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Abstract

The author introduces a defmition about the nondegeneracy of critical points of a differ-
entiable functional defined on a Banach space. Thus the Morse theory is estabished to these
functionals on a Banach space with an equivalent differentiable norm. And by use of the
Morse inequalities an exension of three critical point theorem due to Krasnoselski, Castro,
Lazer and the author is provided. As an application, the multiple solutions of a quasilinear
elliptic boundary value problems studied. RPN

Morse theory has been extended by Palais™® and Smale'™ to Hilbert manifolds,
and by Uhlenbeck™ and Trombal® to certain olasses of funotions on Banach Manifolds.

The main difficulty in developing a Morse theory on a Banach manifold is the
lack of a proper definition of non-degenerate critical point. In a Hilbert space, a
critical point w, of a 02 function ¢ is said to be nondegenerate if the Hessian d?¢ (w,)
(considered as a self adjoint operator) is invertible, i. e., the inverse operator exists
and is bounded. This definition fits for Hilbert space, because it ensures that all
nbndegenerate oritical points are isolated and that the Morse lemma holds. Bub for a
Banach space 4, the above definition does not work, because £ is not isomorphic to
Z* in general. ,

Uhlenbeck and Tromba fried to give answers for an reasonable definition. In[7],
a critical point @, of # is said to be weakly nondegenerate if there exists an hyperbolio
operator L(cf. § 1, Def. 8), and a neighbourhood U of w,, such that

{df (@), L(v—w)>>0 for s €U\ {mo},
where {+, +> denotes the duality between 2™ and %

In[6], the B-nondegeneracy is defined by a series of properties, which not only
depends on the function #, but also depends upon the existence of a vector field, i. e.,
o is B-nondegenerate, if there exist a neighbourhood U of @, and a O* vector field
V (&) on U, such that

(1) <d¢ @), V(@)>>0 for s €U\ {z0},

(2) The Frechet derivative of V' at @ is symmetric with respect to the Hessian
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d*# (o)
&¢ (o) (AV (wo)w, y) =d*¢ (o) (4, AV (20)y), V(w YEXEXZ,

(8) AV (@o): Z —>Z is an hyperbolio operator

(4) d?# (wo) AV (wo)w, &) >0 if s€Z\0,
‘ In this paper, we slightly modify the definifion of the nondegeneracy. Our
definition reads as follows: L

Definition 1. A critical point m, of a C? function /(w) 35 said to be s—nondegenerate,

(1) It is isolated;

(2) there emsts an hypwbolzc operator L L% 32" ——>Q" amd a nezghbourhood U of @
such that '

Py (To, ) =B/ @) (0, I) Vo, y€ET, 0D
' d2/(a;0) (Lw a;)>0 VmEﬁ"\@ o (0.3)
d</(w) L(z—u)y>0, VwE/on(U\mo) (0.9

'whefre c= /(wo) . :
Definition 2. The index of a s—nondegenemte eritical pamt is deﬁned to be the
diémension of the mawimal negative subspace of L. E
... That the index is well defined, will be'shown in §1.:-

* Obviously, a B-nondegenerate critical point is a s~nondegenerate critical point,
and a weakly nondegenerate critical point satisfies all conditions of & s-nondegenerate
érifical point except(0.2). In fact, in[7], the proof of the MorSe théory is 1ncomplete
I'convince:that the condition. (0.2) is needed: .

-In: $his paper, besides the Morse inequalities, a three eritical point theorem, which
is an extension of the work due to Castro, Lazer™! and K. C. Oha,ng“”, is proved As
an application, we prove that the following PDE:

zo 0 ou
| {”2%<f55

U)op=0 -

p—-2
am)—l—Au g(u) m QcR",

~ (0.5)

has at least three solutions, under certain assumptions on the function ¢ (cf. § 4),
where ¢>0, p=>2. ' :
Acknowledgement. The work was partially suppor‘ned by NSF. MCS-7900818
and THES, when I visited at the Courant Institute of Mathematios Sciencés from Jan.
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§1 Prefliminary'f’ SR

Most material in this section can be found in[6],
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In the following, let % be a banach space:; L be a linear continuous operator from
Z into itself, and lob b(+,+)be a bilinear continuous form over 2 x %. We say that b
is commutative with L if
b(Iu, v) = b(u Lv)., S (LY
By definition, there ig a:linear continuous operator B: Z—>2*, mduoed by b _such
that fe

b(u, v)=<Bu, v, ,v_.@,?o exrxy, .<1.2>}
Thus, for b commutes with L if and only if -
BL= L*B

Deﬁmtlon 3. 4 Zmewr opefrator L is said 0 be a hayperbolic operator, if its spectrum.
o (L) is contained in two. compact domams, one ligs in the fmyht hand half open plane H .,
and the other lies in the left hand halff open plane I—I -

If Lss hyperbollc the resolvent R (zI L)~ = is deﬁned on the resolvent set"
p(L), and also '

(zI 7
According to Riesz, Nagy‘*13 the progectlon operator ’ ‘
: 271;

is well defined for any domain D with a rectlﬁcable bounda;ry oD which doos not inter-

sect with the spectrum o(L). In particular, let kR
‘ = O‘(L) =g U'o) where 0'*=0'(L)ﬂﬂ,b,

then the projection operators P+ and P_ are defined by - =

o '.PELL-.; 275%1 j;D& de R
where D, is a compact domafn containing ¢.. Wehave . !
o | Pi=P,, -
P+P_ P.P,=0,
_ » APyt P =1, ,
and the Banach space %” is decomposed into & +(—D,Q" ~, Where ff P ﬁ"
So is 2" =2"1@Z~.
Lt L =1 ! P . Provided by the functlonal’ealculus of the bounded 11near operators

sl

S 1 ,{ N +szdz
20'5'?/ 9D¢

is well defined, and commutes W1th P imsd Lot |
- Since’ B, can be expandéd as’ '3 power sories oL, wé have o o
BR,,——R:B,
BP.=P.B,
P '{BS:I:___:SH::B; R T

the operator
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Proposition 1. Let the bilinear form b be defined on &< . Asswme that b comvmutes
with an hypérbol@c operator L, satisfying
b (L, w) >0, Yu+0,
Then b is positive on X ., and is negative on Z
Corollary 1. The indew of a s-nondegenerate eritical posnt is well defined.
Corollary 2. In the proposition 1, if further, & is finite dimensional then b s
negative definite on X _ i. e. there ewists y>0 such that
b(u-, u) <—vylu-|?, Vu- €2~
Proposition 2. Let b be the bilimear form deﬁned in the Prroposotzon 1, then Yu G Z,
we kcwe the decomposztwn : o
R b (%, u) =b (v, u+) +b (u_,_ w.),
where u=u,+u., v, €L, .
- Proposﬂ'.lon 8. Let L be an hyperbolw opemtorr on EZ‘ with X'y the posztwe/negatwe
mmmcmt subspace Then there exists an eqmwlent norm ||, with the same smoothness
m || of 2, and @ constant p>0 such that
and , |w++w—l=|w+|+lw—| (w+; w-)Ef.,.@f{_,
|, | =(1+p[t]) I‘”ﬂ:l - for it>0
is Ol—differentiable, then v,u,>0

we hcwe. o - ,
{d|w,] —,u;d}w l,. Lw>>p-minv{1,- ptlel, Vo€,
Proof Since d|w, | ex:, we have

d|wy|, Loy)= hm ""('3M‘”+| —|@ ) =pla,],

—<dla-], Lw-'>‘—*}i%7(fe“’“w—l —[e:])=pla-],
and <d|o.|, Losp=0, .
Thus o
@la,| ~pdle], Tay>p(|a.| +ulo-y>pmn {1, u}|al,

'§ 2. Deformation lemma and the.handle—bdd'y'5ecomposition

The main step in extending the Morse theory is to prove the so-called handle'—body
decomposition theorem in Banach space. Once it hasg been established, the whole theory
carries over. To this end, a deformation lemma is need.

Throughout this section, we make the assumptlons on a function /: 2"— Ri as
follows:

(1) ¢ is C*~differentiable
(2) / satisfies the Palais Smale Oond1t1on(P S ) i. e. for each {w,} %, /(a,) is
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bounded and d¢ (m,.)->t9 implies

3 a convergent subsequence of {a,}, v

For each real number d, we denote by #; the set {v € Z'| ¢ () <d},

Deformation lemma. Supposé that ¢ is the bnly critical value of a C*—function
f: >Rt in £[a, b]. Asswme that ¢ satisfies the P. 8. condition, and has only isolated
critical points in #[a, b]. Then /£ has only findte number of critical pmnts in /"1 (e, b1,
and £, is a deformatzon retract of fs,

Proof The first conclusmn follows from the P, §.: condl’mon directly. We shall
prove the second. - :

1. Define a flow as follows

{ e =00 |

@ (@), v(@)) la=otson’
o (0, @) =0 € v\ 2o, o
where v(x)is the pseudo-gradient vector field of 2. Tt is Le_asily seen
2 el ) == (e o),
or EEVZCIORSIEYCERPICSERS

This implies that o (¢, @) is defined for[0, 1] X (£s\#,), and
Tim /(0 (¢, a0)) =,

However, the right hand side of the ODE approaches t0 0 as o approaches to a oritioal
point, it is not obvious that hm o(t @) exists,

2. We ghall prove that the limit hm cr(t %) does exigst. Let {z;}l be the orltloa,l

points in #[a, b]. Then either A _
(a) mf UO'(t o) —-Z¢|| >0, Vi=1, -, N_

(b) 1nf Ila(t @) — 2] =0, for some 4,

In case (a) » We have d>0 such that mf H dz (o (¢, a;o)) ” >d, and

lo(ta, @) — O'(t:,, wo) ” <j n do n di< (¢ (‘”0) —0) I # <4 /%25?}(@)) @=(ts20) at

<-—(/(wo) —~0) (ta~ts),

which implies the existence of the limit th;n o (t, ‘@),

In cage(b), we shall prove
lim o (¢, wo) =%,

t=1-0 ° .
If not, there exists s>>0, such that for an infinite sequence of disjoint intervals

s, taa1 <O, 1) with o (¢, @) € B(%, 2¢)\B (z,, &) for tE [t,, tm_] where B(w 8) is
the ball centered at @ with radius 5>0. The ¢ can bo chosen small enough such that



386 CHIN. ANN. OF MA'I‘H. : Vol. 4 Ser. B

inf |d¢(c(t, @0)) |>d>0,

tEltytm]

Then we get a contradlctlon o . : _
8<”°‘(t1+1, o) — 0o (8, @) ” <I ’-%:;."dt

\*(/(wo) "0) <t1+1—'ti)—>0
3 Now we deﬁne a deformatmn retract by
C (ew),  HG DED, DX (/b\/o),
v(t, @) = tljirﬂ) o(t, @), if (¢, ) €{1} X (£\/0),

@, if (¢, ) €[0, 1] X s,
We only have to verify the contlnmty of 7, Four eases are dlstmgmshed:
@ ¢ DELD, 1%/,
(b (&, @) €10, 1) % (4\20),
© @ ) €% (L\t),
(@) ¢ )€, 11Xy, 0
Case(a)is trivial; case (b) is easily verlﬁed by the fundamental theorem of ODE,
 Verification for the case (c) B _
Let 4= llm v (¢, w), wo shall prove Vs>0 35>0, such that

|@o— y"<8 and 1-0<¢t imply
I+, y) ot <e,
‘We choose su1table 0:>0 and 0;=23; (81) >0, such that

[v(1-8s, v)— fv*!l<—— or Jy- on<‘O‘2
Tt is avaliable, because we have 8;>0 such that T

I, @) —ol” ||<_' for i€ - 51, 1),
and we have 03>0 such ’ﬁhat / , A _

= (e, a:o) w(t y) ”<8 for ”’?/ wo[|<82, tE[O 1- 81]
These 1mp1y that T
-8y, 9) o< -
~ No loss of generality, we may agsume that .no eritical points are-in P(w*, )\

B(s", £). Thus -

d'= _infiy d/(w) 1 >0,
weﬁ(z e)/B(x* B) o

Determme 81>0 s small such that

o (‘ PR S N 1_ 3:;._.;. . 1 o R
i - S (b 0) 81< d .
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Then we shall prove
”T‘(t y) & "<8 for t& [1 81, 1) "wo y)l<82
If not, Jt'<<¢”, and 4o € B (@, 0a), such that

L<Irt, yo—ol<s for ¢ € [¥, 7 [1~8s, 1)
with - [=(, yo)~w*ll—— Ilr<t’ Yo) —&*| =,
This implies that S S

1" . PN L l
L<le, wy =, wl < |5
2, g o

This is a contradiction. _ _
Case(d) will be verified in the same way. Since now @' =m,, o is initially chosen

in the ball B (wo, 5 ) only the last part of the above proof is applied.

Then we shall state the handle-body decomposmon theorem and prove it

Theorem 1. Suppose that I és & Banidch space with an equivalent dzﬁerentmble
norm. Suppose that ¢ is a O*-function, satisfying the P. S. condition on X Assume that
¢ is the unique critical valuein #~[a, b], which corresponds ohly s—nondegemmte critical
points with finite indices. Then there ewists a handle-body dgaompoéition. Namely,
Tet {z.}" De the critical points, {m}} be ihe corresponding indices; there ewists 6>>0 such
that ’

#62 fos Ul (D™) U+ U (D™),

where by is @ homeomorphism of mdimensional disk into 277X {2}, (XLt is the

‘negative space induced by L, and 2,=2,+2.) with

() =2

and oAD" = £ o &) Nh(D™): m(am, -

where D¥ denotes the k—~dim. dish.

- Before starting the proof, we need a lemma

Lemma. Suppose that £ is @ C° funciion on a Banach space 9}’ ;S’uppose that 9 is @
s—nondegenemte, finite indew oritical point of ¢ with a hgperbolw opemtor L. Then there
isa cone neighbourhood : S ‘ '
Ouo={(@,, - )E%@Ef”-l Nw+|l<ullw-ll Hw H <5},
where w, >0, such that

(a) dg(w), w-)<—-§—||m_||2forr .some »>0,
(b) <df(w), L) > oo 1%
©) /@ <O ~% o1
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in 0,,\0,
Proof The negative space induced by L is finite dimensional, d?/(d) is negative
on % _, so we have »>0 such that
&y 0) (@, o) <—v|a-|?,
and &4 ©) (Le-, @) >v]o- |2,
Since d?¢(6) is bounded, there is a constant M >1 such that
, &2 (0) @y, @) <M |, |,
No loss of generality, we may assume |L|<1,
(a) For given positive e<v/8M (14+u)?, we have >0 such that
|d¢ (@) — &7 (0) o] <e|e| for 0<|a] <3,

This implies
@t @), ) —df0) (o, o) <s[o]|[o-| <A+p)e|o-|* for s€C,,,,
Thus ¢ @), Lay>Llo_|, ¥6€0,,\0.
() |
¢ (@), Loy —d?# (6) (Lo, @) > —elo|*>—e(1+pu)*|o-*, Vo€,
Thus = Ay (@), Lm>>-§—||w_ 18, Vo €0,,:\0.
(¢) From

1@ =7 @)~ % @4 0) @, &) | <elol® tor Jol<?,
it follows | .
¢ (@) <¢©) = glo-|?, ¥0€04:\9,

. ‘ . v
with p<min {1, ~/ W}
The proof of the theorem 1
We may simply assume that # is the unique critical point with critical value

¢=0, because the critical points of ¢ are isolated; they can be decomposed individually.
Suppose that L and %, are understood for d?#/ (), Lebt 8>>0 be so amall such that
| K¢ @), Lady>0, Vo€ £oN (D5 X DF\G),

where Dj is the disk with the radius 8 in Z., Let the cone neighbourhood O, be
defined as in the above lemma. The deformation retract will be constructedby the
following three steps:

(1) Provided by the deformation Lemma, Zy2z,

(2) We shall prove in the latter that =~

FofsUC,,,
(8) #-.UDj % {6;} is obviously a deformation retract of /.10, s provided by

the facts that d/ A.Djy x {6}, and that Dj is finitely dimensional; if 8>01is sufficiently

small.
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Since dim % . is finite, and #| 4. has a local minimum at 6, we may choose &>>0
50 small such that 2N #*[—e, 0) is radically homeomorphic to the disk Dy in Z_,

Therefore the proof will be complete if (2) is proved.

Now we shall prove the existence of the deformation retract: 2y~ /_.UU,,s, where

el §?
0<e<7 &,

According to (o) of the lemma, it is seen that
sup {# (@) [¢€0,,s, |0-|=8}<~¢
i.e. 0,;NODy X Z . C#_s, Choosing 3,€ (0, d) such that
sup {# (@) |0€ 04, |0-|=03<—s,
We define a C*~° function with support outside Dj, XD 5 :

o[ eI Zbor vl

0, |o-|<8;and |a,|<udy

and linear in |o,| and |a.| in Dy X Di\Dj, X Djs,.

Let 2(@) = (1—p(@)) Lo+ p(@)v (@),
where v (w) is the pseudo-gradient vector field of # in /~*[a, b]. The following flow:

o(t, ) =—y(c(t, ©)), >0,
{ 0(0, @) =€ Lo\ (/.U {0})

is well defined, and will be applied to the deformation, hecause Zoo (2)is decreasing.

Let[6, B) be the maximal interval for the existence of the flow, where 8=8(x)
is equal 1o oo-or not. We shall prove after a finite fime

o (6, @) €F-sU 0, Vo€ Lo\ (£ U {0}),

The proof is divided into the following cases:

Caso 1.

téﬁ.}fﬁ)dls.b (.Da1 X.Dwu O"(t CU)) >O

In this case, J81>0 such that
plo(, 2))>e

and then )
d(#o0) (t) = <d/, o) (t) = —<d¢, xoo) (1)
—&{dy, vood () <— 61]1 dy (o(t)) 2
. < —eqd?,
It follows

eP<es | |3/ (0@) [Pdv<s @)~ 40 ).

We conclude: either 11m #oo(t)=—coor B is ﬁmte and j ld# (o (7)) |2 de< o0, If
]1m fo0 (t) = —o0, then after a ﬁmte time T € [0, B), we get cr(T @) €4,

Othermse, from
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PICONESI N oo (5) |d

J(TE[O:B)IPPU(7)=1) {Te[0,8) 1 peo(T)=1}

<o o e o oo e [ v

Wo have [ 1@ dr= jnx(a@)n dr< 4o,

becauss| (o (z)) | is bounded for those « & [0, B, where poc (1) <1,
Then the limit ]Jm a(t, o ex1sts in Z,\ Dal X Djs, which condradicts with the

maximality of 8.
In one word, a fter afinite time, o (4, ) enters into #-ein thls case.
Case 2.
inf dlst (D,s1 X D, O‘(t @)) =0,

te[0,8)

Loglclly, there are only two possﬂolhhes e1ther lim dist (D5, X D, o(t, @) =0,

t-o8
or 390,€ (O, 5 (0—0y) ), and infinitely many disjoint intervals [a,, ‘Bj],*j'——-l, 2, e,
such that , . - | . o
O'(t w) €D<§1+253 X D;(6‘+265) \'D&'Hsa X Dﬂ(&x-l-&a) fOl' ] E [Oﬂj, Bi]

But the latter can not happen except o (3, w) entors into Z-safter a finite time. In
fact, 3 d1>0 such that '
pla(t, w))>d1 for t€ [, 871, j 1, 2
on one hand

#(@) ~lim £ (o (1, 4)) = jd</o<r><t>

>3 (" U, 1o TS E=s),
i. e. 2(;8, —o;) < +o0, on the other hand

du<lo(8, ) ~ow, <[ |9 Hdw«w(ﬁ, >

where M= sup |x(x)|, This is a contradiction.
@eD5XDhs ’

Now we turn to the former one
tim dist(D5, X Djs,, oz, £)) =0,
1=,

Wo shall prove: 3 a finite T'€ [0, B) such that o(T, ©) € Dj, x D}, Then, according
Yo the Proposition 8, after a finite time, o (¢, #) enfers into 0, 5, We prove the existence
of T by contradiction. Suppose that such a 7 does nob exist, Since for each d;>0,
ED, ) such. that ~ .

o(t, ) EDams,X Duca;+as)\Dal X Dnal for t>T1

and < @ <ldg@ I<|Br@a| +o(Jal), T

it follows |Lo—w(o) | <Milo@)],




MORSE THEORY ON BANACH AND SPACE ITS APPLICATIONS TO PARTIAL
No. 3 : DIFFEREN 'I‘IAL EQUA'I‘IONS 391

where M, is a constant. Observing the equation
0(t) = — Lo +p(o) [Lo~ fv(a)]
we obtain ; . .
o (54 48) = e 24 () + J:Mt ¢ LU+ a-0p (g) [Lo—v (o) 1dw,

According to the Proposition 3
|P_o(t+4t) | — | P_o(t) |

>[40 @) |~ |P-o(®) |- el e 4= dn]o @)1,

where ” gg=  sup p(@),

» 6Di 0 XDhay '
Thes - Lyp. a(t>|>plP a(t)l—egMilo(t)l
Snmlarlly, we have -

| 1P I<pl P +allilo ).
Choosing 63>0 suﬁiclently small such that

‘ 83<

- o 2M1 o
we obtain (IP_a(t) [ - IP+o-(t) |)>a|cr(t)| Vt>T1, ;
where - - e = p-2M183>0

Then we arrive at the mequahty . _ . ,
(120 = [Pao® )~ (|Po @) | = [P0 l)>af le@la, )

But (¥) cannot hold. Because the LHS of (ec) is ﬁmte and Ia(t) ]>,w81 for t>T1.
these imply B< +oo, Then R

IT I6() |dr= j ]x(cr('v)) |de< Mj o (z) | de< +o0,
This implies that lim o (t) exists in Z,\ (D5, X D,) ° which contradicts with the maxi-
e X1 o) (La, X ,

mality of 8,
In summary, we have proved that there is a ﬁnlte T €[0, B) such that o(T, @) |
€ /..SUOM;& Let us denote by 'yw the ﬁrst tmle Whmh makes a(t ») entermg into.

/—GUGub

The finction x>y, is contintous in /0\9 Because e
<d/(w), (m)>>0 V‘BE/O\H ’
implies ¥R/ (e), and Y R
<d|w+{—;bd|a: [, Lw>>pm1n{1 ,u,}[a:[ VmGEL"’ E
implies z/780,,s\ (#-.U {6}) (the tangent” space of 80,,;\(/=sU{f}) =ker (d]w,|
~pd|o-]), and (@) =Le, Yo €80,,.\ (f-.U {#})). Andinside Dj,x D}y, o=—Lo, -

-which implies -
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.lin? o (tys, @) =0 uniformly in ¢ € [0, 1],

Hence the function

O'(t'}'@) w): ’&wa/o\g

v(t, )= {0,' o f w=0

" defines a deformation retract of Z, into

#-sUC,, s, where (¢, «) € [0, 1] X #~*[a, 0],

§ 3. Morse inequalities and a three critical point theorem

In this section, we brieﬂy sketoh the ouiline of the proof of the Morse mequahties
and then turn o an extension of our three critical point theorem to Banach space.

Definition ZLet ¢ be a O real function, satisfying the P. S. condition, defined on o
Banach manifold. Let a, b be regular values of #. Suppose that ¢ has only finite eritical
points, with critical values O3 <Cp<+++<Op in £ 2[a, b], The number

. N |

‘ Mk:él rank Hk (/044-3: /04—5)
with O<¢9<%1 giin 1(0;,,1-—0,) is called the b~thMorse type number of / on #7[a, b],
<t<m~ . T _ :

k=0, 1, -, where H,(4, B) is the relatively singular homology group.

According 1o the well known deformation lemma, the numbers My, k=0, 1, +,
are well defined, i. e. they do not depend on the special choice of the real number s,
If all critical poinis of'a O®-function, satisfying the P. 8. condition, ‘are S-nondegen-
erate with ﬁmte indices, then

Hk (/OH-B: /04-8) Hk (/m—s U b’l (DMl) U U hl (Dm;) /04*‘3)
— 8, (0 @), 0 m@Dm))

=®§Hk(hi(mji h;(@D™))

] ]
~® 3 Hy(D™, 80™) =@ 34,

where (my, ¢+, m;) are indices corresponding to the crifical points on the level c;
and G is the coefficient group. This provides a geometrical interpretation of the Morse
type numbers. In this case, M; is the number of critical points, whose indices are
equal to & :

Followed by the exactness of the homology sequence one obtaing the following
Morse inequalities

M o>,30, :
My~ Mo>Bi—Bo
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M”"“M”—.l"l"""‘!" (—1)”Mo>,8n"'/8n~l+"'+ (“"1)”130:

where By, Bi, *+*, are the Betli numbers of the manifold ¢/ [a, 1], i. e.
' By=rank Hy(fs, £o).

The three crifical point theorem reads as follows: :

Theorem 2. Suppose that 2 is a ‘Banach space with an eqmwlent di ﬁerentwble
norm. Suppose that £ is a O? fzmotzon, samsfg/mg the P. 8. condition. Assume that

Q) ¢ is bounded from below, .

(2) Gisa s—nondeqenermte critical point, which ¢ is not o global m'mmum, but with
Jinite indew, '
then ¢ has at least three critical points.

Proof 'The function £ is bounded below, and satisfies the P. 8. condition. The
global minimum exists, say m=min {¢/ (@) [¢€EZ}=4¢(2), No lossof ‘geﬁerality, we
may assume that there is only one global minimum. For otherwise the proof is
through. | :

Suppose that £ hag no critical points other than @ and @ Leb ¢= £ (6),
Taking b>¢ arbitrarily, there is no critical point outside /s,
For any pair of topological spaces (X, ¥') with Y <X, let y(X, ¥) be the Euler
characteristic of the topological space pair, i.e. S
y(X,Y)= i (~1)¥ rank Hy(X, V),
Tt is known that for ZcY < X, if both x(¥', Z) and (X, ¥ ) are ﬁmte then
| (X, Z)=y(X, ¥)+4(¥, Z), (%)

Now we take (X, Y, Z)= (¢, Fo=s, @), where ¢c>m-+e. According to the

handle-body decomposition

x(/v, Fo-s) = 2 ( 1)’“ rank Hk(/,,, /o—s) (~1)4,

where j is the index of £ at §, Smce @ iS & Tinimum, there is a small ball B(z,, 9)
Cfos. We have

2 (Fo-s, P) = 2 ( 1)" r&nk H,(£o-s)

©o

2‘,( 1)"ranka(B(wo, 8)) 1,

- Bub the left hand side of (**) equals to
_ 2(#0, O = 702::0("376 rank Hk(gﬂb)

= ?:,:) (=1)¥* rank Hy(Z) =1,

because ¢y is a deformation retract of 2,
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§ 4. ApplicatiOn’

In this section, we present an applloatlon of ‘the above abstract theory to study
the tollowmg PDE: . - -

.- 0 -2 u :
{04-—-219—%( e 6m)+Au g(u) in &, (%),
u’|99=0)

where @ is a bounded open domain in R*, wibh sufficiently smoo’ah boundary 6.!2 ¢>0
is a constant, and p=>2. The functlon 9 satlsﬁes the followmg conditions:
@) geC*(R*Y) with g(0) =0;

Oy +Cy|t]*, if p<n
@ lyol<{
no restrlctwn in growth if p>n
where S g -1,
n—p

(8) Let G(uw)= j: g()dt; we assume that

Q)= 04]u|” 03 W1th04<%0,%,

Where 01 is the best constant such that _ o
[ 1vulr=03 [ julr, vueos (),
(4) Let the eigenvalues of the-4 with o-Dirichlet data on O be Ay <Aa<<Ag<evreee
‘We assume that there is an integer 4>1 such that
A< '—"g' (0) <A't+1
Let ug take the Sobolev space W1 (Q), p>2 and consider the funcmonal on
Wt Q) oy __
/<u>—-——j|w|v+ L wir+{aw,

Obviously, 4 is a critical point of £, In order to verify the s~nondegeneracy, we
‘should check the following inequality
{df(w), Lu>>0 for uEB(B 6)\0 8>O small

Where L is an hyperholic operator from W1 (Q) mto itgolf, To this end, some estimates
" are needed. We devided them into the following lemmas.
Lemma 4.1. There ewist constants
B=B(n, p) €(0, 11, and M= M (n, p) >0,

Vo \

such that

Note: Hereafter we write

n u lp
2= [T
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r,@p

(Tt /[ vy {(] joie) /(L rewts)

for all uw€ ﬁ’} (Q)\8, where p=>2,

Proof Provided by the well known Gagliardo-Nirenberg inequality, we have
4 ] 2 _ \

| Pt

and a constant O=0,,, such that '

(f!ul?)io(jlvw)—”—‘.(jju}ﬂ)%,‘ : @

00mb1n1ng (1) with the Holder inequality .

(Jqul”) <O’<J|Vu[.>

e obtain the desired inequality
Let Hy be the eigenspace of —4 corresponding to the first ¥ eigenvalues Ay, «++Ay.
Then & is finitely dunensmnal Let Py, be the orthogonal pro;ectlon onto Hy in I2(Q),
then it can be restricted on W1 (ﬂ) , and maps onto Ech1 (Q). Let K be the opera-
tor (—4)1, :
| Lemma 4.2. The functional

1
[

ni -1
J<u> =j9 ¢=1 .a_y-

is defined on V%/’}, (Q). For each £>0, there is an integer N >0 such that
J(Pw)<s f (VPul?, YuE I’%’% Q)

as n>N, where P,=I1—P,, |
Proof According to the Holder inequality and the Lf a priori estimates

s &) (=)
<0 ([19417) 7 1Kty <OIul5; ol

Where and hereafter, we denote by O Varlous constants Hence J (u) is defined on
W1 Q). And we have' ’

o
3m¢ Kul

J(P',,u) <O(J IVPnu[p)f’;i (I | P,.ulp)
- Due to the Lemma 4.1, we obtain ) : :

TPy <0f VBl {[| P /jwmw} g I

Since A,~>4-co this proves the lemma :
Lemma 4.3. Let g be a real function, satisfying the condztwns (1) and (2) Then
for each-e>0;

w3

B L L
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there exists 8>0 such that

06 ~g©@uo | <elludm ol + Il
Sor all u, Q)EWJ‘(Q), with |u|wy, <8, p=2,
Proof If p>n according o the Sobolev embedding theorem, then we have
[ —g @ulo | <slulu- ol asfulm; <3

(2) is obviousiy true. In the sequel, we assume p<n. Since geCt ‘v’31>0 there is a
n=n(g1) >0 such that

@)

|9(w) —g/ @] <ssfu] for u] <7,
Let H, be the set {#€Q| |u(®@) |<n}, and E,=Q\H,, it is easily seen that
mes (H,) < (O|u|w;/7)?
and

UE [lg(w) —g' (0)u]v |<81LJ" || <e:0[ufw; [v]ws. o C))
Applying the inequality ' ' |
|g(u) —g' (Q)u|<O(|1+ |u|*),

where at+l<q:= n@p’ '

we obtain

However

[ary

N [9<u>—9’<0>u10\§o [f,, tol+],, |u|«|@|]o

Jo, ttetol <(f, i) " ([, o1e)

A 2
<Olulz, lol,, mes(E) ¥

<O fulz; Loy, lullr® C0 55, @

_ Similarly, we have

[, lol<Olulz ol Il /v,

For each ¢>0 choose &;<->- firstly determine #, and then fix it. Then we obtain 6>0

C
such that (2) holds provided by (8) and (4),

Now we shall prove

Theorem 8. Under the assumptions (1)—(4) on g, the equation (*) has at least
three solutions for p>2, ¢>0,

Proof Let Z be the Banach space W1 ;(Q), and let
=L |Vulr [ o+ few,

we shall verify a series of conditions on #, which are needed in applying the Theorem2.
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1. #E€C? Woedenote by { , ) the duality between I%’}, and its dual space. It
ig easily proved thab

|72 \ou ow

ds (), 'v>=J§ (c "é_a}: +1)a +g(u)fv
Applying the Lemma 4.8, we get ‘ o
2 _{s ov ow
@) (0, w) = [3( )2 Mg e,

2. # is bounded from below. This is due to the condition (8)
7 () =>— flv'wl”—F J(Vu)ﬂ C’Jlu[” O; mes(2)
= 2 L _ Y4 '
>5[ (V)?— 0y mes(0) +(% 2 )f1vule. 3)

8. ¢ satisfies the P. S. condition,
o o ]
The operator K= (—4)*c L W;*, W}), and then is compact in L W3, W3)

for 1<r<oo, The elgenvalues of K are _?»1—>—?»1—> >%—> Let
2 4 .
2 oy
R@=ck B2 (| 5] gh)+u

and leb
Gy g(u),
According to the sequences ‘

o & ' o -
Wi-— L% —s La—> Wit—> W3,

and ‘
2 ou |o-2 au\
o B (|l T )
le; . > Wpl 11,,' .
where ¢:<¢, a=q1/q}, -—1-—+-—1-,-=1, andl-+—l,=1, we have
v Q1 p P

Kdf (W), vy ={Ru+K%w), v,
Suppose that {u,} is a sequence in I/cff}, such thatb
# (u,) is bounded, and
{R(u,,) + K G (u)—>0 (in WD),
Then {u,} is bounded in ﬁ’},, provided by (5), We have a subsequence {u,} such that
K % (u,,) is strongly convergent in ﬁ’}f say to w", This implies that
R(uy) —> —w* (mW ). |
However, the operator R is strongly menotone

(& (loul o (o[ o), ou_ o

%p 2JlV(u—v)l"'

we conclude that {vn,} ovonverges strongly' in W},; The P. 8. condition is verified.
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4. Now we define an operator :
_ L=I+¢ (O)KE.SF(W W},)o
The spectra of L are ag follows =

4 TO g, IOy 7O
Ay A2 A
L is an hyperbolic operator. It is easﬂy_ seen that ‘
&2 @) (Lu, v) —'—=J[V(Lu) Vg’ (0) Luts]
- f |V (L) |2 j (L)) *>0
for v #6, and that _ o
@/ (0) (T, 0) = [V () V (L) =2 6) (, L),
Y, v € I/Ic},%,"" The index of d?#(d) then is equal to dim H,,
5. The only thing-remains 0 be proved is that <d/(v), Lup>0 for u€ B4, )\
0, as >0 small. In fach

@p ), Iy=([31(c| 22"
=[1v<Lu>|2+ [l 2
x 2 (@) + [ [gw) —g' @) L

=19 2o [ [Valo-+eg'0)7 ) +(lo )~ @ u

- +1) gz 3;52” + 9(u) Lu

>vI(Vu)2+cI qulp_c[g (0) [J(u) —s[ful?, + ﬂu”%
as |Ju|wy <8, where . _

omin {1+ 4@, (1, £O))

¢+1 4

- J(u) is defined in Lemma 4.2, and 8=3(¢) is defined in Lemma 4.3,

Choosing ¢ € (0 min { 5 %}), we have

o, o> Fiuly, + ~elg @O/ @.

But

p—l 6K P U
3@; )

61{ P Nu
oxy

J<u><zm‘ [ ﬁ[ P[> | 1 P

=l oy 3&;, |
- <27[JT (Pyw) +J (Pyw) + By ()],
where Ry (u) is the remainder. Let u=2v, [v]wy =1, and A isa scalar
It follows ' ) ‘

| | J(u)<_>wzﬂ~1[J(PNw>+J (‘Pw)—l-RN(v)].
and-f' o : '
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| Bx ()| <OUProli [ Proly, + | Proly, | Proly
<C'(|Pyols, +] Pl

W“

Sinoo Iy, > 1P, ~ | Py

and o T (Pyw) <O|Pyuf?
we obtain

W).l

@ ), Tyl + 5 | Pl — 07 (P
| —WtMPNol!f;fr‘llenW},J.
According to the Lemma 4.2, firstly, we choose N such thab
oz | Pl ~CJ () >0,

Fixing N, the norms [v|w;and |v|w; are equivalent in' the finitely dimensional space
P Nﬁ” At last we arrive ab . A .

g, Tuy= 121 Psols, —0O(IPyoly, + Pavlwy) >0
for A= [u|w; small enough, say A<<9,

The proof is complete,

Remark In case p=2, no loss of generallty, we may assume ¢=0, because
-2
& %Z 'EZ aw,
Sinoe now W} is a Hilbert space, the ver1ﬁoat10n is much easier than in Banach spagce,
and only the theorem in [2] is applied. '

) =4y, In this case, -the same-resu_lt holds.
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