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Abstract

- Some generalizations of the classical Mean Values and their inequalities are presented in
this paper, vsing B-spline functions. The new generalized Means can be applied fo nonlinear
difference schemes for solving O. D. E: and P. D. B. with singularities ([6, 7, 8]).

- § 1. Generalized Mean Values S(r, t; a)

For an arbitrary finite and positive sequence :

. (Cl) = (aii @3, °*°, (Z”,) - (1>
and a positive power sequence- . ' :
| ()= B0 2 20, o=

the Mean Value of order r of (¢) with the power (p) M (r @, p) is defined in [1] as

M,=M(r; a, p) =<; Pﬂf) o 2
and there are some main results as follows (I3, 2])
1° m<M(fr @, p) <M

holds for all real number r, where

m= 1mm (a5), M= mjax (a,)
<

2° lim M (r; @, p) =m, lim M (r; a, p) =M, lim M(r; a, p) =G’rsﬁa§’,
13400 - 700 =1

¥'—3—00

8° a(‘z,,r M (r; a, p)>0, where tho equality holds if and only if m= A,

In this paper we gene:alize the above concept of Mean Values.
For simplicity, let p;= _1_( j=1, 2, =+, m).

Definition 1. A positive number S,y @s called the f-th Means of order r(r+0) of
(@) if for any natural number k '

,,k=S(T, 7‘7; (Z)_ {%%%hzeaﬁah}wl | o (3)

where the summation set §, € o means
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I o< <o
In particular, for k=1 we have S,,;=M,.
In order to extend the concept of the Meang further, we apply the divided
difference in numerical analysis as a main tool.

- The divided difference of order n—1 of a function f at the points @, -

o, @, is
denoted by [@i, -, @,]f and defined as
(n—1,
(n 1) 1 f )(ai): if Q1= =Qy, .
[ai’ " a”]f— - 1“70 ([ai; sty Ap-iy Qpid, an]f V (4)
: - [aii *ty G-ty A, 00 @;Jf), ifaf%aku
Lemma 1. If & is a natural nwmber, then
[alj ...} a n—1+k 2 I-_[ ajl (5>

Ju€o ¢=1
Thus, we may further extend the concept of the Means as follow.
Deﬁmtlon 2. 8(r, t) is the Means of order (r, t) with two parameters of (a) if
Jor all poinis in the plane (r, t) 8(r, t) 4s defined by )
S(r, =80, ) ={C=PEED 1gr o ag”, @)
ewcept for r=0or t=—k(k=0, 1, ‘---, n) , where 8(r, t) 4s additionally defined by their
lzmzt values as follows '

1

800, £) =lim §(r, £) ~G= f[a,"
S, —n) E}lr_n S(r, t) =@,

13 — .1. T e 1 -1 ; —"————r':b——
S(r, 0) __.13._1)%1 S(r, t) exp{,r [a1,‘ +5 @) (" logy) T =2) 1 }:

1

s(r, —H)=lim 8(r, 1) ={ LD, e, al @ Togw)} 7

‘ (k=1, 2, -+, n—1), (7

It is ihteresting that in the whole plane (r, £) the generdlized Means on the two
lines =0 and $= —n both equal to the geometric Means and  vice versa. Therefore,
the two lines of r=0 and t=—n play a role ag “coordinate axes” in the parameter
plane (r, t) of the generalized Means. There exists a olose connection betwesn this
fact and some inequalities about the generdlized Means. :

« First, we show that §(r, ¢) defined in Definition 2 is really a Mean Value.

Theorem 1. For any real pair (r, t), S(r, t) given in Definition 2 satisfies the.
following inequality :

m<8(r, <M, - (8)
where the equality holds if and only if m=M. ' - '
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Proof ‘First we assume r+#0, t#—k(%k=0, 1, ---, n). Based on the well-known
Peano Theorem on an error estimation of linear operators in approximation theory,
it is not difficult to obtain the following

Lemma 2. For r+#0, t# —k(k=0, 1, «, n) and

a(r) =min(a}), b(r) =max(a}),
1l€j<n 1<j<n
there ewists an identity

- LG
@oDELCED [, oy aQos = [ oMo ai, o, adde, ()
where M, (z; aj, «, a,’,)"is the (n—1)—th B-spline at the knots a1, -+, az.
Applying the two main properties of B-spline '
=0, if € b
10 Mn_l(w; G’{, e, a;;){ s 1 wE [a(’l'), (’I'):],
>0, if o€ (a(r), 8(r)),

b(r)
2° L()Mn_l(m; a{, ser, a,’;)olm=1,
a(r

the identity (8) can be directly obtained from (9). Hence, the proof of Theorem 1 is
completed.
Theorem 2. As a function with two real variables (4, t) S (r, £) s continuous in
the whole plane, Iomludmg the infinite point, ewcept the following four points
(0, +00), (0, ~00), (+o0, 1=n), (~oo, 1—n),
And the values of S(r, t)at the infinite is additionally defined by the following

limit values:

M, if r>0 and t>1—n,
m, if r<0and t>1—n,

im S(r, ¢)= _1 gancl
lr1=see *, ) (@5, @) Td:jl,.+ b, r>0and t<1—n,

n—~1

P e
(ay,a,) %a,," T, r<0and t<l—n,

where a;>a;,>:->a;, and

M, if r>0,
10
{ m, if ri<0, (10)

Besides, on some special directions the limit values at the above four discontinuous

Bm 8 (r, t) =

1£]-~900

infinite points are
lim lim §(r, t) =M, hmth(fr, t) =m;

=504 t~rfo0 30— Eyefeoo
lim Yim S(r, t) =m, ]Jlonthm;S’(a~ t) =M,
r=>0 L300 13 (s E=r—o0
1

lim lim S(r, ?) = M 11m lim S(r, t)= (% ‘@, )™,
rertoo t4n->14 0o Fpn—ol—

1
lim lm S(r, £)=m, hm lnn S(r, t) = (as, gy ) T, v (11).

gor=oo Pfn—-14

The detailed proof is omitted.
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. l &
m M
— H o4 Ao
L - ~ " Notations: -
«® . R ' © g m~—Minimum Value
| s ' ‘ ' M—Maximum Value
-t A—~—Arithmetic Means
‘ G—(eometric Means
G . = H—Harmonic Means
= ]
< . G_ <
M <0 m

Tig. The generalized Means and their directions of inequalities on (r, t) plane.

'§ 2. Inequalities for generalized Mean Values

In this section we extend some inequalities of the classical Means to the genera-

lized Means. ‘
As a first step, we consider % to be a natural number in §,z.

1
Denote Spo=1{Ps,u} %,
where : ) :
okt (n—=1)1 2 .
Por= Gryn1y 12 L e | (12)

Since log S,,ké;l}— log P,,;, differentiating the both sides with respect to » we

obtain

kP d El(n—1)1 B
s 8 5, BOD 5 (11 ar) (o] )
kY (n--1)1 } {k!(fn—l)! ,.,}
{(704-%— )'j;zeogi“" log (k+n—1)!jyzéa,1;11““’ :

Using the convexity of function f (v) —w log «(i. e. f”>0), let
A,y = H a]u ahk -PTJk)

then | _
S (ark) =f (ark) . V ; (13)

'Therefore, it leads 1o the following theorem.
Theorem 8. For any natural number &
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2 8420, (14)

where the equality holds if and only ¢f m=2M.
Proof We only need to. point out that in our case

P - BADL s (1) (o).

. hence, from (18), the inequality (14) follows.

If the equality holds in (14), it implies that the equality also holds in (13).
Hence, the sufficient and neceséary condition is all &} to be the same. Q. E. D.

Fixing s, for different k&, there is another inequality.

Theorem 4. For k=1, 2, - '

- Saflsunley @

where the equality holds if and only if m=M.,

Remark. If r=0, then So,;=G, henoe, this case is an exception.

Proof Applying Lemmas 1, 2 described in section 1, (12) may be expressed

by

() ' \
Py= ,f b (t) Moy al, «, a)de. (16)
ar

Let M (¢) =M, y(a; af, -+, ;). Using Holder inequality, we have
Pu- | mk{M(m)}m M @)}

k 1
®
<{j [o*(M (o)) Por] da;} s { j i M(w)dw} <Py} BT )
a(y
because of the non-negativity and the normahzatlon properh_es of B-splines. H_ence'

PE<PEE,. @
‘According to the condition with which the equality holds in Holder inequality, it
follows that the sufficient and necessary condition with which the equality in (17)
holds is m=M. Using the definition in (12), we complete the proof of Theorem 4.

Now we extend the above two theorems to the more generalized Means defined in
Definition 2.

. Theorem & (t-direction_inéquality of the generalized Means).
o (=0if r>0, S
—8(r, ¢ { 18
. ot (r, 9 <0 if <0, ' (18)
where the equality holds if and only 4f m=M. |

Proof Let

where

S@r, =@, N7 a9y
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P(r, £) = j o M (2) do. (20)
Hence

o’tSIZOE'Pt)t) gt 8, =t 4 P(a~ t)=P(r, #)log P(r,?). 1)

Set x=P(r, t), f () =w log o, then _
f(@)=a log m=r: (a*log o) M (w) dw=1 -éa? p(r, )

and ' f(@)=P(r, t)log P(r, t).

Due to the convexity of f(#), f(@) =7 (%), henoce, the right hand side of (21) is
non-negative. If {0, a sufficient and necessary condition under which the left hand
side of (21) equals to zero is that the upper limit and the lower limit of the integral
(20) are the same, i. e, m=2M. If {=0, we may obtain the same conclusion by a limit

prooess. In fact, from (20)—(21), by using ’Hospitale rule twice, as ¢ tends to zero,
a straightforward computation yields :
rP a8 _ .. {a’P _(oP ’}>
| 13_'33 FE AN +(-5t—>v >0
because 1:‘1%1’(4", ) =1 and

0)
lim 321: J (log 2)* M () dw=>0.
t50 O a(r
Q. E.D
Theorem 6 (fr-dlrectlon inequality of the generalized Means)
=0 if t+n>0
—— S(r, ¢ { (22
6fr' (r, 9 <0 if t+n<0, @2)

where thé equality holds if and only ¢f m=M,

Remark. If {=—n, then S(»r, —n)=@.

Proof For simplicity, here we.only give a proof in the case of n=2 in detail,
From Definition 2, we denote

S=8(r, t) {P(r, t)}"

awz”(1+t) — ar(1+t)

where | P= P(r 1) =— 1+t pr .
Henoe '
Lt S ~r-2 3 P—PlogP, (23)
8 or
but _ ‘
' a'—%ll—(l+t) —rPlogS(r, 0), (24)

Therefore, on one hand, (28) may be written as

Pr* a8 _ 144 (, P _
N o E (t—;;t— P log P>+——- (log §—10g8(r, 0)). (25)

From (18), (20), there are two 1nequa11ties
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¢ -%g-—-PlogP>O and r¢(log S —1log S(r, 0)) =0,

and both equahtms hold if and only if m=M. Hence, in partlcular we get the
conclusion : :

_ _______3‘9% =0 if t>—1 ' | (26)

With the ‘equahty holdmg if and only if m=4.

‘ Strlctly, we proved (26) with an assumptlon t#0. For =0, we need a limit
prooedure ‘

On another hand, (28) may also be written as

Pr* 98 _ 2+ (, 0P _ P | -1
O T (t = 1\'—’_10gP>+-———— logS log S(r, 0) 5
Similar to the above analysis, we obtain
o8(r, §) g; D) <0 if t<—2, @7

. Now the left interval is —2<t< —1. We introduce a concept of “conjugate points”

on the (r, ¢) plane, A real pair (r* t*) ig called the conjugate point of another real

pair (r, t), if there exist the following two relationships
@A+t L+£) =1,

28
tr = — ', (28)
It is easy to verify that
S(r, ) =8, ). (29)
Hence
o8 (r, t)_ a8(*, ") (_ ¢t
a 2 (1), (30)

o8 (v

For —2<t<~1, t*<—2, From (27), we have __.___f_)_<0 But in this cage

- t—i—<0, Hence, finally we get the requiréd result

Qg%ﬂ;o if —2<t<—1, (81)

_ Both inequalities of (27) and (81) hold if and only if m=M. Combining (26),
(27) and (81) leads to the conclusion (22) in the case of n=2. |
For the cases of a general natural number n, the main idea of the proof is similar
to the above. The derivation is a little bit complicated. We omitt the details.
Theorem 5 and Theorem 6 are two main inequalities. Some other inequalifies
about the classical Means may also be extended to the above generalized Means.
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