Chin. Ann. of Math. 4B (4) 1983

A THEOREM ON THE CONTINUITIES OF STOCHASTIC PROCESSES

LIANG WENQI (梁文祺)

(Jinan University)

Abstract

If a stochastic process X_t is continuous in probability, then the points of discontinuity in *r*-th mean constitute a set of 1st category.

Suppose $\{\Omega, F, P\}$ is a probability space, and $\{X_t, t \in T\}$ a stochastic process on it. When T is an interval, we can define various continuities of X_t , such as continuity in probability, a. s. continuity, continuity in r-th mean, a. s. sample continuity etc.

There are many well-kown relations among these continuities. For instance, a classical result of Kolmogorov asserts as follows. If X_t is separable, and there exists r>0, s>0, such that

$$E|X_{t+\Delta t} - X_t|^s = O(|\Delta t|^{1+\varepsilon})$$

then X_t is a. s. sample continuous.

Here separability is important. Without this restriction, it is easy to construct a simple example such that for all t, ω , $X_{t'}(\omega)$ has no limit as $t' \rightarrow t$.

Nevertheless, on the contrary, starting from a. s. sample continuity, or merely from continuity in probability, we can arrive at a certain conclusion provided that the r-th mean exists.

Theorem. Suppose $\{X_t, t \in [a, b]\}$ is continuous in probability on [a, b], and $E|X_t|^r < \infty$, then the points of discontinuity in r-th mean constitute a set of 1st category, and the points of continuity in r-th mean constitute a set of 2nd category.

For a proof of this theerem, we need only to establish the following lemma.

Lemma. Under the conditions of the theorem, the set

$$D_{\varepsilon} = \{t: \limsup_{t' \to t} E \mid X_{t'} - X_t \mid t > \varepsilon\}$$

is nowhere dense on [a, b], where ε is an arbitrary positive number.

Proof Assuming the conclusion is not true, D_s must be dense in some nondege-

nerate interval J_0 . By definition of D_s and so called O_r -inequality $E |X_{t'} - X_t|^r \leqslant O_r E |X_{t'}|^r + C_r E |X_t|^r$,

Manuscipt received November 16, 1981.

where

$$C_r = \begin{cases} 1, & \text{for } 0 < r \leq 1, \\ 2^{r-1}, & \text{for } r > 1, \end{cases}$$

We can deduce that J_0 contains an interior point t_0 such that

. 4

$$E |X_{t_0}|^r > \frac{\varepsilon_0}{2O_r} = \delta_{\circ}$$

$$X_t^{(n)} = \begin{cases} X_t, \text{ for } |X_t| \leq n, \\ n, \text{ for } X_t > n, \\ -n, \text{ for } X_t < -n_{\circ} \end{cases}$$

Put

Choose a sufficient large n such that

 $E[X_{t_0}^{(n)}]$

Let $t \rightarrow t_0$, we have

$$X_{t}^{(n)} \xrightarrow{P} X_{t_{0}}^{(n)},$$

Consequently, according to Lebesgue's bounded convergence theorem

$$E|X_t^{(n)}| \xrightarrow{r} E|X_{t_0}^{(n)}| \xrightarrow{r} \delta.$$

Thus, we can find a closed interval $J_1 \subset J_0$, such that J_1 includes t_0 as an interior point and for all $t \in J_1$ we have

a fortiori

$$E |X_t^{out}|^r > \delta,$$
$$E |X_t|^r > \delta$$

Now, let's assume that we have taken a nest of k nondegenerate closed intervals $J_1 \supset J_2 \supset \cdots \supset J_k,$

such that for all $t \in J_j$, $j=1, 2, \dots, k$, we have

Let
$$\tau \in D_s$$
 be an interior point of J_r and J_r be the indicator of the set

 $E|X_{\star}|^{r} > i\delta$

$$A_t = \{ \omega_: |X_t - X_\tau| < 1 \}.$$

 $I_t X_t \xrightarrow{P} X_{\tau_o}$

Then, as $t \rightarrow \tau$, we have

Choose a sufficiently large n such that

$$\int_{B} |X_{\tau}|^{r} dp > k \delta,$$

where

 $B = \{\omega \colon |X_{\tau}| < n\}_{\circ}$

By Lebesgue's bounded convergence theorem, as $t \rightarrow \tau$, we have

$$\int_{B} |I_{t}X_{t} - X_{\tau}|^{r} dP \to 0, \qquad (3)$$

therefore

$$\int_{B} |I_{t}X_{t}|^{r} dP \to \int_{B} |X_{\tau}|^{r} dP > k\delta.$$
(4)

From (3) we can deduce that as $t \rightarrow \tau$

$$\int_{A_t \cap B} |X_t - X_\tau|^r dP \to 0, \qquad (5)$$

(1)

(2)

No. 4

and

$$\int_{B-A_t} |X_{\tau}|^r dP \to 0.$$
(6)

For $\tau \in D_s$, (5) implies that there exist interior points τ_j of J_k such that $\tau_j \rightarrow \tau$ and

 $\int_{\mathcal{Q}-(A\tau_i \cap B)} |X_{\tau_j} - X_{\tau}|^r dP > s_{\circ}$

Thus, at least one of the following two inequalities

$$\int_{\mathcal{Q}-(A\tau_{j}\cap B)} |X_{\tau_{j}}|^{r} dP > \delta, \tag{7}$$

$$\int_{\mathcal{Q}-(A\tau_{j}\cap B)} |X_{\tau}|^{r} dP > \delta \tag{8}$$

is valid.

If there are infinitely many j which make (7) valid, then from (4) we can deduce that there exists a j such that

$$\int_{A\tau_j\cap B} |X_{\tau_j}|^r \, dP > k\delta_{\bullet}$$

Adding this inequality to (7), we obtain

$$E|X_{\tau_i}|^r > (k+1)\delta \tag{9}$$

If there are at most finitely many j which make (7) valid, then from some j on, (8) is always valid. Hence, combining (8) with (6), it gives

$$\int_{\mathcal{Q}-B} |X_{\tau}|^{r} dP \geq \delta_{\bullet}$$

Adding this inequality to (2), we obtain

 $E|X_{\tau}|^{r}>(k+1)\delta$.

(9) and (10) show that there must be an interior point t_k of J_k , such that (11)

$$E|X_{t_k}| > (k+1)\delta.$$

In a similar way as in the primary deduction of the existence of J_1 from $E|X_t|^r > \delta$, we can deduce from (11) that there exists a nondegenerate closed interval $J_{k+1} \subset J_k$, such that for all $t \in J_{k+1}$, we have

$$E|X_t|^r > (k+1)\delta$$

Hence we have inductively proved that there exists a nest of nondegenerate closed intervals $J_1 \supset J_2 \supset \cdots$, such that for all $t \in J_j$, $j=1, 2, \cdots$, we have

$$E|X_t|^r > j\delta$$
.

Thus, taking $t_{\infty} \in \bigcap_{j=1}^{\infty} J_j$, we obtain $E |X_{t\infty}|^r = \infty$, which contradicts the assumption. This completes the proof.

Proof of the theorem Because the set of points of discontinuity in r-th mean is $\bigcup_{n=1}^{\infty} D_1$, hence it is of lst category. Accordingly, by Baire's category theorem, the set of points of continuity in r-th mean is of 2nd category. The proof is completed.

By the way, we point out that there exists such a process $\{X_t, t \in [a, b]\}$ that it is sample continuous, and possesses the finite mean, yet the set of points of

(10)

discontinuity in r-th mean is dense in [a, b] and has measure q(b-a), where q is an arbitrary number on [0, 1].

It can be constructed as follows.

Suppose T = [a, b], $\Omega = [c, d)$, $P = \frac{\mu}{d-c}$, where μ is Lebesgue measure. First, consider the case $q \in [0, 1)$. Take $a_n > 0$ such that

 $\sum_{n=1}^{\infty} 2^{n-1} a_n = (1-q) (b-a).$

Imitating the construction of Cantor set, excise a concentric openinterval J_{11} of length a_1 from T, and then excise concentric open intervals J_{21} , J_{22} , each of length a_2 , from the remaining two closed intervals respectively, \cdots . Let the centre of T be m. On every rectangle

$$J_{ni} \times \left[c + \sum_{k=1}^{n-1} \frac{m-c}{2^k}, c + \sum_{k=1}^n \frac{m-c}{2^k} \right], i = 1, 2, \dots, 2^{n-1}, n = 1, 2, \dots,$$

let $X(t, \omega)$ be a quadrangular pyramid based on it and of height 2^n . On the other place of $T \times [c, m)$, let $X(t, \omega) = 0$. Furthermore, denote all rationals on T by r_1 , r_2 , ..., and on each rectangle

$$T \times \left[m + \sum_{k=1}^{n-1} \frac{m-c}{2^k}, m + \sum_{k=1}^n \frac{m-c}{2^k} \right], n = 1, 2, \cdots,$$

let $X(t, \omega) = f_n(t, \omega)$, where $f_n(t, \omega)$ is a continuous function defined on this rectangle and possessing the following properties

$$\begin{split} &\int |f_n(t,\,\omega)| \, d\omega < 2^{-n}, \text{ for all } t \in T, \\ &\int |f_n(t',\,\omega) - f_n(t,\,\omega)| \, d\omega \to 0, \text{ as } t' \to t, \text{ for all } t \neq r_n, \\ &\int |f_n(t',\,\omega) - f_n(r_n,\,\omega)| \, d\omega \text{ diverges as } t' \to r_n, \end{split}$$

where the integration domains are all the same interval

$$\left[m+\sum_{k=1}^{n-1}\frac{m-c}{2^k}, m+\sum_{k=1}^n\frac{m-c}{2^k}\right).$$

Now, we have defined $X(t, \omega)$ on $R = T \times \Omega$. It is easy to see that $X(t, \omega)$ possesses the desired properties.

Denote the process so constructed by $X_{R,q}$. Divide R into denumerablely many rectangles

$$R_n = T \times \left[c + \sum_{k=1}^{n-1} \frac{b-a}{2^k}, c + \sum_{k=1}^n \frac{b-a}{2^k} \right], n = 1, 2, \cdots$$

Take positive sequence $q_n \uparrow 1$, and on each R_n define

$$X(t, \omega) = \frac{1}{2^n} X_{R_n,q_n}(t, \omega).$$

It is easy to see that this gives the desired example for the case q=1.