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Abstract

The initial bounary value problem for quasilinear byperbolie-parabolic coupled systems 
in higher dimensional spaces, which arises in many mechanical problerns is considered. Under 
the assumptions that the-hyperbolic part of the coupled system is a quasilinear; symmetric ” 
hyperbolic system and the parabolic part is a quasilinear .parabolic . system,of !second pMer 
and suitable assumptions of smoothness ’and compatibiliy conditions/, the existence y.and;  ̂
uniqueness of local smooth solution is proved in the cases that the. boundary of domain is,; r 
noncharacteristic or uniformly characteristic with respect to the hyperbolic part.

As an application, the existence and uniqueness of local smooth solution for the initial 
boundary problem of the radiation hydrodynamic system, as well as of the viscous compressible 
hydrodynamic system, with solid wal1 boundary, is obtained.

1. Introduction
In. the reoent years a great attention has been paid to the research of problems 

for the hyperbolic-parabolic coupled systems because of stimulation and motivation 
of radiation hydrodynamics, viscous compressible hydrodynamics and many other 
physical problems. The Cauchy paoblem for this kind of coupled systems has been 
considered in  [1, 2]. In  [1 ] it was done in higher dimensional case with the 
assumption of certain symmetry, i. e., the part of hyperoblio system was assumed to 
be symmetric. In  [2] it was done in two-dimensional case with the general hyperbolio 
part, and in  [3] for the initial boundary problem in  two-dimensional case. In  [5] 
the first initial boundary value problem of the visoous compressible hydrodynamic 
systems was considered. We should notice that the discussion benefited in [5] by the 
fact that the hyperbolic part is only one equation. .

In  the present paper we consider the following hyperbolic-parabolic coupled 
systems
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№,((, (0, U, 4  « ) - § — /(* , «» *•).
0t ,.l 0®, (1 .1 )

. ' 4 г - Ж :a!’
where м is the unknown &-vector function, <y, for simplisity, is the unknown scalar 
function. The second part of (1,1) oan be easily extended to the case of certain kind 
of parabolic systems for v (see the remark in  the second section).

Let Q aB?  be a bounded domain with 0°° smooth boundary dQ. In  f ix  (0, h)we 
want to solve the following initial boundary value problem for (1 .1 )

r* = 0: u —0,
[опдй : M (t, so)u=0, v=0, 

where M  is a given l*Jc matrix function (Z<&),
T^e second and third sections, will be devoted „to the problem, (1 .1 ) ,  (1 . 2) in 

whioh dQ is noncharaoteristic with respect to the first part of (1.1). The section 4 
will be devoted to the case that dQ is characteristic with respect to the first part 
of (1.1). In  both cases we prove the existence and uniqueness of local smooth 
solution for (1 .1), (1.2). Finally, as an applibation, we discuss the initial boundary 
Value problem for the radiation hydrodynamics system.

2. Estimates for auxiliary problems
In  this section we make the following assumptions fo r ( l .l ) ,  (1.2).
( i)  al(i= 0 J •••,№) are the h}<.Jc -symmetric matrices and «0 is a uniformly positive

definite matrix. This means that the first part of (1.1) is a quasilinear symmetric 
hyperbolic system with respect to u. \-

(ii) There exists a positiye num ber/л such that V^S-R ( i= l ,  •••, и)

• S I ?  ■ (2 .1 )1 . <=1
holds uniformly. This means that the second part of(1,1) is a quasilinear parabolic 
equation of second order with respect to v.

(iii) Assume that П
со, u, o))==S «i(<, u ,.,o)ni (2 .2)

is nonsingular in  [0, У] x Q x  { |м |< А , | ф|< В }  where A, В are certain positive 
numbers, and щ(ъ—1, • ••, w)are the components of the unit exterior normal to dQ. 
This means that dQ is noncharaoteristic with respect to the first part of (1.1), We 
further assume that M U =0  is the admissible boundary condition in  the Friedrichs’ 
sense.

(iv) Let m =  +  1 an^ P be the integer with p>2m-f-l.
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For simplicity, we assume that щ, aih / ,  g, M  are in 0°° (it is hot difficult to 
prove that the conclusions in  this paper remain valid when Ж, / ,  щ, д£О р*гг 
Op), and the compatibility conditions up to p —1  degree for (1 .1 ) , (1 .2) are satisfied)» 
That is to say, we ban obtain successively from (1 .1 ) ,  (1 .2)

8u

M2 =

8t
-WHO, ®, o, 0) /(0 , ®, 0, 0, 0), %-■§-t=0 . ot

1)2 —-

di?
8 * 1)

8u
8t

n = 9 ^ ,  0, 0; 0, .0) ,t=о ■ < /

- 2 «.(o, ®, 0, : )t=o. i=1 a * '

t=0 dt t=о
....................... , ;V; (2.3)

We require that they should be compatible up to p —1 degree with the boundary 
condition (1 .2) at { t—0 ,x £ 8 D } .

&We now introduce some notations. Let я , - . - я-?- G—h + ° +  ?»)> Fs==

$ x(Q , A), (A<!F)and SP be the s^-ordor Sobolev space as usual. We denote U s, L3, 
0 s, 0 ° norms by I 18, 1 jj, | |s, | | , respectively. Let

Щ вя {u(p, t) \u(a), t) €L fp(Fft), ||м||н»'й= 1^||н1>(г„)<+00}, (2.4)

and

*)К * ,А € Л } ,  - А - 6 Я !, ( i - 1 , . . . , »)} (2.5)

equipped with the norm : ,
8v 12\ ’2‘/  « /70) 3 \

■(.W*g -ST.)
I t  is easy to verify that F j +1)J is a Hilbert space.

Let
2 A ) - { ( « ,  «)l(<*, * ) € 0 - ( F , ) x 0 -(F » ), |« |Ц < Л , M h < B „ ,

(2.6)

. 1)

—1Г8oo ||нь и

=  0 i® .*=о ' 8t

W - i8v I2 -r> i' n 8u - g - |  < B ,, ж |(_о -«a , ш =T
t =0

— M2>-L

0s
,.o

(2.7)

where to , Дъ S i are the positive numbers to be specified later on. I t is easy to see 
that when Л), S 0, S i are sufficiently large and A is sufficiently small, the set 2  (A) is 
not empty.

Let 2 (A) be the closure of 2(A )in Щ *Я Ь$+i,P.It is a bonded convex subset of 
Щ *Н1+i,p. For (w, v) G 2  (A)we consider the following auxiliary linear problems

and

. ”,  , ,  \  8U
S ( ^  <у) 'я Г _=i= 0  OXi

*=0:17=0,
.on 8Q: M U —0,

• /(* /» , w, -r, <re)
(2.8)

if

le

)

)

a
n
le

!)

re
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(2.24), (2.25)for (2.26).

Fig. 1

Let

^  ЯРдаЯ*-~да£»-} ^  P o + -‘+ 2J«-i).dtVadx^---dcoi-x 
Aetting Dp on the both sides of (2.26), we have 

0 W

(2.27)

db - Ж  ж (щ Ь Э г)
(2.28)

According to the preceding differential expressions of composite function, we
have

where
v  (4?) -*»-£rлч+?" ̂  л + 0°'d<Di

and we have the estimate for G0
iG o K C + C ^ o ,  Д ) ,

where О is independent of A0> B0.
Similarly, we have

тчо n чл« 0DpMu | 8Dvv , /у Dpg = 2  g* ■ 8x »■;+ 2  gt

(2.28)

(2.30)

(2.31)

(2.32) 

0vwhere gд4 and gt are the partial derivatives of g with respect to and
C%i 0(0$

respectively, and
fl^ifl^O +C ^A ij Bo). (2.33)

Let Ур=*1РУ, (2.28) can be rewritten as
8V;

db
±  ' S  (Рим - —  D ^ + g ^  - J L  П ч )Ф .l 8a) i \  3 дщ /  i ff?» \  8(0i * 3 5 дан /

dV
dcoj

PUP-t-V
+S *  ̂ +? * С +01+§ В(%)

V  J?®iL\T)p-i (Ж Л
-m>t \ д щ )  \ д щ Г (2.34)

On the other hand, from (2.26), we obtain
r„U=o,
, Fs|f=O~Foj)(0), •

where Fop(^) is a given function and it can be derived completely from aih g, 
wP .and Vi) • • *, %  ' ■

I (2.35)
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As in the proof of Lemma 4, multiplying the both sides of (2.34) by V P and then 
integrating on Q+, for the left hand side we have

evP evP > 1 d
da>i дщ 2 dib•|| V P(t)  2hi evP

S=lll dXi 1 £«(«+) " 
(2.36)

For the all terms in  the right hand side

- L , 2<i hi*
В», Vp)_D 4u+ ^  1 )4 + 2  д^ Л .

dOOi 'r + & da>i i,S dxi

' + ? ^ |! р ^ Ф +1  -У  *
+ L  л Л ^ ^ ж - У ^ 1 - (2.37)

Integrating by parts, and then applying Lemmas 1,2  and the inequality 
a26 , b2
2 2s to make the estimates term by term, we arrive at

m  <а» (А , Bo) +  (F .IW + ftW o, Д.) IF IW , +0 S &ч '■ • • г=1 II ox{
2

-ьче+)

+ < 7 .|F |o ( |« IJ + |« K S . (2-88)
By the Schauder theory of parabolic equation and Lemma 1  we obtain for the 

solution V  of (2 .9) > )
■ \ V \ 2< G (A 0) B o) . (2.39)

Choose 8 =  -̂ - i n (2 .38), thus it follows from(2 .36)—(2.38) that

w  | r ' (4) i f f  L >  + |F * »
+ С  а (Ao, Во) I V  || як(е+). 1

Applying Gronwall inequality to (2.40), we obtain
(2 .4 0 )

i|FP(0 I IW )+ S<. . i=l
dVP
Bxi

« C | |F 02)I2+ O o(A o, В о) + O i ( A ,  B o)  \\V\\l (2 .4 1 )

Therefore
| Г ,1 * С 4 ( е + О о ( Л , Д О + О К А , B „ ) | F B ) ,

: s | ^ f f < S !+ o „ w („ д о + о д л ,  B0) I |F 1S.
(2 .4 2 )

Similarly, since V P~i satisfies

( - Шdt

we obtain
U V ii r < i ( 0 + C .( A ,  Bo) +Ol (Ao, Во) 1П 1-0 ,

{ On the other hand, since

(2.43)

(2.44)
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av.p-t m p-i
8x{ 8X1

= P - ~ V P-idt, =o Jo otdxi
we obtain 

Hence from (2.42)
П

s<=1

W ,p-i
dxi IU»(5+)

< 0 + h 8Vv II3
dXi

•^ = * • 1* < а(о + о0(л , в 0) + о 1 ( л ,  в» )||гц ;).

Similarly, we have the same estimates (2.44), (2.47) for FP-a- From 
0 F ,-»  ' t^V p-a

а т ~ ж ~at
„ 8FV,

«I» yог/Ф»

5 - 2  0 F 5 - 2  _  ~

# .  ^  'dp- 2

(2 АП }

(2.46)

(2.47)

(2.48)

and ann>/jb>0, we have

|<1 [
I f b l

&V+-* \ \ ^ l \ \ \ 8 V v-a
8x1 8 i + '2 W 1-9^1 +Sij*n orЗФп

dXidXj и
dai,
dxi т И + 1*~1 ].

(2.49)
Using the same teohnigue as in  (2.45), we have

Ioyfo *) |< K ( « ,  0) | + h‘0(Ao, B0) ,

*> H ^ f e ^ l + w -  ад .
; Д ( 0 + Л | ^ .

On the other hand, we can see from the expression of gP~2 that the highest order

(2.50)

lffp-2 ' ) •

of derivatives in  with respect to u, v, V  is not larger than p.

Hence

% 5 - 2
8t (2.51>

- ^ Н - | в < Л (О + О 0(Л», В о)+ О д ( Л ,  5 o ) ||F ||3) <

<О0(Л, So)+Pl(4o> -̂o) IIFlip.

From (2.49), (2.44), (2.50), we obtain

(2.52)

So far we have obtained the estimates of ̂ -order derivatives of F  which involve 
second order normal derivatives. Successively differentiating the both sides of (2.9), 
we can estimate the derivatives of F  step by step which involve the higher order 
normal derivatives.In fact, aetting DlnDv~2~l on the both sides of (2.9), we have

i+n 8X{8x:OTj+n

-  S  S  J5<(%)Hp- ,F = H ^ - a-ip. (2.53)
5 - 2 > t > l

By induction, from (2.68) we can get the estimates for Д Д Д 1'-2-1!2successively
(г- I ,  - , 5 - 2):

1 Д ,« В '-м Г |*< Л (< 7 + О о (Л , -В») + С М Л , B o )|F |J) .. (2.64>
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From (2.42), (2.47), (2.62), (2.64), we have
||Г |||<;Л(о0( л ,  а д + о ^ л ,  Д Ж 1?). (2.65)

1
Choosing 8о= -ктг7 х— when Д < 8 0 we have 

A U l v-4.0, В о )

|F « 2 < 2 A 0 o(4>, Д>). (2 .66)
Substituting (2.66) into (2.42), we obtain

Ro).<=l|| OXi II
(2.67)

By the same procedure as above for |F p||,we obtain

' 2  \ ~  * < c + & ( A ,  B o ) .<=l|| OXi P
(2 .68 )

I t  is easy to extend (2.24), (2.26) from local patch to the whole domain
О x (0, h) . Thus the proof is completed.

R em ark  1. I t  is easy to see from the proof of Theorem 1 that the constant G in

. If  they vanish, then G =0.
t=o

R em ark  2. I t is also easy to see from the above proof that if (2 .9) has the

(2,26) depends on 8V
dt f=0

&>V
8tp

following form

81 ф г  8%i \  * 8c0j 1  Ы  8х{ Ш 8^  tit 8xt 1 r  * * .
■ F|#=o=0, F |ao=0,

(2.69)
then (2.24), (2.25) tu rn  out to be

\ \1 < м м о + Ы 1 + \Ш ,  (2.60)

I < Ж 2(0 + ||w|p+||«||p), (2.61)
1 p

where the constants Mi, M 2 depend on the H 9 norms of aih bi} G0, A , B h F^, 
and О is a constant indicated in  Remark 1.

R em ark  3. As in  [1] our assertions are also valid for the following parabolic 
system

(2.62)

8V  |» _  j J  8V
dco ||p <=x I 8Xi

8 V
dt 8%i \  4 8х}

where F , g are the I-vector functions, (%) is an nUril symmetric matrix suoh that 
there exists p->0, V£i£: R 1 (&=1 , •••, n) .

2  Ы  tt, £ /)> я 2  I ft I*. (2.68)
i,j—l  i—1

Here we denote the inner product and the norm in  B x by( , )and | | respectively.

3. Existence and Uniqueness
We are now in a position to prove the existence and uniqueness of the solution
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for the problem (1 .1 ) , (1 .2) in which the boundary 8Q is noncharacteristie with 
respect to the first part of (1 .1 ).

We first choose the positive numbers’ A q, B 0 arbitrarily, then choose the positive 
number Bx such that

B x> 6 + O 4(A 0> B o). (3.1)
It follows from (2.18), (2.24)that there exists a positive number Si(J.0, B 0, Bx) 

such that when Л < 8х
,. П | 2<Д>.. (3.2)

Thus when A <8= m in  (80(А , Д>), 8i (A0, B0) Bx)), the linear auxiliary 
problem (2.8), (2.9) define a mapping T: (u, v) G 2  (^) -> (JJ, F ) G 2  W . Now what

m
we want to do is to extend T  from 2 (^ )  to 2 ( ^ ) .

For any (u, v) G 2  (h) there exists a sequence (w„, -rn) G 2  W  such that щ щ

ff-p+i, p*>»■ -' - ■*» v. Let (Un, V n) = T(un, %), fj  = Un-TJm, F = F n- F ffl, then V, V  satisfy
n g f j

2  X, Un, Vn) -Д— = / (*, X,'Un, % , « О  - / ( # ,  9, Um, Vm, VmJ)i-Q Gwi
I . n

-  2  X, Un, Vn) ~ « i  (#, X, um, 0И) ]f—0
dUr,
dXi

(3.3)

and
r

M V  |#=o=■o, GJ, IF о II о
-

^  a
dXi -(««(*,

\
^  Bx, , = 90, X , Un, X n, UnX) V nJ)

(t, x, um, хт> итя, Vmx)  + 2  [%(*, X , u n, Vn) - a i3-(t, X, um, vm)]

,Г 8au(t, x, «Н, Vn) dai}(t, x, um, Vm) 1 dVm
JL dXi ■ ̂ 8х} J" dXj ’

BY™  :■
dtoidooj (3 .4 )

■ V U = o , F | f=0=o,
respectively. Moreover

aV
Ы t=0

QV-lft

a p ~ x - о Ж*=о ’ at
0Р-1У

t - 0
— 0.

t =0
(3.6)

By the first two remarks in the preceding section, we have

1V I p-x=  \\Un- U m\\ l-x  < O h (  1 Un-Um  I J_ j, +  II Vn -  Vm || 2p-x  + д(Уп-Ут) Iя 
dx W o ,p-il

■ ( 8 -e )

A S  . - s | - a (^ 7 z “}T  < i f . ( k - « i . i i ^ + K - « . i w - » o ,  (3.7)CX II p-1 4=1 II С0й% li p-1

. i r « ^ 1 = | |F „ - F m|||-i<iIfi^(!w n-w mfl^1 + |h n- ^ | ] 2p_1)-^ 0. - .(8 .8)
This means that ([U„, F„) converges in Я И Х Й „ , We call (JJ, F )the limit 

funotion. Since (Un, V n) G 2  W , Banach-Saks theorem implies (17, F ) G Н рх Н р+х,р 
and (JJ, V ) G2 (h) . Thus for any (u, d) G 2 (h)the solution (JJ, F )of (2 .8) , (2.9) 
is in 2(7i).
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Theorem 2. Under the assumptions (i)— (iy) in the second section there exists a 
sufficiently small rmmber h~> 0 such that the problem (1 .1 ) , (1 .2) has a unique solution 
(u, v ) £ H \ x I I nIJ+1<pcz01>~mxO p~m*1'f~min Vn= Q x  (0, h). Moreover, the uniqueness in 
О1 x 0 s'1 still holds.

Proof We have seen from above that the operator T maps ’SKh) into itself. 
Moreover, for any (u1} vf), (u2, v2) 62 (A ), let (Ui, V f) == T (щ, vf), (Us, V 2) = T  
(m2, v2), we have

IU2—Ut\\ 1^2— |['i>a—^i | p- i+

I F . - 7 1 « i- i< if 1/ i(K -M i||S -i+ l* a- » 1 |? -0 J

d (v 2~ V i)  2 
8x : л

Э(У2-Г г У
дх p-i <  M 2 ( I м2 -  щ. I jU 4- II v2~  Vx Ii_i),

We now introduce new equivalent norm in U p_ i X a s  follows:
1 !| - dv(u, v) Я „ .1ХНр(Р-1== M |j > - 1  +  Ц ф Ц р ^  +  Д  - дх p-i

Thus

+ h4 1 Щ = 1 А
дх <idh( || u2 — % (I p-i+1V2+ Vi 12_i+1 — ■p-i \  II dx

(8.9)

(3.10)

(3.11)

(3.12)

‘ )
P -1  /

+ M 1h (\\u i-u 1}\2p-1+ 1v%—v-x|||_i) + M 2h* (1m2-Mi ||^_i +  i«2-«ifl5-i)

< 0 Л ^||м 2-г^. || ^_i+ I ^ - ^ i Ip- i +Zj2 dCv-z— vf)
dx ’ )p-i /

-0A*fl(«a, v2) — (mi, ^i) flh„_iхя,,м . (3.13)
This implies that when h is sufficiently small, Г  is a contractive operator in 

Я ?-1 Х Я р,р- 1 . As a consequence of the fixed point theorem in [4], T  has a fixed point 
in  2  (h) • If is also easy to give a direct proof. In  fact, starting from any element 
(mo, v0) in 2 (Я), the sequence defined by

(un, d„) =27(m„_i , ^ - i) (n = l, •••) (3.14)

must converge in Я ^ х Я р , , , . !  as indicated before. This means that T  has a fixed 
point (m, v) €  -Hp-i X Hp,p-i, by Banach-Saks theorem, which is also in 2(A ). By the 
imbedding theorem, (m, v) €  Op~m x o v~mt 1,p~m. This completes the proof of existence.

The uniqueness even holds in  0 1 x 0 3,1. In  fact, if (%, v2) and (щ, vf) are the 
solutions, then letting U=u2—Ui, V = v 2 — v1, we have from (1 . 1 )

S « i(A  ®, u2, v2) J ^ - = / ( * ,  u2) v2, v2r)  - f ( t ,  X, Mi, «i, vu)
i—0

— 2  lai(t, СО, Щ, V2) - Chit, X, Ml, 'Ti)]-—
i=0 uXi

+ 2 F * # - -  2  W J + K V )  &Uli dX{ <=o

= F UU + FvV

dxt 3
(3.15)
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wherein, F v, eto. can be experessed as integrals in virtue of mean value theorem, 

«• g-,

Fv==\ o l h ^ ’ a* + ««■)*. (3.16)

(3.15)can also be rewritten as follows

2  <* M-+KU~eV +S F Vt<5o oooi Ш d%t
with the initial boundary conditions

М Т 1\эа= 0, U |f= o ~ 0 ,

where

— U) ^ -  v —-v* л o«=0 CODi
Thus from(3.17) (3.18)we have

1|!7Г<;су<( | r i » + g | - ^ - | s) .

Similarly, for V  we have

8 V  n d /  d V  \
~m—  x> щ> q)̂ ~ a ^ ' ) = 9 ^ 3 a ' щ ’ V2’ Щх> Va^

- g { t ,  CD, U x, V , U u ,  V u )  +  2  ( « « ( * ,  ® , 1* 2,  V a ) - O y ( t ,  CD, Ux, D i ) )
i , i  L

\ OCDi OCDf,

which can also be rewritten as follows: 

8V

(3.17)

(3.18)

(3.19)

(3.20)

8Ч±
doDidoDj

8t 2 i ~n ( ~з ) "b 2j о t, j=i ca?i \ дсол /  «=1

. ) \ ^ l ]
/  dx, F

(3.21)

dY  +O0V -D U + '% E idCDi 4=1
80
dooi

(3.22)

|t=o—0. (3.23)
with the initial boundary conditions

It is easy to see that using the same technique as in  Theorem 1, we have the 
following estimates

цгрсодер,

4=1

8V
8 CDi

< C 3 |jt7 |P

I t follows from (3.20), (3.24), (3.25) that

8Vi?7i3<ô (iiFiia+g-g-|| )<om\\
This implies that when h is sufficiently small, we have

I I E T - 0

and from (3.24)
| F | f - 0 .

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
This completes the proof.
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4. Characteristic Boundary Case
In  this section we deal with the problem (1.1), (1.2) in which the boundary 80 

is characteristic with respeot to the first part of (1.1). In  this case we preserve the 
assumptions (i) and (ii) made in  the second section, but we need to revise the 
assumptions (iii) and (iv) as follows.

(iii)' Let
П

/3(i, <o, и, x , v) nk (4.1)
. i = 1

where n{ are the components of unit exterior normal to dO. Assume that for any 
smooth functions (u, v) which satisfy (1.2) M U \sq=0 is the admissible boundary 
condition in  the Friedrichs’ sense. Moreover, there exists a smooth matrix function 
R (t, a;) in  the neighbourhood of 80 X [0, K] such that

&(?, a>)lS(<, e, u, <v)R(t, ^ J .  (4.2)

The rank of B± is a constant r  near 80 x  [0, K] and | aO=0(zero subm atrix). 
Furthermore, h j t f —RU  the boundary condition (1.2) is transformed into

••• — tjjj—0 ( L ^ t) , (4.3)

(iv)' Let m =  + 1 , P be the integers with p > 8m + 8. For simplicity,

щ, ok, f ,  g, M  £  0°° and the compatibility conditions up to p —1  degree are satisfied.
Under the assumptions (i), (ii), (iii)', (iv )'w e are going to prove the existence 

and uniqueness of looal solution for (1 .1 ), (1 .2).
We now introduce some notations. Let Vh= O x  (0, h), and {Д .} ( u = 0, ••*, M0), 

п d
D0= I, D<r— 2  da ■ - -(сгФО) (refer to [8] ) be the smooth tagential derivative

i - 0  OCGi

operator systems with respect to <?£?Х [0, А] . As in [1 1 ] , we denote the p - order 
generalized derivatives of и by Щи which involve д'-order normal derivatives.

Let

3}Bl=\u(%, t) ■ ( s  2  11ДV I.P s<p~d
u l2' < 4 - o o |

and
h V S*Z,p—

8v

(4.4)

8xi
€ B K®“ 1, n )}

equipped with the norm

Н в » „ * и ,( |Н 1 & +

It is easy to verify that bot h B %p and are Hilbert sprees. Let

0ИгУ -(|Н ^+2 8”V  \  . ■ i=i8 x  llsfe/

lII 2 \ S'

dak js&У

(4.5)

(4 6)
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2?“ {(«, « ) |(« , « )€ C ^ (F 0 xC r(F»), |Н % < Л , 1М1% <Д ъ

^  II2 «-D »,l A & lu ж  <Д1( «ll-0-О, -as=r « It=o= o, •••,' Гггч
1 vp -lt

4=0 ................... ' 8tp 1 4=0

. ^ N * > -0 , v \SB= 0 1 (4.7)

and h'a be the closure of 2% which is not empty when h is appropriately small (refer
to p i ) .

From now on we will denote the universal constant by & which depends on 
Ao} Bo.

Since B'p forms a Banach algebra when p > 8m + 8  (refer to [11]), we have the 
following Lemmas, which are similar to Lemmas 1 , 2 in  the section 2 .

Lem m a 5. Suppose (u, v) £  2 hc, V s< ^—m —1 , — m—1 , we ham
Л

■ f \p № (n , 0  I < 0 ,

1 |Z35«(®, 0  l< < ? .
From the following expression, similar to (2.10)

J^a{t, со, u, v )= D sqa°+Dl,ie,t ( a -a 0) + '^ lau(Dsqlui+avI)sq/o+Gft
i

we have

(4.8)

(4.9)

Lem m a 6. For s < p -8 ,  q<,8, 0< § < ^ - ,

.< m < v ,  (4.Ю).
J № ( £ ,  и , « ) | < 0 .

In  order to prove the existence of the solution for the problem (1.1), (1.2) we 
form again the linear auxiliary problem as follows:

and

П QTJ
gttiC f, <B,U, v ) — .~ f ( t ,  в>, Щ v, ve) 

• U I f=0 =  0, MU | gQ— 0,
(4.11)

{Чт~ *’ v)W )~ 9(f’ *' *- *■'
I k Im - o, Г | „ о - 0 .

(4.12)

In  what follows we will establish some a priori estimates of solutions U, F  for 
(«, u) €  Sg, respectively.

F or(4.10) we have
Lem ma 7. For (u, v)£2% the problem (2 .1 1 ) has a unique solution U 6 Bhp* 

Moreover
ll^ll%î ^ i^ ( ^ + l / f l 2̂ )î ^ i^ (^ ,+ ^ a + C ,3-Si), (4.13)

where C is a constant independent o f A0j B0j B%.
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Proof Since (u,v) £  3%, the problem. (4.11) satisfies the compatibility conditions 
up to p —1  degree at {f =  0, ®£Й0}-.

Therefore, by the results in  [4], the problem (4.11) has a unique solution 
U £ Bhp. Moreover,

IVIISi « A k c |+ I / | 1s) .
In  virtue of Lemma 6 we have (4.13). This completes the proof. Now we establish 
the a priori estimates of solution V  for (4.12).

As shown in  the seotion 2, by localization it suffices to discuss the problem in a 
half cube of Mn. So in  what follows we oonsider the problem in the half cube 
Q+ =  {— l O i < l ,  0<a?„<l, ‘4—1, •••, n ~  1}.

The support of V  is in  the shade area (see Fig. 1 ) and the boundary condition is 
converted to

Lemma 8.
On 0„=O: F = 0.

For the solution V  o f (4,12)we have .
\г,\*<нф,+а,\г\а>,

s
4=1

evf \
dxi I « s o i i F j w r + e ^ + ^ i r i i s .

(4.14)

(4.16)

Proof By the assumptions and the well known results for parabolic equations 
(refer to [10 , 13]), the problem (4.12) has a unique solution F £ i ? p,sL F p£ О 
([О, К], L3(Q)), where

* “ 4 r l 2 h + t , < b } .

&Aotting —  on the both sides of (4.12), we get
6 дЬид х \ — М £ -\

aw  a a / aw
d t i,i^ i da>i ' aii

( 2  JY-+ s\  dx, /  p>i»i dXidXj ры>1 dXi
d V

'iv(Dj p > l> l3 ij dXj

(4.16)
with the homogeneous boundary conditions for DPV  and .

W | , e0- F ep(»), (4.17)
where Fop(®) are the given functions and can be expressed by«>1,

As in  the section 2, multipyling the both sides, by F ? and then integrating on 
F f= Q+ X (0, i ) , we obtain

• |  i r .W  1*+/» |F „ ! 4 -

+ 1 Г  f S  Va„D’-‘ - f L -  r .d xd l
\)e jQ t p>i>i д х{ох.

о J<2+
DvgV pdx dt

+ f f  2 jy, d V
q+p>i> i  d x i Эх,

V p dx dt

Similarly, we have

f f  Щ У рJOjQ+
dxdt <^+|r,f + f  § 0 F .I *

8xt

(4.18)

(4.19)
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By induction it is not difficult to prove th a t(4.42)and (4.44) hold for l<Z <-fr
A

We omit the details. 
Thus we have

± I - l? - 1!. < c a + m h + e ^  ±  1 87

(4.45)

Щ  dan h* ^  вл* ‘ II дан IV  (4‘46)
These imply that there exists a positive number Si (А , B0) such that when 

&<Si(Ao, B0) , (4.40), (4.41) hold. Thus the proof is completed.
R em ark  4. We have the same conclusions as indicated in Remarks 1—3. The 

only thing we have to do is to change the notaton of norm from H p into Bp.
In  what follows we use the a priori estimates obtained before to prove the 

existence and uniqueness of local smooth solution for (1.1), (1 .2). To this end, we 
go along the same line as in  the section 3.

For any fixed positive numbers A0) B0, we choose the positive number B% 
sufficiently large such that in  (4.41)

C2< B i. (4.47)
(4.13) and (4.40) imply that there exists'a positive number S2(A , B0, B i)< 8i 

(A0, B0) such that when Д <82,
n II ОТГ 112

(4.48)117 |2 .< л , ||Г 1! .< в . ,  ± 1 4 ^ 1 ’ < b 1.SSI d%t lUj

Thus the operator T: (u, w)—>(JJ, F )is a nonlinear mapping from hh0 into "Щ.
As in the seotion 3 if we introduce the new equivalent norm in  Bp_2xBp_llP_2

1 П
V) II V .*% llP.a=  (M3&-.+ M S *J +A7 23

dv (4.49)
2=1 II I Hfe-a

then T  is a contractive operator with respect to the new norm.
Applying the theorem in [4] or repeating the detailed discussion indicated in the 

third section, we arrive at
Theorem  4. Under the assumptions (i), (ii), (in ) ' , (iv)' there exists a positive 

number 8 such that when /»<S, the problem (1.1) (1.2) admitsa unique solution

(u, v) G BpXBp+i.pdO^ ™хОг Moreover, the miqueness is still valid in
0 1x C 2,1.

5. Applications
Since the hyperbolio-parabolic coupled system arise in many physiscal and 

mechanical problems, our preceding results have wide applications. In  this seotion 
we briefly describe the applications to the radiation hydrodynamic problem and the 
compressible viscous hydrodynamic problem with solid wall boundary which one



usually meets in  practice.
(I) Radiation hydrodynamic problem with solid wall boundary.
As was pointed out in  [2] , the radiation hydrodynamic equations can be written 

as follows:
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0

( j 3 +

R

\ - ( b

Ifcr rpA  Pa 
3pO 1 ) RT

(

8T 
Bx

\ pa 8T 
BpO 1 J E T  By 
16cr mn\  pa 8T
BpO -273) RT Bz

(
Rp 16cr 

y —1 G )

<M>

_  |  I (

a r  g /  i6oA y3+a g r  a / i6crA r8+e-gr  \
8t Bx V 3 Bx /  8 y \ В By /

ВТ \  , ( Rp , 16cr

+  ( PB I ’+ ^ T ‘ ) (
8 uj

y .

8v

-1 О

. gw

„ a r  , g rw —-— + «
gee %

-IV

By
ВТ
Bz

BO * } \B x  ' By 
with the in itial boundary conditions

Bz •)-o. (6 .2)

’ on 8Q: т ! + « з + Ш з = 0 /  T= Tx(x, t)> 0J
J= 0 : p=p0(x)> 0, T = T 0(x) > 0, и= щ (х), v=v0(x), w=w0(x). (6.3)

where (w, d, w) is the velocity vector, n1} w2, w3 are the components of unit exterior 
normal to 8Q, p is the density, T  is the absolute temperature, a, A, y, a, R  are the 
positive constants, and О is the light speed.

It is easy to see that (6 .1)is a quasilnear symmetric hyperbolic system for 
{p, u, v, w) and (6 .2) is a quasilinear second order parabolic equation for T.

From (6 .1) we get




