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Abstract

In this ' paper we prové that there are no locally supported bivariate C*- spline functions
of degree % on cross-cut grid partitioned regions with no more than three lines meeting at a
common vertex. We also give explicit expressions of bivariate C* cubic B~spline with smallest
local support on cross-cut triangular grid partitioned regions where each vertex is the
intersection of three lines. Properly normalized, these B-splines are proved to be uniquely
determined and form a partition of unity. Furthermore, the corresponding variation
diminishing bivariate spline operators are proved fo preserve all linear polynomials of two
variables. These facts enable us to give error estimates for approximation by bivariate 0%

cubic splines for functions of class 0, 0" and 0%,

1. Introdﬁction

Lot 2 be a domain in R?. A line or line segment ig called a cross-cut of P if it
divi&es 2 into two subdomaing which are called cells, such that both of its endpoints
lie on the boundary 8% of 2. If i unhounded, then the point at infinity is also
congsidered as a boundary point of 2. Let 4 be a grid partition of & that consists of

a ﬁmte number (or countable number if D is unbounded) of cross-cuts of &. Then

4 divides @ into a finite number (or countable number, resp.) of cells. 4 will be
called a cross-out grid partition of 9. The points of intersection of the oross-cuts are
called gr1d-p01nts (or vertmes) and the straight line segments separated by the grid
points are called grid-segments (or edges) of the partition 4. A cell of thig partition
i8 called an interior cell if it boundary intersects &9 at no more than a finite
number of points, and a grid-point is ca_lled an interior grid-point if it is the common.

vertex of interior cells only.

Let Py be the space of all polynomials in two real variables of total degree k. A

function s(w ) in C*(2), where: v i8 a nonnegative integer, i called a bivariate
spline function of (total) degree k, belongmg 130 the Smoothness class O and having
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the grid partition 4, if the restriction of s(z, )10 each cell of this partition is in P.
The collection of all such bivariate spline functions will be denoted by S§=S%(4) =
St(4, D). A bivariate spline function s (v, y) in S¥ is said 10 be locally supported if
it identically vanishes outside a simple closed polygonal curve which is made up of
certain edges of the cells of the partition 4, such that the interior of this supporting
Jordan ocurve is a simply-connected subdomain of 2. Such a locally supported
bivariate spline function will be called a B-spline in 8% if it is striotly positive at
each point inside the supporting Jordan curve.

We will first show that for #>2 when no more than three cross-cuts of the
partition 4 meet at a common grid-point (or vertex), then S3~*(4, 2) has no
nontrivial looally supported bivariate spline functions. Hence, to look for the
smoothest possible bivariate B-splines, we must work with 85-*(4, 2). We will only
consider the case k=3 so that y=%—2=1 and the bivariate spline functions are

bivariate O cubic splines. The partition 4 of & will consist of cross-outs that are -

parallel fo one of the three distinot lines: aw+bw =0, aww+ by =0, and asw+bgy =0,
where each grid-point (or vertex) of 4 onP =D 28D is the intersection of three cross-
outs of this partition. Such & partition will be called a cross-cut triangular ’grid
partition (or oross-cut triangulation) of the first kind of 9. It is clear that each
interior cell of a cross-out triangulation of the first kind is a triangular region. The
following result also shows that it is the ¢ mmplest” cross-cut triangulation.

Lemma 1.1. Let 4 be a cross-cut grid partition of a domain D that consists of
lines parallel to one of the three distine! lines: @zt biy=0, a5+ bay =0, and azw+bgy
=0, If each interior cell of this partition is a ériangular region, then each interior
grid-point of 4 is the intersection of }th*ee bross—cuts \

Hence, t0 obtain a cross-cut grid partition of 9 so that each interior cell is a
tr1angu1ar region and that at least one interior grid-point is ‘the intersection of. only
two oross-cuts, we need at least four mutually non-parallel sets of parallel cross-cuts.
'l‘he proof of the above lemma ig trivial. Less trivial but quite elementary is the
following resulf. :

Lemma 1.2. Let 4be a cross-out triangulation of the first kind of a domain 9
such that each cross-cut is parallel to one of the three distinet lines a1%+b1y =0, agw+dyy
=0, and axw-+bsy=0. Then there ewist a positive number n; and a jpomt (2o, Yo) in D
such that each eross-out lies on one of the Sfollowing lines:

@1 (@~ wo) + b1 (3 — o) +jm=0, -
a3 (@ — o) +Da(y—yo) +jma=0, 1.1)
ag (9~ o) +bs (Y — o) +.7?73— 0,
j=+00y =1, 0, 1, «e, where na and 1, satisfy
(wzba “352) °71~ (wibs“%bi) Na= (@1ba— aabi) N3, : (1-2)
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"Hence, any oross-cut triangulation of the first kind can be linearly transformed
into a cross-out triangulation where each interior cell is a regular triangular region

by setting
aijfwo) +b1(y—yo) = ——é— mw’—-“-%% Y,

3

» 1.8)
“72(‘”’*“’0) +ba(y—150) = "‘% 972ﬂ>'+—g* 2y, ‘ |

This transformation is non-singular since 750, and by using the relationship
(1.2), it maps the lines in (1.1) onto the lines ' ‘
N80 +y —2+/87=0, _ ,
N 8o —y —24/8 j=0, 1.9
l¢/++/8j=0,
| f=+e, =1, 0, 1, -+- consecutively. The grid partition 4’ consisting of the lines(1.4)
divides R? into regular triangular cells. We will construct and study the approxima-
tion properties of bivariate C* cubic B-splines in S} (4, R?). By the linear polynomial
transformation (1.8), we can obtain bivariate C* cubic B-spline functions on any
orogg-out triangﬁlation of the first kind. The corresponding approximation properties
can also be obtained. ' -

Let Ai= (e, Bs) be a grid point (or vertex) of Zl’, We will show that there is a
unique bivariate B-spline B;(, y) in S5(4") whose support is a regular hexagonal
region contered at 4; and consisting of 24 regular triangular cells of 4" such that
Bi(ai, B) =1/8 and that B;(w, y) is symmetric about all the three diagonals of the
hexagonal support. This hexagonal support is the smallest, and the collection of all
these bivariate B-splines B;(w, y), where 4; runs over all grid-points of 4’, will be
ghown to form a partition of unity. In fact, if we define the variation diminishing
bivariate spline operator ¥V by (Vf) (&, v) =2:f (e, By Bi(v, ), then we will see that
V preserves all linear polynomials namely: V,=p for all p€P;. By using this
important property we are able to obtain efficient bivariate O* cubic spline approxi-
mations to functions in O, C*, and O? that give optimal orders of approximation for
¢ and C* and order O(8?) for O? where 8 is the mesh size of the grid partition. In
particular, the closure in the topology of uniform convergence on compact subsets of
a domain 2 of the union of 83(4, 2), where 4 runs over all cross-cut triangulations
of the first kind of & with all cross-cuts parallel to one of the lines (1.4), is all of
C(2). This result is somewhat surprising since when simple cross-cut partitions are .
considered, the corresponding closure in the approximation from S¢ is all of C(9) if
and only if u<<(k—2) /2. Note that if =38 then u must be zero and that cross-cut
triangulations of the first kind are limits of simple cross-cut grid partitions. This
result on simple cross-cut grid partitions was announced in [2] and proved in [8].
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It seems appropriate to state a main result there for comparison. T'o be more precise,

‘we need the following notation.

A cross-cut grid partition of 2 is said o be simple if no more than two cross-cuts.
meet at a grid-point in D, Let(ay, b1), -+, (ay, by) be pairwise linearly independent

ordered pairs, ¢= [¢;,] a matrix of numbers and I, aw+bdy-+c;,=0 be a collection
of lines. Let dy=4y(¢) be a grid partition of 2 consisting of simple cross-cuts I;;=1,,,

j=1, «, tyand ¢=1, -, N, where each I;,; is a segment of the line I'y,. Note that if

9 is not convex, then there may be more than one I;,; lying on I',. We define the

index set 2(h, r) ={(m, 8): I and I,; have a common vertex in Z}. Fix a point

(@o, %0)inD\ dy. Each cross-out l;,; divides & into two cells. The one not containing
(%0, 7o) is denoted by 2;,; and the other by D), In [2, 8], we introduced the

function ()4 defined by
' A . ax -+ b,y-l— Cip if(a;, y) € .Dgpj;
1) e @, 1) = () w (@, ={
) # (@, ¥) = (g (@, ¥) 0 i#(5, §) €D, Uless

and let (4) 45" (v, y) = [(4y) + (@, y)1*** The following result was proved in [3] .

Theorem 1.1. Let D be a simply-conmected domain in R, N>2 and OSu<<kb—1.
Then the linearly independent set .

B={a"y", o’y" () 5", @y® Gum) " o) 7™
0<a+b<k, 0<c+d<k—p—1, O<uto<<h—2u—2,
hsr and (m, s) EQ(h, r)}
i3 a basis of S¥(dy, D).

Here, if k<<2u+2, then the functions 2“9 (lym) 45 (lrs) %t are o be deleted..
Hence, it follows that the closure in the topology of uniform convergence on compact
subsets of 9 of the union of 8¢(dw, D) over all ¢ is all of (D) if and only if
w< (h—2) /2. If u>(h—2)/2, then this closure consists of all functions of the form
f (@, v) =Pu(®, y) +a:1 (0, §)fi(aw+by) +-++qx (@, ¥)fx(ayv+byy), fwhere P,CP,
and ¢4, -+, gy & Py_,—1. In this paper, we prove that when the cross-cuts are not
simple, then the closures may be larger although mon-simple cross-cuts are limits of
simple ones. ' _

We note, in addition, that although & is a basis of S%, none of the functions in
‘& are locally supported. It is therefore, quite tempting to construct locally supported
~ ones, or even—splines, by taking linear combinations of the basis elements in Z.
For reofangular grid partitions, this has been done in [3]. However, it has also been.
proved in [3] that when simple oross-cuts are considered, there are no locally
supported spline functions if u> (% —.2) /2. Hence, 1o obtain fairly smooth %-splines,
- we must allow non-simple cross—cut partitions. |
.The notion of multivariate H-splines was introduced by C. de Boor™ and
~ studied in detail by O. A. Micchelli (ef. [56]). Their Z-splines are determined by a
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given set of “knots” instead of grid-segments. In fact, the “knots” determine certain
simplices which in turn give the grid-segments that separate the polynomial pieces.
Hence, in general, several grid-segments share a common grid-point. W. Dahmen™

also provided truncated power representations of these B-splines

2. Smooth B-splines

We first discuss the basic property, which will be ocalled the conformality
condition, that a bivariate spline function must satisfy. Let & be a domain in R?
and 4 a grid partition of & consisting of algebraic curves (or segments of algebraic
curves), and let A be a grid-point (or vertex) of this grid partition. Also, let I'y, -+,
I'y be the grid-segments (or edges) with A as a common end-point ordered in the
counter-clockwise direction, such thatv Iy, separates a cell .D9 from a cell Dy, I’y
separates a cell D, from Dy, -+, and I'y separates the first cell Dy from a ocell Djy.
-~ Also, let ly(w, y), *-, ly(x, y) be irreducible algebraic polynomials such that
Ty:ly(w, ) =0, -, T'y:ly(w, y) =0. Then, if s(w, y) is a bivariate spline funection in
St(4, 2), where O0<u<k—1and Pi(v, y), -+, Py(w, y) are polynomials in P,
which are restrictions of s(z, y) on Dy, -+, Dy respectively, it has heen proved in-
(8] and [6] that Py~ Pi=g1,:(0)**, -, pr—py-1=qr-1, v{Iy-)**, and p;—pxy
=qy, 1(Iy)*** for some polynomials ¢y;1, ***, ¢y-1, v and @y, 1 in Py ,_s. These
polynomials ¢4,2, ***, gn-1,5, qn,1 are called the smoothing cofactors of s(w, y) across
the grid-segments I'y, -, I'y_y, I'y rvespectively. It follows that these smoothing
cofactors satisfy the identity

N ' : .
Eqi,i+1(li>#+1=0 (2.1)

(where gy, y+1:=¢y,1). This identity will be called the conformality condition of the
bivariate spline function s(», y) at the grid-point A (of. [8, 6]). Every bivariate
spline function in S4(4, &) must satisfy the conformality conditions at all grid-
points in 2 (of. [6]). Conversely, from the conformality conditions, one can find the
smoothing cofactors of the bivariate spline functions. The following result also follows
by using the conformality conditions. ' '
Theorem 2.1. Let 4 be a cross-cut grid partition of a domain D in B* such that
no more than three cross-cuts meet at @ common grid-poini én D. Then for k=2,
St(4, D) does not contain any non-ériviad locally supported bivariate spline function.
It is clear that this theorem does not hold for k=1. Let 4>2, and suppose that
" there is a non-trivial locally supported bivariate spline function s(z, ) in St (4,
2). Then there exists a grid-point A= (@, 9o) Which is on the simple closed polygonal
ourve that defines the local support of s(#, y) such that at worst three smoothin_g
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cofactors of s(, y) at A are not all identically zero. Since w=Fk—1, these smoothing'
cofactors are constants, say, di, ds and ds, and we have assumed that dZ-+d3-+d3>>0.

Let I'y, I' and I's be the cerresponding grid-segments that share the common grid-
point A, Then we may represent the lines containing these grid-segments by
a1 (@—m0) + b1 (y—Yo) = 0, as(@—a0) + ba(y—yo) =0 and as(0—a0) + bs(y — 7o) = 0
respectively, where (a1, b1), (@a, by) and (as, bs) are pairwise linearly independent
ordered pairs. By the conformality condition (2.1) at A, we have the identity

dy [ay (@ — o) + b1 (Y —10) 1¥+da [as (@ — w0) + b3 (y—90) 1*
+ds [as (@ —a0) +b3(y —y0)1*=0, (2.2)

By equating the coefficients of (w—me)*(y—wyo)*™ in (2.2), we obtain the linear
system : :
2w§b’,“‘d5=0, =0, «, b, 2.8)

Assume, for the time being, that a;, @a, @s#0. Then by (2.8) for i=k—2, k—1 and
k, the determmant of the coefficient matrix is ‘ /

ot (Do) (B D) (e D)
as - ax/ \as a1/ \ax @
=a}~%ak 2082 (@203 asda) (@1ds— @3by) (@12 —aaby)

which is nonzero since (4, 1), (@, ba) and (as, bs) are pairwise linearly independent.
If by, by, b3#0, the determinant of the coefficient matrix (2.8) for ¢=0, 1, 2is again
nonzero by the same argument. Hence, we may assume that at least one of the a,
a3, o3 and one of the by, by, b3 are zero. Without loss of generality, let ;=0 and:
' bg=0' Then @g, @s, by, bz#=0 since the three ordered pairs are ?airwise linearly
independent,. But by using (2.8) for i=0, —1, and & we have dajds+alds=0, bid,
+bids =0, and a§ " byds=0. Hence d; =dy=ds=0, which is again a contradiction. Note.
that in the above proof, we need 45>2,

One of the most important grid partitions of a domain & in applications is a
oross-cut triangulation of the first kind which we denote by 4. Here, every interior
cell of 4 is a triangular region, each grid-segment (or edge) lies on a cross-out, and
each vertex of 4 is a point of intersection of exactly three cross-cuts. By the above
theorem, we know that S§~*(4, 2) does not contain any non-trivial locally suppbrted
bivariate spline function. We will now construct a bivariate B-spline in S3(4, 2).
This spline function is unique when it is properly normalized and its support which
consists of 24 triangular regions is the smallest. By the transformation (1.8) it is
sufficient o consider a cross-cut grid-partition 4" which is determined by the lines
(1.4), namely: v '

| It v Bo+y—2:/8 j=0,
lo,: &/ 8a—y—2+/8 §=0, ‘ @.4
[ 15,4+~ 8j=0, j=1, —1, 0,1, «,
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These lines divide R? into regular triangular cells. We will construct a bivariate B-
spline in S}(4, RQ) whose support is centered at the origin O such that it is
symmetric about the lines l;,o, Is,0 and I5,o. The other bivariate B-spliens in S3(4,
R are simply translations of this one. We need the following notation.

Lot 4= (~2, 24/8), 43=(0, 24/8), 4=(2, 24/8), 4= (-8, /38),
As= (=1, V/3), de=(1, v/ B), 4r=(8, /3), Ag=(—4, 0), dy=(—2, 0), Az
=(0, 0), Ay=(2, 0), A= (4, 0), Az=(—8, —~/8), duu=(~1, —~/8), A
=1, —~8), 4u=(8, —~/3), 4du=(-2, —2/3), Ais (0, —24/8), and 4y
=2, —238).

A triangular cell with vertices at 4;, 4;, 4y will be denoted by [4, 4, B]:=[4,
4;, A;]. Hence, the vertices 4;, :++, Aj9 determine 24 regular triangular cells Dy,

+, D4, namely: |

D=1, 4, 5], D,=1[1,5, 2], D;=[2, b, 6], D,;=[2, 6, 8], Ds=[8, 6, T],
Ds=1[4, 8, 9], D;=[4,9, 5], Dg=[5, 9, 10], Dy=[b, 10, 6], Ds;p=[6, 10, 11],
Dyy=1[6, 11, T], Dia=[7, 11, 12], Ds3=[8, 18, 9], Dis=[9, 18, 14], D=9, 14,
10], Die=[10, 14, 15], Dy;=~[10, 1B, 11], D= [11, 15, 16], Dypy=[11, 16, 12],
Dyo=[18, 17, 14], Dgy=[14, 17, 18], Dp= [14, 18, 15], Dys=[15, 18, 19], and
.D24~— [1b, 19, 16].

Let K =clos(D1U «+- Ul Do) be the closure of the union of these cells. 'I‘hen the
boundary 9K of K is a simple closed hexagonal curve. We will construct a bivariate
B-spline in 83(4") supported on K It is easy to see that there is no non-trivial
locally supported bivariate spline in 83(<) supported on

K= clos (DsUDyU DyoU DisU DigU Dar) (2.5)
Hence, K is the smallest compact support that is symmetric with respect 10 ly,0, l2,0
and l3,0. We have the following result. '

Theorem 2. 2. There is a unique bivariate spline funciion B (x, y) in S85(4") which
is symmetric with respect 10 by, o, la,0 and ls,o, such that B(0, 0) =1/8 and that B(w, y)
=0 for all (z, v) Quts’idé K. This bivariate spline B(w, y) 4s strictly positive in the
interior of 0K and its restriction on Kol olos(DyU DaU DeU D13 U Dao U Doy U Dag U Dag
U DU D3 UDsU Dy) s of smoothness class C2. Let Pi(w, y) €Ps denote the restriction
of B(w, y) on Dy, i=1, -+, 24, Then

Piolo, 9) = @?‘ ; “’2+72 )+<_ 5 72 >y+\1/sgy'

ruts (-t (s

’ 1 1 7\/3
+<“i§+m‘”)?/ 1998 s,
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1
P9(‘”’y>=<§ 12‘”2) T2 oY 5Vt em Y

- Py(w, y) =Ps(~2, v), Pa(w, y) =Ps(~x, v), Pe(wl y)__=P12(—m, v,
Pr(@, y) =Pu(—, y), Ps(w, y) =Pi(—a, y), Pis(®, y) =Pua(~o, —y),
Piy(w, y) =Pu(—a, —y), Pis(®, y) =Pp(—o, —y), Pu(e, y) =Py(w, —9,
- Pu(w, y) =P, —y), P, y) =Pu(s, —y), P, y)=Pulz, —y),

Pu(w, y) =Ps(—w, —y), Pu(o, y) =Pu(—w, —y), Pa(o, y) =Ps(s, —y),

Pus (@, y) =Ps(w, —v), and Pay(w, y) =Ps(z, —y). '
To prove this theorem, we first congtruct the polynomial Py (2, ¢). This

polynomial is uniquely determined by the ten interpolation conditions:

Puo(4so) =% (1T*‘h): Py (4s) = P1o (A1) =-§— h,

Pio((duat Aot 4a:)/8) =3 (4+8), 5= Pao(zo) =5 Pao(dh) =0,

the tangential derivatives of Pio(w, y)along s, from Ay to 4 at Ay and from 4g to
Ay ab Ag are equal to v, and the outer normal derivatives of Piy(w, y) with respect
to the line Iy,4 at A and Ay are equal to w. Here, &, ¢, u and v are parameters. Sinoe
B(w, y) is symmetric with respect to ls,0; Pir(w, y) =Pz, —4) and since

Pyr(, ) — Pio(®, y) =0h0,11(2, 9) [Is,0(2, 1) 1%,
where Cy,17(w, ¢) € Py is the smoothing cofactor of B(a: y) across the grld -segment

Asodyy, it can be shown that -

8

— g

80—16+/3u

51 and v=

t=

Nex1, we use the conformality conditions of B(w, y) at the grid-points A;; and A12-
simultaneously. These algebraic equations determine A and w uniquely, namely:
h=1/2 and u= —38+/3 /8. Henoce all the parameters of Pi, (%, y) are determined. The
polynomials Pii(w 1), Pia(w, v), Ps(w, v), Ps(w, v), Ps(a, y) and Py(w, y) are
determined (uniquely) by first finding the smoothing cofactors. They are:
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Cio,11(w, y) = ié936 (\/3w+y 8~/3);

Cu1,12(w, ¥) =—"\4/32 (~/3w+y 4/3),

Cuss(@, ) = = Y2(v/ Tty —an/B),

05,4(“’1 y) = Ié936 (\/ 8z— y):

Ous(a, 9) =3 (y—24/%), and

Oos(@, ) = L2 —4'D),

The other polynomial pieeés are obtained by symmetry. In the above congtruction
of B(w,y), we have set B(w, y) =0 for all (z,y) outside K. It is olear that B(w,y) >0
in the interior of 2K, and the smoothness conditions can easily be verified since
B(w, y) is obtained from Py (s, , y) by using the smoothing cofactors,

3. Approximation properties of the B-splines

Let b5, =1, 2, 8, j=---, =1, 0, 1, -+, De the lines in (2.4) that define a
ocross-cut triangulation of the first kind 4 of R?, and B(w, y) be the bivariate O
cubic B-spline function obtained in Theorem 2.2. If G;= (w;, ) is a grid-point of
the partition 4’, we define .
Bi(#, y) =B(o—w, y—y).
~ Here, we need (m,, o) = (0, 0) and note that Bo(w,.y) =B(w, y). Each B;(x, y) is
a bivariate B-spline function in S3(4") whose support is enclosed by the simple
closed (regular) hexagonal curve joining the points (@i+4, 4), (w+2, y+2+/8),
(@—2, %+248), (mi—4, 1), @2, y;:—2+/8), (@+2, 1;—2+/8) and (24, g)
consecutively. The interior of this curve will be denoted by H; and its closure by
H, Let 9 be a domain in R* and Q=0(9) = {i: H:NP+}. We will now show
that the bivariate B-splines B;(w, y) form a partition of unity, as in the following:

Theorem 3. 1. For all (&, y) €D

> Bi(w, y)=1. (3.1)

teEND)
Since B;(w, y) >0 for all (w, y) € H, and Bi(w, y) =0 for all (v, v) €D\ H,, the
~ identity (8.1) implies that {B;:¢€Q(2)} is a partition of unity for 2. To prove
(3.1), let ‘
| Fe, y)= 2 Bi(, 9).
e (D)
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We first note that B(4y)=1/3, " B(dg) = B(4y) = 1/9, B(4s) = B(4s) = B(4y)
=B (413) =0, B((4a+ A5+ 4;) /8) = B((Ag+ 411+ A7) /8) =17/248, B((Aa+Ae+43)/
8) = B((d4s+4s+47) /8) =B((As+ A1+ A1) /8) =5/486, and B((4s+ 41+ 4s)/8)
= B((dg+ Az0+A41) /8) =59/248. The rest of the values of B(s,y) at the grid-points
and mid-points of the cells can be detsrmined from these values by symmetry.
Oonsider any cell D of the grid partition 4’ such that DN D=f, It is clear that Q(D)
* bas cardinality 12. The value of F (s, y) at each of the three vertices of D is

1 1
B(0)+1 (5)-+6 (5) -1,
. , 17 59 5
and is 3(525)+3 (355) +6 (25g)
at the mid-point of D. Also, it is easy o verify that aF/am and 0F/dy are both equal

. 10 O at the three vertices. Hence, F (#, y) =1 for all (#, y) € D. Since D is any cell
and F(w, y) is continuous, this completes the proof of the theorem.

- The above result can be extended. To do this, we define the operator
LV 0(D)>8iL, D)

by .
V@ 9=, 3 f@ 9B, 9) 3.2)
for all f €C(2). This is a generalization of the variation diminishing spline operator
in univariate spline funoction theory. Hence, we will also call it a variation dimini-
shing bivariate cubic spline operator with respect to the grid partition A’ We have
the following result.

Theorem 8.2. Vf=f for all j‘ €ep,,

To prove this result, we first note that 7 is a (positive) linear operator on C(2).
Henoce, by a linear transformation and using Theorem 8.1, it is sufficient 0 prove
that (V) (&, y) =f (@, ) for f(@, y) =o and f (o, y) =y and (v, y) €K,, where K,
is given in (2.5). By symmetry it is sufficient to prove the identity on D and for
f(, y) =w. Let f(®, y) =2. By using the computation analogous to the proof of
Theorem 8.1, we see that Vf and f agree at the vertices and the mid-point of the cell
Dso. It can also be verified that 8(Vf) /ow=1 and (V) /dy=0 at the three vertices
of Dy, Hence, Vf f on Dy, .

Next, we will apply this result to study the approximation properties of the
variation diminishing bivariate spline operator V. of course, we have to refine the
grid partition 4’. To do this, let >0 and consider the oross-cut trmngulatmn 4; of
R? consisting of lines Ly, ;=L,;(3) defined by:

Ly, N 8wty— 8\/__7 0,
Ly 8o—y—848j=0, j=-, =1, 0, 1, +, (3.3)
L, y+08+/83/2=0, ‘ '
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This grid partition divides R® into regular triangular cells whére the length of each

of the three sides of the triangle is 8. If B;(w, y) is the bivariate cubic B-spline

function in S3(4") defined above, we define our (normalized) bivariate cubi¢ B-

sphnes Ni,s(x, y) in S§(4) by | S _

os(e, 4) =Bi(20/5, 24/5). Y
Henoce, N, ;(#, y) has support on a regular hexagonal region H,; consisﬁng of 24
regular triangular cells of 4} and centered at Gy, 5: = (82;/2, Sy;/2), where Gy= (@;, ;)
are the grid-points of 4'. Again, N, (=, ) >0 for all | (@, 9) € Hi,s and Ny, (a, y) =0
for (@, y) € R\ H,,,. Let F be a compact set, 2 a bounded domain containing ¥,
and _

0Q,=0Qy(F) ={i:Hy,s N F+0},

-Henoe, there ig a o>>0 such that G4, ;€2 whenever ¢€ 0, and 0<3<<d,. Also, let
C(Z) e the Banach space of functions continuous on 2 with the supremum norm
|+ and let C*(D) be those functions in C(9) which are n-times oontmuously
differentiable on & relative to 9. If f €0Y(D), then for each (w0, ¥o) in. 2, the
derivative of f at (#o, 9o), denoted by Df (@, %), i§ the linéar functional on R?
defined by ‘

Df (w0, y0) (@, 4) =F1.(@0, Yo)o+Ff2(20, Y0)y.
Here and in the remainder of the paper, we use the standard notions:
fi—-i; Sa= f, fu= a_,j:,
2
fam ke fu= aa;gm fu=Sk,

where f=f(z, y). If f€0? (9), then ity second derivative D® f (wo, %) abt a poin

(@0, o) € D is the linear transformation from_R” xR* to R defined by
DAf (@0, 90) (@, 9), (4, 9)) =F11(%o, Yo)@t~+F1a(o, Yo)ov
+f21(@o, Yo)yu+fan (@0, Yo) o,

Also, denote |- DF| -—max{l]Dsf (@, 9 |: (@, v) E@}
where | D3f (», ¢) ] is the norm of the linear transformation D*f(w, ¢),

Let V5, >0, be the variation diminishing bivariate cubic spline operator
defined by |

Vo) @, 9) = 3@, 9 Nos(a, 9. Y

Hence, by Theorem 3.2, we ‘have, on F - _ o
Vsf=Ff, fEP. (3.6)

We next discuss the error analysis for the approxnnatlon of f € C’(@) by Vf
€83 (4s, 2). We use the standard notation ‘

o(f, = max _{|f(s, y) ~f(, v)|: || (m y) — (u, 0| <3}, X

(@9, w,v)eD

The following result is obtained,
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Theorem 83. Let FEC(D). Then for 0<6<d,

If=Vsfle<w(f, 25). | (3.8)
If, in addition, £ € OHD), then

4 If=Vsfle<< 3+§/§ 8_-max[ (fi, \/38> ( 2 \/—8>], (3.9
and if fEC*(D), thn

lf=V.f "F<% (3.10)

The proof of (8.8) is trivial by using the property of partition of unity of {N 4o},
namely '

[(f=Vof) (@, o) =l 2 (f (@, ) —f (@, ¥)) Nis (2, ’.ll)l
_ 2 lf(“’ ) f(% 9) | Nis(@, 9) |,
since N, (#, v) =0, By usmg the support property of N, , and that >N, =1, we

T €8s

have the required estimate (8.8). Note that 20 is the radius of Hj,. Next let
b 601 (9) and let D;,; be a cell of 4 such that

. If=Vfle=1f~Vsf|psar. (3.11)
Also, let (@o, 9o) be the center of D;,;. Then by the Mean Value Theorem, we have

. f@, 9)=f (%, 90) +F1.(u, ©) (@—Zo) +fa(, ) (Y—70)
for some (u, v) =t(w, y) + (1—1) (%o, %), Where 0<<t<<1. Let
p(w, ) =f (@0, Yo) +F1(Zo, Yo) (@—%o) +f2(%o, ¥o) (¥—30). (8.12)
Then we have
f @, o) —p@, v) =(fi(y, 'v) fi(a’o; %)) (m “‘0)
+ (fau, v) ~f2(@o, %0)) (W—90).
Hence by (8.6), we have, from (3.11)

If =V fle<<|f =5, +1V:(f~D) |5,
< (1+ “V6 “) "f—Z’nm«

<@+ IVaDmaxlo (£, Y22, o(f, 4“133@)]9@),

where ¢(8): =max{|o—|+ [y—9|: (&, ¥) €D} = (8+~/3)8/6. Since it iy clear
that |V,] =1, the inequality (3.9) follows. Now let f€0?(P). Then by Taylor's
Theorem, we have ’

@, ) =p@, ) +3DF W, v) (@, y=3), @5, y=3))

for some (v, fv_) =i(w, ¢)+(1—~1%) (@, %), t€ [0, 1], where p(w, ¢) is the linear
polynomial given in (3.12). Hence by an argument similar to that given above, we
- have

f =V s Lo =17 = VoS luanr<2lf ~plnssg #IDF].
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This completes the proof of the theorem.
The above result can be extended to the most general oross—cut tr1angu1at10n of

the first kind. From Lemma 1.2, we know that any oross-cut triangulation 4 of the
first kind of B? ig made up of lines

¢ M3, 5201 (%~ wo) +b1 (Y — 9o + Jn1=0,
{Ma,y @3 (&~ o) +ba(y—4o) +jna=0, (8.13)
M3, 1:a3(%~ w0) -+ b3 (¥ — 9o) +.7773—0 o '
where j=+, ~1, 0, 1, +, and (@, bs), (as, ba), (a3, bs) are pairwise lmearly
independent ordered pairs (o, yo) is some gr1d-p01nt of 4, x is some p031t1ve
number, and x,, 1z must satisfy the relationship '
(Qabs @352)771*(“163 0351)772-"(@152*%51)?73. (3.14)

Write 7y=a/3 8 where >0. We will call & the mesh-size of fthe gridpartition (or .
triangulation) 4. Note that if (w0, 4o) =0 and (ay, 1) =(v/8,:1), (@3, bs) = (V/8,
—1), (as, bs) =(0, 1), then the grid partition 4 coincides with the grld portition 4
in (3.8) with this relationship between ny and 8 Recall also that 3 is the 1ength of
each grid-segment in 4;. Let : ' ‘

A(8) =4(3; (% bi), (“2; ba), (“a; bs); (wo, yo)) .
denote the grid portition 4 determined by ‘the lines (3.13) Wl'bh m=~7 3 8 and Tet
D, be any cell of 4(0). It can be proved that the lengths of the three s1des of the
triangle D are
T,

l a,,_b3 — ai3by l

< _______'M d and

| @2by— a1by | ' i
&/3(d1+bz) lﬁzbé—bzdsl ' 5
L | (@165 — aghy) (@2bi—a1ba) |

and the d1stances from the center of D, to the three vertices are .

- (3 .15>

( /B [(2asbsbs— obsbs— ashsbs) -+ (2agashy — Oytisby 0305b2) 1" 7 s
3| (agby—a1bs) (@1b3— ashy) | %

) N 8 [(2(126163—-(116263 (Zgbj_bz)s"l‘ (2a103b2 — G123D3 — “2“351)2] La
3, (agbi—albg) (Qibsvaabj) l ‘ . : ,

~/ 8 [ (2a3b1bs — @1b3bs— asbybs) *+ (2aisbs — ayasha— aaasby) *1Y/*

- 3[ (@301~ a1bs) (@103 —3b1) ! °.

Let o, B, v be three positive numbers difined as follows: a3 is the maximum of the

lengths of three sides of the triangular cells of 4(9) given in (3. 15) B+ is the

maximum of the distances from the vertices of a cell to its center . gwen in (3 16),

(8.16)

axid 9 is the maximum of the three numbers
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[ \/ 8 [|201b2b3—asbibs— asbiby| - |2azasbi—‘liazbs““1“362|]
.. 3| (“2[)1—“152) (@1b3— asby) I

d N3 [Iz%biba—%bzba agbyba| + | 2¢505 by — aiaabs—“zaabil] (3.17)
8| (g1 —a1by) (a105— “351) |

~/ 8 [|2a5b1by—a1babs — aghybs| -+ | 2010205 — @105by — asasbs ]

8] (@abs— 0152) (%ba—aabl) l
In the speoial case when 4(3) is the cross-outb regular triangulation 4; of R* we bave
a=1, B=~/3/8 and y= (3-+/3)/6. L o
Let N,y (o, o) be the bivariate cubio B-splines in S}(4)) defined in (3.4). Oonsider
the (non-singular) linear transformation

[axto—an) 4 baly—gn) = — -3y,
, - (8.18)
“2(“’ fvo) +bz (y— il}o) = %2 @ +~/;6W2 '1/'

ybetween the gnd partltmn 45 and A(S), and define the (normahzed) b1var1ate cubm
B—splmes N s(», y) in Sl(A(b‘)) by \

- Ni(a, y) =N («, ?_]’): (8.19)
where (2, y) and (2, o) satisfied (8.18). Then N,, has support on a hexagonal
"region Fys centered at a grid'pofint E; of 4(8) and consisting of 24 triangular oells
of 4(3). As before, let F be o compact set, 2 a bounded domain contammg F, and
define the index set

ﬁa=ﬁd(F) = {".'3 F‘,a N F+¢}'.
Let 8,>0 be chosen such that E,€ P whenever € Q; and 0<8<<8,, Also, define
the variation diminishing bivariate oubio spline opgra’obr Vs C(2)->83(4(9)) by
) (2, 9) = Ef(Es)ﬁt.a(w v).

‘Eﬂa

Then by a proof similar to that of Theorem 8.8, we have the following resul:
Theorem 3. 4. ILet fEO (D). Then for 0<<d,, '

~ If =Veflr<aw(f, 203).
If, in addition, f € CX(D), then

If - V6f||p<27’3 max[w(fi, ,35), ([, :35)],
‘and of fE0? (@), then

If —Vaf HF<,325‘*’ l| Ffl.
4. Final Remarks
The bivariato B%épiiné_ series

pat LN Y %)

¢clds
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.can be used to study the approximation and interpolation of funétions on 2 or I
by bivariate spline functions in S(4(8)). It can be proved, however, that {;,:
4 €82} is only a basis of a proper subspace of S (4(8)). Therefore, it is quite fortunate
that we have the Jackson order in uniform approximation of functions in C (D) and
Ot (_97) . Also, by using the variation diminishing bivariate spline operators, the order
‘0(3%) is the best we can hope for, even in univariate spline approximation. In
interpolation, if the sample points are taken at the grid-points of the partition 4(3),

then by an appropriate ordering f the grid-points, the coefficient matrix in determin-
ing the B-gpline series (4.1) is a symmetric Toepli z matrix which has at most

.soven non-trivial diagonals, .
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