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Abstract = © oo

The mltla.l bounary value problem for quasrhnear hype1 bohc parabohc coupled systems. _
in hlgher drmensronal spaees, hrch arlses in many mechamcal problems 1s oons1dered Under‘

hyperbolic- system and the parabolic partis & qua.sﬂmea.r pa,ra.bohc system 'of second .Qrder 3
and suitable assumptions of . smoothness and . compatibilly conditions,: the -existence.and. -
uniqueness of local smooth solutlon is proved in the cases that the. boundary of domam 1s;—:i .
noncharacteristic or uniformly characterlstw with respect to the hyperbohc part T

As an application, the existence and uniqueness of local smooth solutlon for the initial
boundary problem of ‘the radiation hydrodynamlc system as wll as of the viscous compressible
hydrodynamic system, with solid wal' boundary, is obtained.

1. Introduction

In the recent years a great attention has been paid to the research of problems
for the hyperbelis-parabolic coupléd systems because of stimulation and motivation
of radiation hydrodynamics, viscous compressible hydrodynamios and many other
physical problems. The Cauchy paoblem for this kind of coupled systems has been

- considered in [1, 2]. In [1] it was done i'n higher dimensional case with the

assumption of certain symmetry, i. e., the part of hyperoblic system "Was assumed 0
be symmetrrc In [2] it was done in two-dimensional case with the general hyperbolic
part, and in [8] for the initial boundary problem in two-dimensional case. In [5]
the first initial boundary value problem of the viscous compressible hydrodynamie
systems was considered. We should notroe that the discussion’ beneﬁted in [B] by the
faot that the hyperbolic: ‘part is‘only one equation.

In the present paper we congider the following hyperbolic-parabolic ooupled
systems
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o (¢, o, u, 'v) +2a,(t @, u, fv)———-—f(t z, %, V, V),
| 1.1)

_a'? ‘%1 aw (ail(t Q} u ’v) j g(ti (I}, u; , Uz, ’U,;),

where u is the unknown &-vector function, ‘v, for simplisity, is the ﬁﬁknow_n scalar
funotion. The second partof (1.1)can be easily extended to the case of certain kind
of parabolio systems for v (see the remark in the second section).

Lot @R be a bounded domain with 0= smooth boundary 8Q2. In Qx (0, h)we
want to solve the following initial boundary value problem for(1.1)

1=0: u=0,9=0,
{on o2: M(¢, o)u=0, v=0,
where M is a given I+b matrix function (1<),

The second and third sections will be devoted o the problem (1.1), @.2) in
Whlch 6.9 is. nonchara.cterlstlc W11'.h respect t0- “the ﬁrst part of (1.1). The section 4
will: be. devoted to the cage that 9Q is qharactenstm with- respe_ot to-the first part
of (1.1). In Dboth: cagses ‘we prove the existence -and uniqueness of local smooth

(1.2)

solution-for (1.1)," (1. 2) Fma.lly, as'an apphca.tmn Wwe d1souss the m1t1a1 boundary
valtie problem for the rad1at10n hydrodynamws system '

2 Estlmates for auxﬂlary problems

In this section we make the followmg assumptlons for (1 1) (1 2)

(i) «(i=0,:+-,n)are the bxk wymmetric magrices and o is a uniformly positive
definite matrix. This means that the first part of (1.1) is a quasilinear symmetric
hyperbohc system with respect to u. . - o SRS _

~.(i) There exists a positiyve number w such tha.t V&E R (,,, L ser, M)

SeféEizg @

holds umformly '].‘hls means that the second part of (1 1) is a qua,sﬂlnear pa,rabollc

equatlon of second order W1th respeot to v.
(i) Assume that

,B(ta;ufv) Eai(twu'v)n; - (22)

is nonsmgular in [0, 77 x 2% {]ul: <A |v| <B} where 4, B are cortain ‘positive
numbers, and n;(4=1, -+, n)are the components of the unit exterior normal to 9Q.

This means that 92 i noncha,ra.ctelgistiq with respect to the firgt part of (1.1), We

further assume that MU =0 is the admissible boundary condition in the Friedrichs’

sense.

(iv) Let = [ n—;—l ]—I—l and p be the integer with p=>2m+1,
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For s:mphmty, we assume that a, ay; f, 9 M are in O (it is not difficult to
prove that the conclusions in this paper remain Vehd when M, f, o4, ge oM g€
0?), and the compatibility conditions up to p—1 degree for (1 1), (1 2) are satlsﬁed)
That is fo say, We can obtain successwely from . 1) @€.2)

w2 <650, 6,0, 0) £, 5,0, 0, 0), v

7 g(QwOOOO),

3@) ’
at

aﬂu L | dao au 3?&1
——é—tg— ao (0, w 0, 0)[ dt Jemo E@SO w O 0)
— aﬂ,v | —_ = a a’Ui
AT I e vl N % om (“‘5(0 @, 0, O) ) e
. cotescassessassees R . (2 3)

‘Woe require that they should be compatlble up to p 1 degree W1th the boundary
condition (1 2)a,t {t= O 2€ aQ} o

g 3 _
oo Gttt V=

Qx,'(Q, k), (h<T")and H* be the s-order Sobolev space as usual. We denote H*, L?,

We now introduce some notations. Let J'=

08: OO norms by " ” 8 ” ”: : I E ISJ:' ] |,-'respective1y ' Let
| = {u(a, 1) lule, ) CH* V), lu|m = |ulmayy<too}, 2.4
and ' o T
By {o(a, ) (06, & €T, ZoC I, (=1, w}  @p
equipped with the norm - | L
arv AT
. ol m= (l 3 e p) | (2.6
It.is easy to venfy that H%,4 , is a Hilbert spaoe '
Let '
E(h) {(u )| (v, 0)60“(Vn)><0°°(7n), IluIlH»<Ao, l2[Z<<Bo,
. ov . ;a’v . -—___-" aes w_ap § =
['55 H;-,—¢=1 Om; |my <Bi’ ’vlt—o ’ ot | “, 7 o7 im0 Yot
ov N o1y _ } S
0 t~0=0’ Ot |t=0 @1’ T oL |y 0 Vo2 o @.7)

whers 4o, By, B1 are the posﬂnve numbers to be specified later on. It is easy 10 see
that when A4,, B,, 131 are sufficiently large and h is sufficiently small, the sob > (h) is

not empty.
Let 2 (k) be the closure of (h)in HYH".4,It'is a bouded convex subset of
HixH} 1,0 For (u, v) € S(h)we oon31der the following auxiliary linear problems

Zoa,;(t », U, 'v) f(t o, u, v, fv,)
$=0: U=0, " - @9

)

o
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T ”24 0 (a;;(t @ U, V) BV;) =g, @, u, 0, uz, 'v,),
V |1=0=0, Vlgg 0,
Before making the a pr10r1 estimates for the problems(2.8), (2.9), we mtroduce
some expressions and estimates of the derivatives of composite functions.

- ‘Lot w(t @, u, ), uE R*, 9E€ R, be a smooth function and a*=a(t, #, 0, 0). For
(u, v) €3(h) we have

W_ 2 |
K @9

Da(t, o, w, v) = D’ao—i-D,,,(w —ap) +Ew,,,D‘u¢+ a,,D"v +G (2 .10)
where we denote the partlal\denvahves with respect to , t by D.,; and
oa aa
N WG W=y O=L e B, \
From now on we denote the umversal constants by C which are 1ndependent of
h,
' Lemma'l: Swppose (u 'v) ES(h) then Vl<p —im—2 we have
’ - | D (@, 8) [ <C1+Colu|m 4 . (2.11)
| D (e, 1) | <Ci+0s)v]m, , (2.12)
|2 100, 9| <0 0a|-22] . 2.13)

392,;
~ Proof Since - |
. DuGe, ) =Due, 0) +[ L Diue, ya,
by the imbedding theorem we have

| [Dlu(w t)|<maxlD’u(w 0)]=0h7||u|[3», (2.14)
Because A<T and D'u(w, 0)can be explicitely expressed by uj, -, uy,. we. obtfain

(2.11). Similarly, we have (2.18), (2.14). Thus the proof is completed )
Lemma 2. For the ewpression (2.10)we have T

I DL, (a—a®) [<Co(luu+ o)) =Oo (Ao, By), '_ (2.15)

"G”<01+02(Ao By), ' ‘ (2.16)
| D'a| <O (4o, By), Vi<p—-m—-2. - 2.17)

Proof @. 15)15 obvious. We can got (2.16), (2.17)from ((2.11), (2.12),
~ Now We turn to the problems 2. 8), (2.9). For the initial boundary value
problem (2. 8) of symmetric hyperbolic systems we have

Lemma 3.7  There eaists a unique solusion U (s, t).€ rizl or([o, Al, H*"(Q)) <=

H?. Furthermore, we have the estimate
(U 2<h(C+C4(4s, Bo)+ llfllm> <h<0+01(Ao, Bo) +03(4s, Bo)By), (2.18)
where C is a constant dependent on uy, -+, U, 1, -, v, but independent o f Ao, By, and

O, C; are the constants dependent on Ao, By,
For the initial boundary value problem (2.9) of parabolic equations, by the
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Sohauder theory, there existsa unique smooth solution ¥ €03®~»»#~%, Moreover,

ve oMo, B, H¢Q), 3;;1’ c12(0, h, H-(Q)) (seo[13], Theorem 42.1).

Lemma 4. Let V be the solution of (2 .9), then there ewists a constant M dependent
on w such that

IV &)z <M:lgl, (2.19)
i<mptlgl, e

Proof One can find the proof in [9]. Tt is also easy to give 2 direct proof.
Multiplying the both sides of (2.9)by V and infegrating on Q, we obtain

n 2 .o .
L 81y @ ot 3| G <T (ol Vi), 2D

Applying Gronwall inequality, we get (2 .19). Integrating with respect to t, we
got(2.20). From (2.22) we obtain (2. 21). '
Lemma B. For the smooth solution V' o f (2.9)we have

| ||, | 2| <alol - =t o, (2.28)
where My depends on |ay|, and w. |

Proof See[10], Theorem 8. ,

‘We are now in a position to geb the a priori estimates for the solution V' of
2.9). - o ’
Theorem 1. Let V be the smooth solution of (2.9), then there ewists a positive
number (Ao, Bo) dependent on Ao, Bo such that when h<d (Ao, Bo), we have

|V |3<<hC5 (Ao, By), (2.24)
A LIS A, T - |
“ow lp &1l Owy p<0+04(_A°’ Bo), .(2.25)‘

where O is a positive number independens of Aq, Bo, V,and Os (4o, Bo), Os(4o, Bo)are
the positive numbers dependent on Ao, Bo, but independent of V.

Proof We first get the estimates of higher order tagential derivatives of solution
by localization method, and then by differentiating the both sides of the equation
get the estimates of higher erder normal derivatives of solution. This is just the same

as in the elliptic equation case.
o Using localization, the problem is reduced to the one on @, x [0, 21:

v S 9, . WV N_, '

{—EZ— Q‘,’gi am,-, (“M (tr z, U, .’I)) 3(13,) g(t; @, U, V, Uz, Q’w); (2.26)
V=0, V |¢=05 '

where @, is a half cube in R and V vanishes near I (see Fig.1).

Since in the internal patch the situation is much simpler, it suffices to prove
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(2.24), (2.25)for (2.26).

R
Let -
| &

Dr= OOk Dasln; (Z) p0+ +Pn—1) (2.27)
Acttlng D? on the both sides of (2.26), we have

3DDV é ) <% aDV) 2 ZD’(a )D,,_,< >V )

— awﬁﬂ D1 aV Ny . K ’ _‘ Dl ) 2 .
p>l>1 i,: ( o, )D ( ow; ) Dry. . (2.28)

According to the preceding dlfferentml expressmns of composite funcmon we

have | | o _ . o |
D"(a“”>—p 2oy 0y Do+6y . (2.28)
o, tn a ( J )
where ’ . "
SR T PP | 2.80
D=5 Q=7 " ( <M\<\ ), (2.80)
(2 . R
and we have the estimate for Gy R
| Gol <C+C1 (4o, Bo), o ' (2.81)
Where 0 is mdependent of Ao, B,.
. Similarly, we have )
D"g 2 Gu 3D ““ -+ g aD”’ G, (2.82)
1 Amateie s s ou, v
where g, and g¢; are the partial derlvatwes of g Wl’oh respect to o and - .
: A _ i s
respectively, and :
|G:|<O+Ca(ds, By, " (2.88).

Let V,=D*V, (2.28)can be rewritten as

vy 3{ -9V, — 0 p\aV
ot i;l o, \ % 0w; ) t,,z,:“(pm ow; Du“—}-q;, o, va/ 0w;

-1
g 3D“ﬂ+2 M 31” RS LR W +G1+5‘_.D(a¢,)wj—

Lip *Dr- V 1 aa,, o—1 3V : 4
+§ p;%ﬁ! D <a”) am,aw, + p—§>1D < 39% )D ( &vj ) S . (2 -3 )
On the other hand, from (2.26), we obtain ' .
| {Vplae+='0, S C B (2.8b)
Vplt—o=VOp(€U), E _ .

where Vo, (m) is a given function.and i¥ can be derlved completely from ay, g, Uy, s,
Up: a,nd Dy oty Vp, ’ L '
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© Asin the proof of Lemma 4, multiplying the both sides of (2.84)by V', and then
'integrating on @, for the left hand side we have '

Vs OV,
ERAZ0) =<@+>+§:j o o —g—dt—um@ | L
. ‘ : (2.86)

For the all terms in the right hand side ’
S V. : oV :
| a(P”" 5 ) o 0 gy V)

- 7 24 P a(gutval)

J’Q+ L% o Dhu, +2 ow; D +2 T om - Dru .
009V 9) pw J v ) J 3(13 (@) Vﬂ) oDy
A Do Jdot | (;GO +Gy )Vdm = T

3Dpl aas a-D . T (9 9m
+J o L»%s (@ ij) 0w,0; p~1§>1 U( aa:j) o ; ]Vpdwél, @.87)

Integratmg by parts, -and then applying Lemmas 1, 2 and the 1nequa11ty
ab< Ll 5 —I——;’-é- t0 make the estlmates term by term, we a,rrlve ab

[ 1]<C1(4,, BO)+‘IVPIIL’(Q+)+O2(A0: BO) “V"H"(Qn +6 2" 631;,, .
+Cs|V |a ("u"p"*""'””n) e g S ' (2.88)

By the Schauder theory of parabohc equa.tlon and Lemma 1 we obtain for the
solution ¥ of (2.9) ' '

(

. £ . !Vl2<G(Ao; Bo) _ o - (2.89)
Ohoose e——— in (2 38), thus it follows from (2.86)—(2.88) that.

S W a2 BN T el <Oudo, B+ [Vl

+Ca(4s, By |V ”Hﬂ(@» I (2.40)
Applying Gronwall inequality to (2.40), we obtain :

1750 Bros+ 33 22| <OV gl +0u( e, Bo)+01(d BWE. G
Therefore DR A : : _
[V ol2<h (8 +0o (Ao, Bo)+C1(4o, B|V|3), o
n ~ (2.42
{g} aaz:p 2<0+00(A0; Bo) +01(4,, Bo) 14 H ( )
_ Similarljr; since ¥y satisﬁes
Vo1 Y 0 oV y -1 Ll . AV
3: 5,21 3@9{ < % 3;3; ) =D g + p—gzl D (wig) Dp < awiaw,- )
a < 1 6% ) av " . .
+ p—1§>1 D ( awi )Dp ( 69:, ) o1, ‘ (2.43)
we obtain o
[[Vﬂ_1[]2<h(0+00(A0 Bo)+01<Ao; Bo) [V |3-1). o (2:44)

(" . " On the other hand, since
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. an-—:L = .an;-i

o, om;  |t=0 ~Jo ata o Vp-1dt, | (2.45)
we obtain ‘ ‘
Wy |? ' oV |
o l Ow, L’(Q+) +h . (2.46)
Hence from (2.42) | | |
‘ ‘—1 l an—i l <h(0+00(-A0, Bo) +01 (-AO, Bo) "V"%) . . (2 .47)

Similarly, we have the same estimates (2.44), (2.47) for V,,_g. From
an..z ! ' aSVp..g - 2 32Vp.. _2 aa{j an_g -._N

’ ot : G am,z, 0:}#;” s &v 3:6, i,7. 3{6; aa}, =gr-2 (2 .48)
and @,,=>p@>0, we have _
32Vp— l " an_.Q R aBV’)__Q aaij ’ 3Vp_.
l &vn [ ot + |ay] O 0w; +§ o, 841;, l+ Hg, -2 " ]
o ' (2.49)
Using the same technigue as in (2.45), we have '
lay(@, ¥) | <|ay(w, 0)| +h0(do, Bo),
o 0 i &, 0 .
I Oy (, £) l<l_ai_(.___>_l+h.a(Ao, By), (2.50)

AN (R

).

- On the other hand, we can gee from the expression of g,, that the highest order

of derivatives in 9952, with respect to u, v, V" is not"la,rger than p.

ot
Hence -
,_:__2. <  (2.51)
From (2.49), (2.44), (2.50), we obtain |
l_@%ﬁ. 3 (2.52).

So far we have obtained the estimates of p—order derivatives of ¥ which involve.
seocond order normal derivatives. Successwely differéntiating the both sides of (2.9),
we odn estimate the derivatives of ¥ step by step which involve the higher order:
normal derivatives.In fact, actting D},D?~2~! on the both sides of (2.9), we have

- . Y.
! Np~1-1 142 No—~8-1 ! yp—8-1
DLDP — g, DEFEDPR- orgj*”@,ﬂ L Do-s- Dy

-3 D‘(au) D7~ 5 DHa) DV =DiDr, (2.53).

p-8>i>1

By induction, from (2.58) we can get the est1mates for D’“D”“*‘Vsucoesmvely'
HD’”D” ”‘Vil”<h(0 +00(Ao, Ba)+03(4, Bo) V. - Q.54
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From (2.42), (2.47), (2.52), (2.54), we havo

[V |3<<h(0o(4o, Bo)+01(4o, Bo)|V|2). (2.55)
. 1 , '
Choosing 8y= 50, (e B when A<8, we have | 4
HV“,,<27&00(A0 Bo). (2.56)
"Snbstltutmg (2.56) into (2.42), we obtam | | |
SNVl <01Ou(de, BY. (2.57)
$=1 {7
* By the same procedure as above for [V Il,we obtain _
21: . <O+01(Ao By). (2.58)

It is eagsy to extend (2.24), (2 2b) from local patch to the ‘whole domam
2% (0, A). Thus the proof is completed. :
Remark 1. It is easy 10 see from the proof of Theorem 1 that the congtant C in

i Q’K
It =0’ 7 Ot

Remark 2. Itisalso easy to see from the above proof that if (2.9) has the
followmg form :

{—a‘-V;"‘ é 9 (dg aw >+‘2 b; +O()V E-Ai “l‘EBﬂt

(2.25) depends on-2 CIf they vanish, then ¢ =0.

ou,
ol =1 om,

) Vlt=0=0: Vl90_0:

(2.59)
then 2.24), 2. 25) turn out to he |

nvu <M:h (O+ [ul2+]o]), (2.60)

( LA }p g;{ g <M (O+uli+]o]D), (2.61)

where the constants M1, My depend on the H? norms of ay, b, Co, 4, B;, E,, F,,

and O is a constant indicated in Remark 1,
Remark 8. Asin [1] our assertions are also valid for the following parabolic

v o9 ov
o ¢% a@( Y B, > =9 (2.62)

Where V, g are the I-veotor functions, (@) is an nlsnl Symmetric matrix such that
there exists p>0, V&€ R (=1, -, n).

2 (ay, & &) >ME &2, ' (2.683)

Here we denote the inner product and the norm in R*by( , )and | ' |respectively.

system

3. Existence and Uniqueness |

We are now in a position 0 prove the existence and uniqueness of the solution -

e T +2Eﬂu,,+F®
m
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for the problem (1.1), (1.2) in Wh1ch the boundary 0Q is nonoharacterlstm with.
respect to the first part of (1.1). _

We first choose the positive numbers’ 4,, B, arb1trar11y, then choose the positive
number By such that :

Bi>0+04(Ao, By). (8.1)

It follows from (2.18), (2.24)that there exists a posmve number 81 (4o, By, Bl)
such that when A<Cdy ‘
lIUH <Ao, llVlI <B,, . o (8.2)

Thus when A<d=min (5,(4,, Bo) , 81(4,, Bo, By)), the linear auxiliary
problem (2.8), (2.9) define a mapping T': (u, v) EX(R)—>U, V) € Z(h) Now what
we want t0-do is 10 extend 7'.from 3 (h) to 2 (%). _—

For any (u, ») € X (h)there exists a sequence (u,,, 'v,,,) € S\(h) such that w, ———a» U,

0,8 o Lot (U, V,,) T(u,., %), tj_U UM,V V=V, then ﬁ 4 sat1sfy

2 di(t @, 'un,- 'Un) “f (t “’ Uy, 'vm ,v”z) f @ @, Ym, Vm, Vm,)

- 2 Tty , 2, 03) —axCt, 0, vy 00)] 3U:» | ERCE)
S _ Mﬁlt—o—“o ﬁlt—o"‘o
and B -
( 67 2 vy _ -
;’—;1 3 (wij(t, @, Us, 'vﬂ’) o i )_g(bl &, Up, Yg, Un,., ’vn_,,.)
“g(tmu Vmy U 'v)—l—E[w(twu 'v,,)a(twu fv)]asy’”‘ '
: d my Ymy Yy Ymy 7] oy 45 m’ " am’bamj (3.4)
L 3%; (t @, ufu Q)h) aaij (t, @, um,, ’vm)
Vlaﬂ O Vlt 0"‘0
respeotlvely ‘Moreover | |
ol I " P 74 A
2t oo 0T lsmo 7 T OF lemo  BET |so =0, (3 .B)

By the first two remarks in the preceding section, we have

A e o =0 N T
| AR 68
‘_?g—-izpd:e; ﬂg;——ﬂ)— :_1<M2(”u,;——um”§_1+l[%—pmﬂﬁ_l)—a»O, (3'7)
NV ea= Vo=Vl ot < Msh (Jtta =Y 5-1+ |90 =] 3-)—0. - (8.8)

This means that (U, V,)converges in Hy X H,, 1. We call (U, V)the limit
function. Since (U,, V,,) €3 (%), Banach-Saks theorem implies (U, V) € HyX Hpa,p
and (U, V) €S (k). Thus for any (u, 'v) € S\(h) the solution (U V)of (2. 8), (2 9)
ig in 2 (). E : : : :
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Theorem 2. Under. the assumptions (i)—(iv) in the second section there. exists &

sufficiently small number h>0 such that the problem (1.1), (1.2)has & unique solution
(u, v) € HhXH’”+1,,,CO” "% O” ’"“1'1’"""1,% Vi=2x (O k). Moreover, the unigueness in
O x 0% still holds. |

Proof We have seen from above that the operator T maps S (&) into itself.

Moreover, for any (us, v1), (us, 2) € X(h), let (Us, V1) T(uw, v1), (Us, Va)=T
(ua, ’02), we have

(OOl sl on-ofit 22290 ),
(Va— V:[_“p._j_\Mj_h(“uz UgG-1+ [ va—af3-0), (8.10)
QYYD P <ty (ol st o=l (3.11)
We now introduce new equivalent norm in H, ;X H,, 1(V3) as follows:
[, ) ot = lel3ost [o3oa 57 23; (3.12)
Thus
VT (ua, v3) =T (s, ¥0) |Brpascitpps= [Ua— U fo1+{Va= V1|7
it 2V * <oy wafart ot [faot | 20 P )

+M1h(”u1—“1ﬂ§—1+”’01“@1"3—1)+M2h%(|]u2*uiﬂz—1+ﬂ”z"’villg—i),
3('1)2 ’01) 2 )
p—1

ow
=¥ (ua, 99~ (@, 0 Vhitnens | (3.13)
This implies that when % is sufficiently small, T' is a contractive operator in
H, 1% H, 1. As a consequence of the fixed point theorem in [4], T' has a fixed point
in > (k). It is also easy to give a direct proof. In fact, starting from any element
(uo, %) in X (h), the sequehoe defined by
(W, 00) =T (Un-1, Vn-1)  (n=1, ) o (8.14)
must converge in H, 3 X H,, , 1 as indicated before. This means that T has a fixed
point (u, v) € Hy_y X Hy,p3, by Banach-Saks theorem, which is also in (k). By the
imbedding theorem, (u, v) € OP™ x Or~"#1.2=", Thig completes the proof of existence.
The uniqueness even holds in 0*x 0%*, In fact, if (dz, vé)_'and (ug, v1) are the
solutions, then letting U=u2%m, V=®2—vi, we have from (1.1)

~ 1
<OB¥(Jua—va 3ot [l

Ms

O&,,(t @, U, lv2> ""f(t (D Uz, ’02) rv-?z) f(t T, Uy, Vi, ’le) o

-,
Il
<

- 2 [o(t, @, us, v3) —a(t, ®, Us, 02)]-0 FL=FU+FV .

+EFW a - ’Z (4.,U + A.v,V) | . (3.15)
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whereF,, F,, etc. can be experessed as integrals in virtue of mean value theorem,
°. g, -

o
Fo= [ 21, 2, s, 01t o(0a—0), 0a0)i, (8.16)
(8.15)can also be rewritten as follows _
ﬁom +KU=GV +3 F, ZV (3.17)
= =
with the initial boundary condltmns 7
MU|99=O, U|¢=o=0, (3.18)
where
gA,, —F,, G=F,— EA o (3.19)
| NP Rl P " B ° ' |
Thus from (8.17) (8.18) we have
[wip<oun( 1vi+312-]). (3.20)

Similarly, for V we have

W D 2
e ”=1—5£—v:*( ay(t, ©, Ua, ’02)

V )=g<t) m} th’ Q)z) u2$; Iv2$)
i :

2
—g(t, 2, 1, v, vu, ) + 3 (@t 0, v, )t @, v, 0)) gt
Oay;(t, @, Us, Va) _ 3@,,(75 », Uy, )\ 00| ~ o1
+< 3{1}; 3% / awj ] ‘ (3’ )

which can also be rewritten as follows:

& 9 BU |
o Fon FaCE a0, )+;_21 b + O =DU +3 B, 5. (8.2

with the initial boundary conditions
| V l20=0, V| sm0=0. - (329)
It is easy to see that using the same technique as in Theorem 1, we have the
following estimates

[V IP<0ah|Ule, ! (3.24)
ﬁyﬁl“”@anvuﬂ.  (3.25)

It follows from (3.20), (3.24), (3.25) that

[Ulr<on(Iv]®+ 21{ SV ” (3.26)
This implies that when 5 is sufficiently small, we have : |
| [T]*=0 | ' | (8.27)
and from (3.24) - . .

[V[*=o0, A (3.28)
This eompletes the proof. | ' '
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4. Characteristic Boundary Case

In this section we deal with the problem .(1 .1), (1.2) in which the boundary 2Q
is characteristio with respect to the first part of (1.1). In this case we preserve the
assumptions (i) and (ii) made in the second section, but we need to revise the
assumptions (iii) and (iv) as follows. '

(i)’ Let

BG, o, v, ») =S alt, 2, u, ), (@)

where #; are the components of unit exterior normal to Q. Assume that for any
smooth functions (v, v) which satisfy (1.2) MU |,0=0 is the admissible boundary
condition in the Friedrichs’ sense. Moreover, there exists a smooth matrix function
R(t, »)in the nelghbourhood of Q% [0, h]such that
~ - ' B, 0
Bt o, w =BG, D8G5, u 0BG 9=(o" ). @)
2
The rank of By is a constant 7 near 22 x [0, h] and Bj|,p=0(zero submatrix).
Furthermore, by U= RU the boundary condition (1.2) is transformed into .
U= —’(7L—0 (L<r), | (4.3)

(iv)’ Let m=[n_§1]+1 » be the integers with p>8m+8. For simplicity,

ai;, o, f, g9, M € 0 and the compatibility conditions up to p—1 degree are satisfied.
Under the assumptions (i), (ii), (iii)’, (iv)’ we are going to prove the existence
and uniqueness of local solution for (1.1), (1.2). '
We now introduce some notations. Let V,=Q2x% (0,4), and {D,} (c=0, ::+, M),

Do=1I, Do= 3 a -2
; =o 0 '
operator systems with respect to éQ2x [0, h]. As in [11], we denote the p-order

generalized derivatives of % by Diu which involve g-order normal derivatives.
Let

~futs %>lnunB,»,=(g 5 |pul)" < oo} (4.9
and . '2'» t<6 N ‘ |
Bla={ 0@, ) [v€ B, Z-€BYGi=1, )} O @h)

equipped with the norm

[, = Il + | 52,

(1143

A Bh)l" (4:'6)

Tt is eagy to verify that both B} and Bj,u,, are Hilbert sprees. Let
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= {(u, )| @, 0) €0°(Fn) xC"(7), [uliy<4o, [o]3;<Bs,

ov oty ’ gty
Bl <P W00, Gt =t om0, o, | =0y
Mul,,g——O ’Ulm*o} o : | S (4.7)

and 5" be the closure of 2! which is not empty when £ is a,ppropnately small (refer
0 [7}) - : .
From now on we will denote the universal constant by 4] Wh1ch depends on
-AO, BO

Since Bj forms a Banach algebra when p>8m+8 (refer to [11]), we have the
following Lemmas which are similar t0 Lemmas 1, 2 in the section 2.

Lemma5 S’uppose (u, fv)EE Vs<p—m—1, g\E-——m 1, we have

{ | Diua, 4 |<0,

| Dio(w, ©) |<O’ .8

“From the following expressmn similar o (2.10) -

- Dia(t, @, u, v) =Dia® + D40t (a—a°) + 2] au Djus+a,Dip+ @G, (4.9)

we have

‘ i.emma. 6. For s<p-3, gf1<'o‘ 0<8<—2-,
| | | D30 (a—a" | <C, -
slel<0, - ' (4.10),
| Dsa(t; @, w, v) || <O
In order to prove the existence of the solution for the problem (1.1), (1.2) we

form again the linear auxiliary problem as follows:

o U
{ goai(t: @, U, Q))%'_’fax @, Y, v, ’l),,-) (4'11)
Ult=0~=01 MUI9QI=O:
and : ‘
3V 20
{ at Ei aw <w¢.’f(t w) u ’v) ) g(tl m’ ’vl 'D) wﬁ) Q)ﬁ)l (4..12)
V=0, V|:0=0, '

In what follows we will establish some a priori estimates of solutions U, V for
(u, v) € 2, respectively.
" For(4.10) we have
Lemma 7. For (u, v) €2} the pfroblem (2.11) has @ unique solution U E BL.
Moreover .
T [lUll%g,<51h('O+IIfH%;,)<51h(0+'52+(73B1),' B (4.18)
where C is a constant independent of Ay, Bo, Bi. ' '
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Proof Since(u,v) € 2%, the problem (4.11) satisfies the compat1b1l1ty conditions
up fop—1 degree at {{=0, € a.o} - :

Therefore by the results in [4], the problem (4 11) has a unique solutmn
U € B:. Moreover, : :

NM@<mMaﬂm&x o

In virtue of Lemma 6 we have (4.18). This completes the proof. Now we establish
the a priori estimates of solution V" for (4 12). o -

As shown in the section 2, by looahzatmn it suffices to disouss the problem in a
half oube of B, So in what follows we. consuder the problem in the half cube

={—1<m<l, 0<w, <1, =1, oo+, n~1},

The support of ¥ is in, the shade area (see F1g 1) and the boundary oondxtmn is

converted to : ~
Oh W,=0: V =0,

Lemma 8. For the solution V_ of (4.12)we have . |
[V l2<h(@at+-ColV ), (4.14)
) <oy, 0+ Ot OlT . @1D)

Proof By the assumptions and the Well known results for parabohe equations
(refer to [10, 18]), the problem (4. 12) has a umque solutmn VE H”' =, VPEO
([0, r], L*(2)), where

67#1+768V‘
0,30 .,
=7 |5

i €I, be<p, 2 t<2p }
ap
of*owte-ompmy |
a.DpV - 7 a ( i 3DPV>=ng + 2 Dlaiij_L 62V + Dy aw” Dp__l 3V

w .
ot 7= Om; 0w P51 0m0m; p?lfl 350, ow;
Y ¥ ) . » o

Aotting D= on the both sides of (4.12), we get .

(4.16)
with the homogeneous boundary conditions for D} and S
" - DV o=V e, @
where Vo,(«) are the given functions and can be expressed byws, -, vy, :
~As in the seotion 2, mulhpylmg the both sides, by ¥, and then integrating on
Q+ % (0, ¥), we obtain

nm@w-zwn

<L iwape|[[ ogv,ao i

<7
t 1. Tl 62V l JJ 13% p—zaV dod
+ J'eje+p>§1pwi’1)p “ow0n; Vydadt |+ Q+p§1D 2, —--D 2w, Vydadt|,
' (4.18)
Similarly, we have o
J: JQ DGV, dwds| <Oyt V| + 21 o, |* (4.19)
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Let SR
¢ oa - 3V oDy oDV
I =J J Dl Rbas’ R _Dp i J I . i
1 0+ﬂ;§1 awi V dx di= Qs p>§—-1 awi ov (] Vp dw di
- oD'ay a-Dp V 0Day; oDy
J J '8 p—-2>l>2 ow; ow; Vyde dt+J ,[ o, Ow 0m; Vydads
=T1+Tyg+ Iy, - ' _ (4.20)
It follows from Lemma 6 that o
| |Day|2<C, p—-1<i<p, ' ‘ (4.21)
On the other hand, by the Schauder type estimates for (4.12) (see [9]), we have
| IVIO; IVll) lVl2: I:V.-,l3<0o | . (4'22)
Thus o
1< LTl L & 2 o7, |2
[ 1] <Ci+ 3 §1 5 (4.28)
and
Lol <CACAVIB+ IV, (424
- i dDaq 14
- @i Typ-1 — oLy -1y OV p
| Tas] [ j J% aa;.é)a;, Ty poip Y, des it U o G D7 Lo dd
<0, +-—-|IVpll9 2 (4.25)
It follows from (4.23)—(4.25) that,_ ‘ |
~ ~ 7 3 o
L] <Out Ol ¥ I3+ (7l + £ 3 e (4.26)
X . =1 aw;

Similarly, we get

JoJo 2D G0t LTV ot <O+ OV I+ 7+ 3| 2",
| | (4.27)

~ Therefore, it follov‘vsbfrom (4.19), (4. 26) (4.27) that

5O e i3] Lo <, B2 g T P rsi7, e+ Col 7[Ry, (4.28)
Choosing g== 2 , We obtain from (4.28)

MO Bo<eCr ST OITE, @)

A I ATEAI 4N (4.30)

- Integrating (4.29) with respect to ¢, when % is appropriately smali, we have

(4.14). Substituting it into (4.80), we obtain (4.15). Thus the proof is completed.
Lemma 8. For the solution V of 4(4.12) we have

an 1

=1}

ﬂ<h(0+61+5gurfn§5). _, © o (4.81)

Proo f From
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By induotion it is not difficult to prove that(4.42)and (4.44) hold for 1<Z<% .

- We omit»the details,

Thus we have

’flvnzh<h<69+6m‘nVu%o | L ww
25l

s 350; (4:.46)t

These imply that there ex1sts a positive number 31 (4o, Bo)such that when
h<8;(4o, By), (4.40), (4.41) hold. Thus the proof is: completed. |

Remark 4. We have the same. conclusmns as indicated in Remarks 1—3 The
only thing we have to do is to change the notaton 6f norm from H? into B,

In what follows we mse the a priori estimates obtained before to prove the
existence and uniqueness of local smooth solution for (1. 1) . 2) To this end we
go along the same line as in the section 3. '

¢=1 B,"

For any fixed posmve numbers - 4y, By, we choose the positive number B
sufficiently large such that in (4.41) v
C.<B;, ' (4.47)
© (4.18) and (4.40) imply that there exists a positive number 8,(4o, By, Bi) <81

(4o, Bo)such that when A<,

U<, PI3<B, 3L

* <B, © (4.48)
B !

‘Thus the opefator T:(u, w)y—>(U, V)is a nonlinear mapping from 3 into >,

As in the section 8 if we introduce the new equivalent norm in B: ;X B:_y , 4

. 1 =
1@ ) By xapa = (ul Byt [2]3.0 +7 2 —%—

then T’ is a contractive operator with respect to the new norm.
Applying the theorem in[4]or reped_ting the detailed discussion indicated in the
third section, we arrive at \ . ,'
Theorem 4 Under the a;ssumptfwns (@), (i), (111) (1v)’ there ewists @ positive
nwmber & such that when h<3, the problem (1.1) (1.2) admitsa unique solution

* (4.49)

Bly-g

(u, v) € B’”><B2+1,,,c02 X 0 7“"’“’?—"", Moreover, the uniqueness is stzll valid in
O x C™1, | |

5. Applications

Since the hyperbolic-parabolic coupled system arise in many physiscal and
mechanical problems, our preceding results have wide applications. In this section
we briefly desoribe the applications to the radiation hydrodynamic problem and the
compressible viscous hydrodynamie problem with solid wall boﬁndary which one
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usually meets in practice. - : :
(@) Radiation hydrodynamic problem Wl'bh solid wall boundary.
As was pointed out in [2], the radiation hydrodynamm squations can be written

as follows:
1 U P
[ - o\ | p”r}@ p
L el PRI
RT o\ v BT o\ v
i w P v
BT | RT
v ) w p N
p2’v p . vpsw P
£ LaC) P\
+ T.R p%' KARaN El oy 9| v
P ET %\ v 7 R
0% w péw w
RT e RT
( __1_6_0;_113) PP o
SpO" Rl ow _ , ,
160 P ar |, S - (5.1)
—(B+ 500 7% ) 2y —
160 ..\ p* T
(R+ 30 L )RT 52
Bo , 160 ;e\ 0T - @ (1604 sy 0T \_ 8 (1604 e, 0T\
(’y s T)at 8w< 5 L 6:13) ’a‘y‘<.3 o 8@/)
1604 mase OT Ro , 160 me\(. OT . of . T
(A 6z)+,(fy T A TR ) |
160 ou ov , ow . - :
(pRT+ 7 )(6w+6ry+ A ) =0, , 5.2)

with the initial boundary conditions

on 99Q: wn1+'vn2+wn3—0 T= Tl(w £) >0, ,
{t—O p=po (@) >0, T=T4(x) >0, u=uy (@), v= 'vo(m), w=1w (%), (-5'3)
where(u, v, w)is the velocity vector, n;, ns, ns are the components of unit exterior
normal 0 92, p is the density, T is the absolute temperature, o, 4, y, «, R are the
positive constants, and C is the light speed.

It is easy to see that (5.1)is a quasilnear symmeiric hyperbolic system for
(p, u, v, w) and (5.2) is a quasilinear second order parabolic equation for T.

From (5.1) we get

s et e P e«
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Un Py P pPng

. Qu”
P F,)RT .
B= 0% . (5.4)
pra “RT |
. .
Phtg. ?RT

For (u, v, w, T) satisfying the boundary conditions (5.10),
0 pny pny pmg

ey O 0 0

png 0O 0 o f

png O 0 0

As shown in [11], the assumption (iii)’ is satisfied. Moreover, the boundary

B= (6.5}

conditions (5.8) are admissible. Thus Theorem 4 implies the existence and
uniqueness of local smooth solution provided that the initial and boundary conditions
satisfy the assumptions of smoothness and the compatibility conditions indicated in
the section 4.
(II) The compressible viscous hydrodynamic problem with solid wall boudary.
This problem has been investigated in [5]. it is not difficult to verify that without
considering the differences in smoothness, as a consequence of the Theorem 4 for the
. general system (1.1), we also get the existence and uniqueness of local smooth
‘solution. .
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