |V (M -^ ) |p,

v \ K, d u  dv \  , 
c j  doci d x j  X

we conclude that {un}  converges strongly in Wl. The P. S. condition is verified.
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4. Now we define an operator
L = I + g \0 ) K € J ? (W l  W \), 

The spectra of L  are as follows

(̂°) <lv m ✓  (0),
Я1 Яз Я(

L  is an hyperbolic operator. It is easily seen that

& /(в)(Ьи,и)= ^1У {1м )Ч и+ д'(0)Ы > и\

- J  \V (L u )\a> k i \(1мУ > 0

for и фв, and that

d?/(d) (Lu, v) = | v (Lu) V (Lv) =ds/(9 )  (u, Lv) ,

\/u, v £  Wl. The index of daf  (в) then is equal to dim E u
6 . The only thing remains to be proved is that <d /(u ) , 1 м » 0 for u £ B (в, 8)\ 

в, as S> 0  small. In  fact

a m ,  М Ш Н ж Г  + 1 ) ж ^ + ^ л ]

as H If * < § , where

У . ^ { 1 м ) + ^ 9 {и )~ 9'(р)и\1м  

j  | V(Lu) |a+c 11 Vw|p+ c / ( 0 ) / (u) + 1 [g(u) - g'(0)u]Lu 

v j (Vm) 2+ c|  \Mu\v-c\g’(0) | / ( м ) - в [ И ^  +  И ^ ]

y = m i n ( l + - ^ ) ^ - / l d - 4
'W+i 4 Я{

J(u )  is defined in Lemma 4.2, and 8 =  §(s) is defined in Lemma 4.3. 

Choosing е б (о , min we have

' * ' <d/(u), ЕиУ>^\\и\\2щ -c \g '(0 ) \J (u ) .

But

/(u)^-1 J2[ 8PnU
dooi

p-i
+ 0P MU

8a>i
p- i

][
dK P Nu

8w,
дКРци

d&i v
< 2г,-1[ /  (Pxu) +  J  (P i/u) +  Rn (и) ], 

where Rn (u) is the remainder. Let u —kv, |'о || щ  =1, and Я is a scalar. 
I t follows

J  (и) =<Яр2г’-1  [ /  (Pnv) + J (P nv) +  Rn («) ] , 
and ’
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I b„ « | < о (I PHI £  II p*> II n + IIP* II I p*» II %)
< c '( ||P y» ||;,+ |[P »« l!„ ,,).

■ V (p » « ) s ;o |p ^ |f t ,

' -> . '0 [ ||Р » * ||^  +  ||Р»«|ч ].
According to the Lemma 4.2, firstly, we choose N  such that

................   . • / ■  ^ ш \ Р М 1 г 0 1 (Р Ф ) > о.

Fixing A, the norms | <o | w\ and || v || щ  are equivalent in 1 the finitely dimensional space 
ТцЗС, At last, we arrive at

Since

and
we obtain

<<*/(«), £•»»-£■ J.'IP*»!*, - W O ( |P i» | ',  +  ||Pso ||4 ) > 0

for | m||Wj small enough, say X<d.
The proof is complete.
R em ark. In  case p = 2, no loss of generality, we may assume c=0, because

g f p ) In  this case, the same result holds.

Since now W\ is a Hilbert space, the verification is much easier than in Banach space, 
and only the theorem in [2] is applied.
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