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' SOME RESULTS ON FIXED POINTS
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Abstract |

In this paper, we first show several fixed point and or common fixed point theorems for
point-valued and set-valued contractive ‘type mappings in compact metric spaces, which
satisfy very general contractive condition with strict inequality and may be discontinuous.
Our theorems improve and generalize some main results in [1—4].

In the next place, we provide some new results for quite general orbitally contraction
and quasi-contraction mappings. They improve, unify and extend some important results

in [7—15].

§ 1. Introduction |

Recently Chen and Shih™ have proved the following : o
Theorem. Let T be a self mapping on a compact metric space (X, d), suck
that for all , yEX, msy,

a(Ts, Ty) <max{d(, ), 5[4, To) +d@, T9)],

3 @@, Ty)+d(y, To)1}, - o

Then T has & wnique fiwed point in X,

The condition (1) corresponds to the definition (20) in [2]. This theorem shows

that the continuity of 7' is not neoessary for the mapping defined by (20) in [2],
provided that one adds the hypothesis of compactness to X,

Kasahara and Rhoades™ generalized the theorem of [1] to a pair of mappings §
and T which satisfy the definition (145) in [2] Chen and Shih™ extended the |

Theorem 1 of [8] to a pair of set-valued mappings.

In section 2 of this paper we shall improve and generalize some main results
obtamed in [1—4],

In section 8 of {his paper, we shall present some new fixed point theorems for
orbitally contractions and quasi-contractions, which umfy and improve a number of

recent results obtained in[7—15],
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§ 2. Point-valued and set-valued contractive mapping's

Let (X, d) be a nonempty metric space. OL(X) denotes the set of all nonempty
olosed subsets of X. D(4, «) =inf{d(y, #) :y € A} is the distance from = to AcX.
H (-, ) denotes the Hausdorff distance on OL (X) deduced by d.

A mapping T': X—>X is said o be generalized point-valued contractive, if for all
z, ye X, oy,

(s, T <max{d @, v), (= To), d(y, To),

| L 4@, Ta)+a@, T0), L, T +iw, T1). @
A mappmg F:Xx —>0L (X ) is sald to be generallzed set-valued contractive, if for
all o, yEX maéy,_ B

H(Po, ) <uwx{d(e, 3, Dy, @), Dy, 9,

11D(F0, o) +D(Py, 9], & (D(Fy, 9)+DFs, I} O

Remark 1. Clearly, any mapping satifying condmon (1) is a generalized point-
valued contractive mapping. The following example shows that a generalized point-
va,lued contractive mapping need not satisfy condition (1), ,

« Hgample? - Let X = {(0, 2), (-1, 0), (O, 0), @, 0)} d denotes the wusual
metric in R2 Then (X, d) is a compact metric space. Let 1'(0, 2)=(—1, 0);
T(-1, 0)=T(0, 0)=T(1, 0)=(1, 0) It is easy to check that 7’ is a generalized

_ contractive mapping and 7' doesn’ﬁ satlsfy condition. @.

. Theorem 1. Let (X, d) be-a nongmpty eompacs metric space. F: X—>OL(X) s
a genemlwed set-valued: contractive mapping. Then F has o fiwed point in X.
Proof Oonsider the nonnegatlve functmn D(Fm @) on X Let: {w,} be a
m1n1m1z1ng sequence-for D(Fw, o) I R :
lim D(Fw,, ©,) =r=inf{D(Fao, w) 2€X }

Since Fa, is compadt, there ‘exists ¢, € Fw,, such that d (4, @,) =D(Fa,, w,). Since X
is compact, we may assume that {y,} converges t0 a point wEX, Let A={n:w,=u,
n€ N}, where N denotes the set of all posﬂ)ive 1ntegers If A is an 1nﬁn1te seft,

obvmusly % is a ﬁxed point of F in' X, If A is ﬁnlte, Wo can assume @,%u for all
Now suppose D(Fu, w) >r, Then there exists s>0 such that _D(Fu u) >rr+5s

We can ohoose n 50 that ’ » B
| (on 'u) <6 and D(Fay, @) <r+s,

* T wish to thank Zhao Hanbin for supplying this example.
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and hence we have
D(Fw,, w) <d(ys, u) <s,
& (@n, )<d(wn, Yo) + 8 (Y, w) <D (Fa,, m,.)+s<¢+2e,

and
D(Fu w,,) <D(Fu ©) +d (@, u) <¢+28+D(Fu u),

It follows from (8) that
D(Fu, ) <D (Fa;,,, u) +H (Fu, F,)

< g-+max {d(u @), D(Fw,., w), D(Fa,, @),
LID(Pu, w)+D(Fo, o)1, & [D(Fa, 0) +D(Fu, wm}
<s+max/{fr+28, 8, r+s, —§[¢+6+D(If’u, u)],

—%—[¢+38+D(Fu,u)]}, @

which yields D(Fu, w) <r-+Bs, a contradiction. Thus D (Fu, u) <r,
Now sappose u g Fu, By the compactness of Fu, there exists 2€ Fu sueh th at
O<D(Fu uw)=d(z, u), ’
It follows from (38) that
D(Fz, 2)<H(Fz, Fu)

<max{a,(u,»z), D(Fu, %), D(Fu, u), 5 [D(Fu, w)+D(Fz, D],
2ID(Fs, ) +D(Fu, 9] }

<max {D (Fu, u), 0, D(Fu, u), -%—[D (Fu; w) +D(Fz,. 2)] },

‘which yields r<D(Fz, 2) <D(Fu, u) <, a contradiction. Therefore u€ Fu, i. e. 4 is

a fixed point of ¥ in X,
When F is a generalized pomt-valued contrative mapping in Theorem 1, we

obtain the following.

Corollary 1. Let (X, d) be a nonempty compact metric speoe. T is a genemlzzed

point-valued contractive mapping on X, Then T has a unique fized point v in X,

Remark 2. Obviously, the theorem of [1] is a speoial case of Corollary 1, and .

the example shows that Corollary 1 is a proper generalization.
The following theorem is Theorem 5 in [4]. Here, we shall give a simpler proof.

, Theorem 2. Let (X, d) be a nonempty compact metric space. F and Q are sat-
valued mappings of X 4 in to OL(X ) such that for all ®, y€ X with s+y,

H (Fo, Gy) <max{d(e, 9), +1D(Fo, )+ DGy, 1)1,

% [D(Gy, @) +D(Fa, y)] } s (3 |
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Then F or G has a fiwed point in X, :
Proof Consider nonnegative function D(Fw, ©) on X. Let {#,} is a minimizing
sequence for D(Fw, ): '
lim D(Fx,, @) =r=1inf{D (Fo, 9):0€ X}, ;

n—sc0

By the compactness of Fu,, there exists g, CFa, such that d(ys, @) =D(Fw,, 2.).
Sinoe X is compact, we can assume {y,}—>uC X, If A={n:w,=u, n€ N} is infinite,
then w € Fu, If A is finite, then we may assume @,+u for all nE N Asin the proof
of Theorem 1, we shows easily D(Gu, u)<r,
Now suppose u&€Gu, By the compactness of Gu there exists 2 €Gu such that
0<D(Gu, u) =d(z, u) and it follows from (5) that
D(Fz, 2)<H(Fz, Gu)

<max{d(, ), 3 (D(Fs, )+ D@, W], 5 DG, )+D(Fs, 01}

<max{D(Gu, w), 3-UD(Fs, ) +D (G, v)] }

which yields »<<D(Fz, 2) <D(Gu, v)<r, a contradiction. Hence u€Gu, i. 6. w is a
fixed point of G in X, .
Remark 3. Theorem 2 improves a lot of the known resulfs. (e. g. see [4]).
Theorem 8. Let (X, d) be a nonempty compact metric space without isolated
points. F, G: X—>OL(X) satisfy (6). If F or G is continuous from X to OL(X), then
F and G have a common fiwed point in X, '

Proof Without loss of generality, we may assume that F is continuous. It is
“easy to prove that D(Fw, ©) is a nonnegative continuous function on X. By the

compactness of X, there exists w € X such that |

D(Fu, w)<D(Faz, a:) VoeEX,

If ugEFu by the compactness of Fu there exists » € Fu such that
0<D(Fu, u)=d(v, u),
By (5) we have
D (G, v)<H (G, Fu) =H (Fu Gv)

<max{oz(u, 0), 5 [D(Fu, ©) +D(@, 0], = [D(Gv, u)+D(Fy, w)]}

<max{D (#u, 0), L (D, 0+ D@, 01},

which implies D(Gv, v) <D(Fu, w),
If v G, then using the same argument as in the above proof there exists w € G
such that
D(Fu, w)<D(Fw, w) <D(Gv, v) <D(Fu, u),
‘This is a contradiction. Hence either u&€ Fu or v&€ G,
1° Ifuc Fu there exists a sequence {#s} In X \{u} convergmg t0 w since u is



No. 4 . ‘ SOME RESULTS ON FIXED POINTS 417

not isolated. By the continuity of # we have

D(Fax,, wy<H(Fe, Fu)—>0, n—>c0,
Hence for any gwen >0 there exists n such that
& (@, w) <e and D(Fa,, u) <s,
From (B) we obtain
D(Gu, w)<D(Faw,, u) + H (Fa,, Gu)

<&+ m;%X{d(wn, w), ‘%"[D(me aw)+D(Gu, w1, %[D(Gu, @) + D (Fay, %6)]}

<é+max{ g, 1 [2¢+D(Gu, u)]}

‘which implies D(Gu, u) <4s. Since & is arbitrary, D(G‘u u) 0, i. e, uE Gu, and 50 %
is a common fixed point of ¥ and G in X, ,
2° If v€ G, there exists a sequence {z,} in X \ {fv} convergmg to v since v is
not isolated. By the continuity of F we have
H (Fz,, Fv)—>0, n—>o0,

"By (B) we have

D(me ’I))'<H(F{B,,, G'»)
<max{d(w,,, v, +DFa, &) +D@, 1)1, 5 [D(@, &) +D(Fa, m}

<max{d (@,, v), —;— [D(Fw,, v) —-l—d(wn, ’v)]}

_Whmh yields D(Fa;,,, ) <d (2., v)—>0, n—>0, Then we have

D(Fv, v) <D(Fx,, v)+H (Fu,, Fo)
<d<wm ’I)) +H<Fa7m F’l))—>0, n—>o°.
Hence D(Fv, ») =0, i. e. v& Fv and 50 v is a common fixed point of F and G in X,

Corollary 2. Let (X, d) bea nonempty compact metrie space. S, T: X—>X are

point-valued self mappings on X, If for all @, y€ X with oy
4(8s, Ty) <max{d(o, v), 313, $9)+d @, Ty)], 308G, To) +ay, 591} ©

and either 8 or T is continusus, then each of S and T has & unique fiwed point and these
two points coincide. ' |

Proof By Corollary 2 § and T have a common fixed point u in X. The
uniquenesy of « easily follows from (6), |

Remark 4. Corollary 2 is Theorem 2 in [8], But it seems to us that the proof
in [8] is not yet complete, since one cann’t deduce a contradiction from d(7'Sw, Su)
<d(Su, w) and so cann’t obtain Su=u,

In the following, we discuss the iteration of apprommatmg fixed point.

Lemma 1.2  Le; (X 'd) be a nonemply ‘compact metric space. {m,; 98 @
sequenoe in X, If w s the unique cluster point of {cvn}, then w 8 the limit point of

{of},
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Theorem 4. Let S and T be continuous point-valued self mappings of @ nonempty
- compact metric space (X, &), If for all ©, y& X with vy

(S5, o) <max{d(e, 9), 4G, 80), d(a, Ty), 214G, To) +a(y, 51},

then (i) S and T have a unique common fiwed poing “.

() for each € X the sequence of iteration
{@.} = {@wo=a, @y = 8wy, wa=Tw,, Tt Wan=Tway—1, mznti"“‘swzm e}
converges to u, ' '

Proof Since X is compact, for each #€ X the sequence of iteration {z,} has at
least a oluster point w. By Theorem 8 in [5] each of the oluster pomts of [w,} is both
a common fixed point of § and 7. Hence % is a common fixed point of § and 7.
Using (7) we prove easily that « is the unique fixed point of § and T respectively
and so v is ‘the unigie common fixed point of § and 7',

~ On the other hand, since every cluster point of {a;,,} is both a common ﬁxed
point of § and T' and the common fixed point « of § and T is unique, % is the unique
cluster point of {w,}. It follows from Lemma 1 that {w,} converges to u,

Remark §. Obviously Theorem 4 improves and generalizes Theorem 6 of Chen.
and Shih in [4], ,

As an immediate consequence of Theorem 4, we have.
Theorem 6. Lot (X, d) be a nonempty compact metric space, F a family of
contimuous point-valued mappings of X into itself. If for all distinct S8, T € F and for
-all w, y€ X with w#y (T) holds, then
(1) F has a unique common fiwed point u in X,
(i) for each € X and any distinct 8, TE F the sequence of fl,temtraon
{w} = {m=m0, 21=0%0, ®a=T23, **, Tons1="%n, Tansa=TTans1, **}
converges 1o u, o

- § 3. Orbitally contractions and quasi—‘contractions

In this seotion  denotes the set of all nonnegative integers, I* the set of all
positive integers and R* the set of all nonnegamve real numbers. |
Let T be a mapping of a nonempty metric space (X d) into itself. For each
weX : . .
Orp(w, 0, oc) = {T"x:n€ w}
denotes the orbit of T' at # and for all 4, j& co j>1, write
R o OT(a; 8, 1) ={T"», T, -, TVs},
~ For any ACX D(A) denotes the diameter of 4; :
Lemma 2.8 Lot @: Bt —> R* be a nondecreasing function, then tiw cond@t@on '
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(dii) hm@” (t) 0, Vt>0; where @* denotes the n—th iteration of @, implies

(@2) @(t) <t, Vt>>0, =
Fuyther, If @ is upper semicontinuous from the right, then (D) & (Dy).
A nondecreasing function @: R*—> R* is said to be @ contmctfwe gauge funota,on of O
satisfies (D) and ' '
(@) lm(-B(®) =,

Theorem 6. Let S and T be contfz'muo'iasmwppéngs of & complete metric space
(X, d) into itesdlf. Suppose for each »€ X D(Oy(w, 0, o) UOx(w, 0, ‘w0)) <o, If
there ewist n, m: X—I* and a nondeoreasing fwwtfz,on @ R“"-—>R+ swmsfrymg (@1) such
that for each a& X

D(0s(8"®w, 0, c0) UOT(T"‘(’% 0, oo))gé(D (OS (z, 0, oo) UOT (, O o)), (8)_
then for each scX, {S* a;}nea,——>z1€ X, {I"x ,,Ea,->zQEX omd 2=8%1, #a="T2.
Further, if (8) is replaced by ,

| D(0s(8"a, 0, ) U0y @y, 0, o)) |

- <BDOs(e, 0, ) U0s(y, 0, ®))), Va, yEX, ©)
then 2(=%,=122) i8 @ unique common fized point of S and T, | '
Proof For any fixed € X lot D(Oy(®,0,0) U Or(w, 0, 00)) =M, Oons1der the
following subsequences of {§"&},c. and {T a;},,ea, -
{a5} = {wo=w, of=8"g, v+, & 1=8""gl o}
{ah} = {wo=0, of = Tm%o', ooy g =TT, o},
By (8) we have o o o )
: ~ D(0s(ah, 0, o) UOx(a;, 0, o))
<@(D (05@59—1, 0, <o) UO'I'(“’%L"—h 0, %0))) |

<Qi’”(1)(0s(w 0, oo)UOT(w 0, )

=@ (M), | 5 | (10)
| Puttmg m—>oo in (10) wo obtain | |

lunD(Os(wm,Q 00) UOp (4T, 0, oo)) o | | i)

Sinco me {8} news @m€ (T} e, YME ®, Therefore (11) 1mplles that {S"w},e, and.

{T"™&} ,c., are both Cauchy sequences, and so {S @}eo—> 2 E X, {I” w}ne,,,—mze X, It
follows from: the continuity of S and 7' that 2 =0S2 and ta=T2s, . -

Now suppose (9) holds. Since (9)=>(8), the conclusion as above ig true. Assume,

2192, Using (9) and Lemma 2 we obtain
& (21, 22) =D(05(8"*2y, 0, co). UOT(T’”‘””zz, 0, o))
<B(D(0s(#1, 0, °) U0 (2, 0, 0)))
=0 (d (2, 22)) <d (23, 22),

a eontra,dmtwn Hence z( #,="2%) is a common fixed point of § and T S1m11a,r1y,_-'
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we can prove that # is the unique fixed point of § and 7' respectively. Thus 2 is a
unique common fixed point of § and 7',

Corollary 8. Let S and T be continuous mappings of a complete metric space
(X, d) into dtsel f. Suppose there exist n, m: X—>I* and a contractive gauge function @
such that for all xC€ X and for all r EI*, r=max{n(2), m(x)}

D(0s(8™" g, 0, r) U (Ox(T™Dg, 0, 1))
<@(D(0s(w, 0, 1) UOz(a, 0, 1)), (12)
Then for each a;EX {80} cw—>21, {I™}uecw—> 22, St1=28y and T2y=22, Further, if
(12) is replaced by '
D(05(8"@z, 0, r) U0y (Tmwy, 0, rr))
<P(D(0s(w, 0, ) UOr(y, 0, 1)), Vo, y€ X; r=max{n(c), m(y)}, (18)
then 2(=21=12y) is a unique common fiwed point of S and T, |

Proof By the agsumption of this Oorollary and Theorem 6, we only need to
prove that D(Os(w, 0, o) UOrp(w, 0, 0)) <oo, Vo€ X, Suppose for some x,E X
D(Oy(wo, 0, o) UOp(my, 0, 00)) =M =00, Let M,=D(Og(xo, 0, ) UOs(m,, 0, 1)),
Vr€w, Olearly {M,},c. is a nondecreasing sequenoe and hence

Hm M=M= _ 14

.By (12) for any r € I'*, r=max{n(x,), m(xy)}, we have
M,=D(0s(w,, 0, ) UOr(wo, 0, 7))
<D(O¢(@o, 0, n(wo)) UOz(2o, 0, m(2)))
+D(0s(8"@ gy, 0, ) U Op(T™@g4, 0, 7))
<D(0s(mo, 0, n(@o)) UOr(wo, 0, m(a0))) +P(M,). (15)
By (14), (15) and (@s) we obtain
co=lim[m,—B(M.)]1<D(0s(z, 0, n(20)) UOr (0, 0, m(20))),

a contradiction. Hence we have D(Os(w, 0, o) UOp (w,’ 0, ©)) <o, Vo€ X, The
-conolusions of this Corollary follow from Theorem 6.

Corollary 4. Let T be a continuous mapping of & complete metric space (X d)
Inito stsel f. Suppose there exist n: X—>I* and a contractive gauge function @ such that for
each € X and for all rE I*, r=>n(w), : '

D0 (T*@g, 0, 7)) <®(D(Or(w, 0, 1))). (16)
Then for each € X, (T} e, converges to a fiwed point # of T in X. Further, If (16)
48 replaced by
I, Ty) <BD(Or(s, 0, r) UOx(y, 0, 1)) )
Jor each € X and for all r=n(w), y€ X, then for each s€ X, {T"s},c, converges to
the unique fiwed point « of T, _

Proof Assume (16) holds. Letting S=17', m(w) =n(s), Vo€ X, in Corollary 8,

we can come t0 the required conclusions. If (17) holds, Walter™®? #hag proved that
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D(OT(a; 0, o0))<oo, Vo€ X, It is easy to check that (17) implies -

D(0x(T"@s, 0, ©0)) <B(D(Os(a, 0, %)), Vo€ X,
By Theorem 6 with § =1, n(¢) =m(w), Vo€ X, we show that for each #€ X {T"s} e
converges to a fixed point z of T'. The uniqueness of z easily follows from (17),

Remark 6. Theorem 6 and Corollaries 8, 4 : 1mprove and unlfy a number of
important results in [7, 8, 9, 10, 18], ,

Corollary 6. Let S and T be continuous mappings of & complete metric space
(X, d) into dtself. Suppose for each v € X, D(Os(w, 0, o) UYOr(w, 0, 00)) <oo. If
there ewist p, ¢ € I* and & nondecreasing function @: R*—>R* swt@sfymg (D,) such that
Jorall s, y€ X : :

D (05(8%, 0, o) UOr(T?y, 0, 0)) <P(D(Os(w, 0, o) UOT(@/, 0, =))). (18)
Then 8 and T have & unique common fived point z and for each ¢€ X, {8} ,c, and
{T"w} ,c., both converge o z. Fwtkerr, if p=1, then the continuity of S may be dropped.

Proof From Theorem 6 with n () =p, m () =g¢, VszX the first conclusion of |

this theorem holds. :

Now assume p=1 and & need not to be continuous. By the proof of Theorem 6
we see that for each &€ X, {I"x},., converges 1o a fixed point z of 7. We shall show
that 2 is also a fixed point of S. In fact, by (18) with p=1 we have

D(04(z, 0, o0)) =D(04(S2, 0,.00) U {2})
' =D(05(8z, 0, o) U0 (T%, 0, o))
<P(D(0s(z, 0, o) UOr(z, 0, o0)))
<O(D(0s(z, 0, )), (19)
By Lemma 2, (19) implies D(O4(z, 0, o)) =0 and hence z=_S8% Therefore # is a
common fixed point of § and T'. The uniqueness of # easily follows from (18) with
p=1,

Corollary 6. Let T be a continuous mapping of a complete metric space (X, d)
into itself. Suppose for each € X, D(Or(w,0,00)) <0, If there eaist p, €I and
nondecreasing function @:R*—> R* satisfying (D) such that for all , yE€ X any one of
the following conditions holds:

(1) D(0s(T?, 0, o) UOr(T?, 0, %)) <@(D(Or(s, 0, ) UOr(y, 0, =))).

(ii) @(T%, T) <P®(D(Or(w, 0, o) UOn(y, 0, 0))),
then for each a € X {T™w} 4., cOnwerges to a unique fized point 2 of T',

Proof 1If (i) holds, by Corollary 5 with S=7T the conclusion is true. If (ii)
holos, without loss of generality we may assume p>q For any (€ X, 4, j€a,
letting =T, y=T7"9%¢ in (ii), we have '

a(Tr*¢, T*HE) <@(D(0r(T%, 0, ©0) UOr (T"“’“é‘“, 0,.00)))
<D0, 0, %)), -
which implies thab -
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D0z (T, 0, 00))<P(D(0Op(w, 0, 0))), VYsEX,
Using Theorem 6 with §=T, n(s) =m(s) =p, Vo€ X, we can show that for each
2€ X, {I"v},e. converges to a fixed point z of 7'. The uniqueness of 2 easily follows
from (ii). ' '

Corollary 9. Let Tbea oomffmuous mapping of @ complete metric space (X, d)
dnto siself. If there ewist p, ¢ € I'* and a contractive gauge function @ such that for all
@, yEX and for all r=max{p, ¢} any one of the following conditions holds:

(1) D(Ox(T%, 0, 7) UOr(T, 0, 1)) <B(D(Or(a, 0, 1) UOn(y, 0, 1)),

(1) d(T%, T)<B(D(Ou(z, 0, 1) UOx(y,0,0))),
then for each € X, {T"w},c., converges to a unique fiwed point 2 of T',

Proof- If (i) is true, by Cdrollary 8 with §=T, n(x) =p, m(z)=¢, Vo& X the
conclusion of this corollary holds. If (ii) holds, without loss of generality we can
assume p>¢, For any fr>p, fEX 0<<4, j<r—p, letting o=T"¢, y=T7"4"¢ in (i)
we have-

& (T, T”+’§)<@(D(OT(T‘§, 0, p) UOT,(T”“"”& 0, 9))')
| <S@(D(0r (¢, 0, 1)), VO, j<r—p,
Whiqh yields . , . ‘
| D(0:(T?w, 0, 7)) <BD(Or(a, 0, 1)), VeEX. |
By Corollary 4 with n(e)=p, Vo€ X, we show that for each € X, {T"},c,
converges 10 a fixed point 2 of 7". The uniqueness of # easily follows from (ii).

Remark 7. Corollaries 5, 6 and 7 improve and generalize the main results in
[2, 8, 11, 12].

Theorem ¢. Let T be a sel fmap of & complete metric space (X, d) satis fying:

(1) D(OT(m 0, o0)) <oo for each a;EX ,

(i) there ewists @ nondecrreasrmg Sunction @:R*—> R* satisfying (Py) such that
for all », y€ X _

- d(Ta, T) <BD(0x (s, 0, oo) U0k (g, 0, oo))) )
Then for each € X (1"} ne., cOnwerges to the unique fived point z of T,

Proof By the proof of Theorem 6 with S=T, n(a) =1, m(e) =2, Y2€ X, we
see that for each o€ X {I"w},c,~>*€ X, Then for each >0 there exists N & I* such
that n=>N implies d(T"w, z) <e, For any m&I* and n>N, from (20) it follows
that

-cl(z, T’”z) <d(z, T"*’w) +d(T™z, T 3g) ' o
<8+ B (D (0 (I"™ 2, 0, o) UOr(T"», 0, o0)))

<e+P(max{2¢s, D(Op(z, 0, o0)) + s}) : | (21)
Since ¢ is arbitrary, (21) implies .
sup{d(z, T™):m€ I*} <O(D(0x(z, 0, oo))) (22)

On the other hand, for any 1<<i<j<<o by (20) we have
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d (T2, Ti2) <®(D(0(T¢ 2, 0, o) UOx(T¥%, 0, =0)))
<BD Oz, 0, ),
which implies _
D(0r(T2, 0, o)) <®(D(0r(z, 0, <0))), (28)
By (22) and (28) we obtain
D07 (2, 0, o0)) =max{sup{d(z, Tm2) 2m € I*}, D(Or(T'%, 0, 0))}
<BDO: 0, 2))). (24)
By Lemma 2, (24) yields D(Or(z, 0, o)) =0 and hence z=T2, The uniqueness of
2 easily follows from (20),
Remark 8. From Lemma 2 we see that Theorem 7 is an extension of
Hegodiis™* and Theorem 2 of Park and Rhoades™®,
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