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Abstract

In this paper we prove that there are no locally supported bivariate C*-1 spline functions 
of degree Tc on cross-cut grid partitioned regions with no more than three lines meeting at a 
common vertex. We also give explicit expressions of bivariate G1 cubic B-spline with smallest 
local support on cross-cut triangular grid partitioned regions where each vertex is the 
intersection of three lines. Properly normalized, these B-splines are proved to be uniquely 
determined and form a partition of unity. Furthermore, the corresponding variation 
diminishing bivariate spline operators are proved to preserve all linear polynomials of two 
variables. These facts enable us to give error estimates for approximation by bivariate G1 
cubic splines for functions of class G, G1 and C2.

1. Introduction
Let ^  be a domain in  ВЛ A  line or line segment is called a cross-cut of 3% if  it  

divides ЗА into two subdomains which are called cells, such that both of its endpoints 
lie on the boundary дЗА of ЗА. I f  ЗА is unbounded, then the point at infinity is also 

considered as a boundary point of ЗА. Let A be a grid partition of ЗА that consists o f  
a finite number (or countable number if ЗА is unbounded) of cross-cuts of ЗА. Then 

A divides SA into a finite number (or countable number, resp.) of cells. A w ill be 
called a cross-cut grid partition of ЗА. The points of intersection of the cross-cuts are 

called grid-points (or vertices) and the straight lin e segments separated by the grid 

points are called grid-segments (or edges) of the partition A. A cell of this partition 
is called an interior cell if  its boundary intersects ЪЗА at no more than a finite 

number of points, and a grid-point is called an interior grid-point if it is the common 

vertex of interior cells only.
Let Pfc be the space of a ll polynomials in  two real variables of total degree Jc. A  

function s(oo, у) in  С* (ЗА), where fi is a nonnegative integer, is called a bivariate 

spline function of (total) degree #, belonging to the smoothness class C4*, and having
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the grid partition A, i f  the restriction of s(x} y) to each cell of this partition is  in  Pfeo 
The collection of all such bivariate spline functions w ill be denoted by S%(A) — 
S%(A, & ). A bivariate spline function s (ж, у) in  S% is said to be locally supported if 

it  identically vanishes outside a simple closed polygonal curve whioh is made up of 
certain edges of the cells of the partition A, such that the interior of this supporting 

Jordan curve is a simply-conneoted subdomain of £2?. Such a locally supported 
bivariate spline function w ill be called a B-spline in  S% i f  it is strictly positive at 
each point inside the supporting Jordan curve.

We w ill first show that for &>2 when no more than three cross-cuts of the 
partition A meet at a common grid-point (or vertex), then S t'1 (A, &) has no 

nontrivial looally supported bivariate spline functions. Hence, to look for the 
smoothest possible bivariate B-splines, we must work with S%Ta(A, <2f) . We w ill only  
consider the case Jc= 3 so that /* = # —2 = 1  and the bivariate spline functions are 

bivariate O1 cubic splines. The partition A of <3 w ill consist of cross-outs that are 

parallel to one of the three distinot lines: a ix + Ъху=0, a2x-\-b2y= 0, and a3x + b sy= 0, 
where each grid-point (or vertex) of A o n ^ = ^ U  is the intersection of three cross- 
outs of this partition. Such a partition w ill be called a cross-cut triangular grid 
partition (or cross-cut triangulation) of the first kind of It is clear that each 

interior cell of a cross-cut triangulation of the first kind is a triangular region. The 
following result also shows that it is the “simplest” cross-cut triangulation.

L em m a 1.1. Let Abe a cross-cut grid 'partition of a domain S) that consists of 
lines parallel to one of the three distinct lines-. aipoJrb ty= 0 , а2х-\-Ъ2у —0, and asx+b^y 
=  0. I f  each interior cell of this partition is a triangular region, then each interior 
grid-point of A is the intersection of three, cross-cuts.

Hence, to obtain a cross-cut grid partition of 31 so that each interior cell is a 
triangular region and that at least one interior grid-point is the intersection of only 

two cross-cuts, we need at least four m utually non-parallel sets of parallel cross-cuts. 
The proof of the above lemma is trivial. Less trivial but quite elementary is the 
following result.

L em m a 1.2. Let Abe a cross-cut triangulation of the first bind of a domain @ 
s/uch that each cross-cut is parallel to one of the three distinct lines a%x+ b^y= 0, a2x-\-b^y 
= 0, and а3х+Ь3у —0. Then there exist a positive n/umber pi and a point (x0, y0) in @ 
such that each cross-cut lies on one of the following lines-.

' a1(x -x 0)+ b 1( y - y 0)+ jv i= 0 ,
■ a2 (x -  x0) +  b2( y -  y0) + jv 2= 0, (1 . 1 )

. «3 (»■-  too) 4- &3 (у ~  Уо) + jvs  =  0, 
j = “ -, —1 , 0, l,.**', where p2 and p3 satisfy

(а2Ь&—аф2)гц= (aib3—asbi)p2=  i.afi)2—afi)f)'%. (1 .2)
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Hence, 
into a cross 

by setting

This transformation is non-singular since ф 0, and by using the relationship 

(1 .2) , it maps the lines in  (1 . 1 ) onto the lines
2 \ / 3 ) =  0,

• \/3 '® , -2 / , - 2 V r8 i = 0 ,  (1 .4)

У  W  3 j--=0,
—1, 0, 1, ••• consecutively. The grid partition A  consisting of the lin es(1.4) 

divides Ra into regular triangular cells. We w ill construct and study the approxima
tion properties of bivariate G1 cubic 5 -sp lin es in  81 (A', R a) . By the linear polynomial 
transformation (1 .3 ) , we can obtain bivariate C1 cubic 5-spline functions on any 
cross-cut triangulation o f the first kind. The corresponding approximation properties 

can also be obtained.
Let Ai— (<Xj, j3i) be a grid point (or vertex) of A\ We w ill show that there is a 

unique bivariate 5 -sp lin e  Д  (со, у) in  S\ (A') whose support is a regular hexagonal 
region centered at Д  and consisting of 24 regular triangular cells of A' suoh that 
5j(«i, Д ) = 1 /3  and that Д  (a?, y) is symmetric about a ll the three diagonals of the 
hexagonal support. This hexagonal support is the smallest, and the collection of all 
these bivariate 5 -sp lin es 5 г(ж, у), where A{ runs over all grid-points of A', w ill be 

shown to form a partition of unity. In  fact, if  we define the variation diminishing 

bivariate spline operator V  by (F /)  (os, у) =  Д /  (ср, Д ) Д  (со, у) ,  then we w ill see that 
V  preserves a ll linear polynomials namely: VP= p  for all P*. By using this 
important property we are able to obtain efficient bivariate 0 1 cubic spline approxi
mations to functions in  О, G1, and Ga that give optimal orders of approximation for 
G and G1 and order 0 (§ 2) for Ga where 5 is the mesh size of the grid partition. In  

particular, the closure in  the topology of uniform convergence on compact subsets of 
a domain @ of the union of Sl(A} @), where A runs over all cross-cut triangulations 
of the first kind of @  with all cross-cuts parallel to one of the lines (1 .4 ), is all of 
G (J2f). This result is somewhat surprising since when simple cross-cut partitions are 

considered, the corresponding closure in  the approximation from 8% is all of G(&) if 

and only if  (к—2) /2 . Note that if  3 then рь must be zero and that cross-cut 
triangulations of the first kind are limits of simple cross-cut grid partitions. This 
result on simple cross-cut grid partitions was announced in [2] and proved in  [3].

any cross-cut triangulation of the first kind can be linearly transformed 

-cut triangulation where each interior cell is a regular triangular region

1 ч/ Вa i(a —а*) +Ъ1(у-уо)  =  - у  ад/’,

1  ч/ 3а2(х-Хо) +Ъ2(у-уо )  =  - т г

(1.3)

W  .
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It seems appropriate to state a main result there for comparison. To be more precise, 
we need the following notation.

A cross-cut grid partition of @ is said to be simple if no more than two cross-cuts, 
meet at a grid-point in  3). Let (а1г bf), •••, (aN) bN) be pairwise linearly independent 
ordered pairs, c— [c4p] a matrix of numbers and Г 1р: aiX+biy+cip= 0  be a collection 
of lines. Let AN= AN (c) be a grid partition of ^  consisting of simple cross-cuts Zy=Zlw-, 
j = 1, •••, ti and i = l ,  N, where each lipj is a segment of the line P ip. Note that if  

$  is not convex, then there may be more than one lipj ly ing on Г 1р. We define the 
index set Q(h, r) =  {(m , s ) : lhm and Zrs have a common vertex in  33). F ix  a point 
(a>o, yf)\T\3A\As . Each cross-cut lipj divides ЗА into two cells. The one not containing 
(#o, ya) is denoted by 3$ipj and the other by D'ipj. In  [2, 3], we introduced the 

function (Zy) # defined by

and let (Zy) |+1 (ж, y) =  [ (Zy) # (ж, ?/)]/i+1. The following result was proved in  [3 ].
T heorem  1.1. Let &  be a simply-connected domain in R 2, A > 2  and 0</л<:/с—1» 

Then the linearly independent set

is a basis of S%(AN> 38).
Here, if k < 2 /e+ 2, then the functions af y° (lhm) #+1 (Zrs) #+1 are to be deleted., 

Henoe, it follows that the closure in  the topology of uniform convergence on compact 
subsets of LA of the union of S%(AN, 33) over all c is all of G (38) if  and only i f  

/x<  (k — 2) /2 . If yu> (k — 2 )/2 , then this closure consists of all functions of the form'
/(® , 2/ ) = P fc(a?, y)+qi(<c, y )fi(a 1x+ b1y)-\------'rqN(oo, y )fN(aNx4-bNy) , [where P fc£ P ft
and qi, •••, In  this paper, we prove that when the cross-cuts are not
simple, then the closures may be larger although non-simple cross-cuts are limits o f  

simple ones.
We note, in  addition, that although 38 is a basis of $£, none of the functions in  

38 are locally supported. It is therefore, quite tempting to construct locally supported 

ones, or even^-sp lines, by taking linear combinations of the basis elements in  38. 
For rectangular grid partitions, this has been done in  [3]. However, it has also been 
proved in  [3] that when simple cross-cuts are considered, there are no locally 

supported spline functions if > >  (k—2) /2 . Hence, to obtain fairly smooth i^-splines, 
we must allow non-simple cross-cut partitions.

The notion of multivariate ^ -sp lin es was introduced by 0 . de Воогш and 

studied in  detail by 0 . A. Micchelli (cf. [6] ) .  Their ^ -sp lin es are determined by a

i(D+biy+ctp if (ж, у) £ Dipj,
if  (ж, у) eD'(Pj[Jlipb

В - W ,  <3y«(h)%+1, x ^ ( l hm) l +1(lrs) 5+1:
b<,k, 0<c+cZ<& —jju—1, v ^ k —2yu—2,

Ьфг and (m, s) QQ(h, r )}



given set of “knots” instead of grid-segments. In  fact, the “knots” determine certain 
simpliees which in  turn give the grid-segments that separate the polynomial pieces. 
Hence, in  general, several grid-segments share a common grid-point. W . Dahmen1-43 
-also provided truncated power representations of these Б-splines

2. Smooth Б-splines
We first discuss the basic property, whioh w ill be called the conformality 

condition, that a bivariate spline function must satisfy. Let ^  be a domain in Ra 
and A a grid partition of consisting of algebraic curves (or segments o f algebraic 

curves), and let A  be a grid-point (or vertex) of this grid partition. Also, let P*, •••, 
Г N be the grid-segments (or edges) with A as a common end-point ordered in  the 

counter-clockwise direction, such that Рц separates a cell Z>2 from a cell P 2 
separates a cell Б 3 from D2, ••*, and P #  separates the first cell Dt from a oell DN. 
Also, let li (x, y ) , •••, In (ж, у) be irreducible algebraic polynomials such that 
Pidi(co, y )=  0, •••, r N:lN(a>, y) = 0 . Then, if  s{co, y) is a bivariate spline function in  
8%{A, where 1 and P j(oo, y ) , •••, Pn(o>, y) are polynomials in Pfc
which are restrictions of s (a;, y) on •••, DN respectively, it has been proved in  

[3] and [6] that P s-P i^ q i.zQ i)^ 1, • • •, pN~Pn- i =  qs-i, n(Jn~i) 1X1+1, and pt - p N 
= qN, i Qn) m+1 for some polynomials qXiX> —, qm-i, n and qN, i in  These
polynomials q%,2, •••, qN-i,N, qN,i are called the smoothing cofactors of s(oj, y) across 
the grid-segments P i , •••, P n- i, P n respectively. It follows that these smoothing 
cofaotors satisfy the identity

2 ?м+1( ^ +1=0  (2 .1 )
<=i

(where ^ ,y + i:==̂ , i )  • This identity w ill be called the conformality condition of the 
bivariate spline function s (ж, y) at the grid-point A  (of. [3, 6] ) .  Every bivariate 
spline function in  $£(d, &) must satisfy the conformality conditions at all grid- 
points in  (cf. [6] ) .  Conversely, from the conformality conditions, one can find the 
smoothing cofaotors of the bivariate spline functions. The following result also follows 

by using the conformality conditions.
Theorem 2.1. Let Abe a cross-cut grid partition of a domain & in Ra such that 

no more than three cross-cuts meet at a common grid-point in S>. Then for &>2, 

>̂) does not contain any поп-trivial locally supported bivariate spline function.
It is clear that this theorem does not hold for jfc =  l .  Let Jc>2, and suppose that 

there is a non-trivial locally supported bivariate spline function s(x, y) in  St-1 (A, 
Q) ) . Then there exists a grid-point A =  (ж0, yo) which is on the simple closed polygonal 
curve that defines the local support of s(cc, y) such that at worst three smoothing
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cofactors of s(®, у) at A  are not all identically zero. Since уь—Jo —1, these smoothing 
cofactors are constants;, say, dt, d2 and d3, and we have assumed that c?i+dl4-d |>0. 
Let Г 1г Г 2 and Г 3 be the corresponding grid-segments that share the common grid- 
point A. Then we may represent the lines containing these grid-segments by 

« i(» -ffo ) +  h iy -y o )  =  0, a2(a}-x0) +  b2( y - y 0) =  0 and a3Qc-x0) +  b3(y -  y0) =  0 
respectively, where {at, bt), (a2, b2) and (a3, b3) are pairwise linearly independent 
ordered pairs. By the conformality condition (2 .1) at A, we have the identity  

dtiatisa- щ )  -\-bt{y~y0)'])c+ d 2{al2{x -x d ) +  Ь2( у - у 0)11> 
+ d 3ia3{x-XQ)+b3{y-yo)'})c==Q. (2 -2>

By equating the coefficients of (ж—cc0) ‘(y—y0) in  (2 .2 ) , we obtain the linear 

system

2 # Г Ц = 0 ,  i = 0, - , i .  (2-3)
3=1

Assume, for the time being, that at, a2, а3ф0. Then by (2 .3) for i —Jo—2, Jo — 1 and 

Jo, the determinant of the coefficient matrix is

a\a2al (—  \  а з
ЪЛ (Ъ2 b t \
at /  \ a2 a t )

=  aT2a2~2af~2{a2b3- a 3b2) {atb3—a3bt) («i&2- « A )  
which is nonzero since (at, bt), (a2, b2) and (a3, b3) are pairwise linearly independent. 
I f  bt, b2, b3Ф0, the determinant of the coefficient matrix (2.3) for i = 0, 1, 2 is again 
nonzero by the same argument. Henoe, we may assume that at least one of the at, 
a2, a3 and one of the b%, b2, b3 are zero. Without loss of generality, let «1= 0  and' 
b2—0. Then a2, a3, bt, Ь3ф0 since the three ordered pairs are pairwise linearly 

independent. But by using (2 .3 ) for i = 0, Jo—1, and Jo we have a2d2+ a3d3=0, bfdt 
+  b3d3 =  0, and а-Г1й3йз=0. Hence dt=d2=d3= 0, which is again a contradiction. Note 

that in  the above proof, we need 2,
One of the most important grid partitions of a domain &  in  applications is a 

cross-out triangulation of the first kind which we denote by A. Here, every interior 

cell of A is a triangular region, each grid-segment (or edge) lies on a cross-cut, and 

each vertex of A is a point of intersection of exactly three cross-cuts. By the above 

theorem, we know that Sf"1 {A, does not contain any non-trivial locally supported 
bivariate spline function. We w ill now construct a bivariate B-spline in  8 3 (A, 3>), 
This spline function is unique when it is properly normalized and its support which 

consists of 24 triangular regions is the smallest. By the transformation (1.3) it is 

sufficient to consider a cross-cut grid-partition A' which is determined by the lines 

(1 .4 ), namely:

h,j‘ \J~b®+y—2 \ / 3  У=0,
* l2,f. \/~3<v—y —2\ / l f  j = 0 ,

.k . f - y + 'J  3 у = 0, ;=•••, -1 , 0, 1, •••.
(2 .4)
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These lines divide B 2 into regular triangular cells. We will construct a bivariate B- 
spline in  81 (A', B s) whose support is centered at the origin О such that it is 

symmetric about the lines li,0, l2,o and Z3l0. The other bivariate B-spliens in  SI (A\ 
B 2) are simply translations of this one. We need the following notation.

Let -d i=  ( — 2, 2 \/~ 3 ) ,  A2 =  (0, 2 s/~8) ,  A3— (2, 2 , A4 — ( 3, s/~B ) ,

Л = ( - 1, « / 8 ) ,  Л = ( 1 ,  * /8 ) ,  Л = ( 3 ,  ч /Ю , A = ( - 4 ,  0) ,  А = ( - 2 , _ 0 ) ,  Л о  
=  (0, 0 ), Д ц - ( 2 ,  0 ), А 12= ( 4 , 0 ) ,  А з =  ( - 3 ,  -ч /" 3 ) ,  А14= ( ~ 1 ,  - > / 8 ) ,  Л 5 
- ( 1 ,  - * / 3 ) ,  A e = ( 8, - ч / З -) ,  А17= ( - 2 ,  - 2 ч/Ю , А 8= (0 , - 2 ч / 3 ) ,  and А з

— (2, - 2ч/'3 ) .
A triangular cell with vertices at Ah Ah A  w ill be denoted by [i, j ,  h] : =  [A , 

Ah A^. Hence, the vertices A1} • ••, А э  determine 24 regular triangular cells Dt, 

•••, D24, namely:
^ = [ 1 , 4, 6] ,  D2=  [1 , 6, 2] ,  D3= [ 2, 6, 6] ,  B 4= [ 2, 6, 3 ], D5 =  [3, 6, 7], 

Z>6= [ 4 ,8 ,  9 ], D r= [4 , 9, 6] ,  Ds =  [5, 9, 10], D » = [6, 10, 6] ,  Di0=  [6, 10, 11], 

D u =  [6, 11, 7 ], £ 12 =  [7, 11, 12], Б 13 =  [8, 13, 9 ], £ 14 =  [9, 13, 14], B 16=  [9, 14, 
10] , DM- [10, 14, 16], D 17= [1 0 , 15, 11], Dls = [ l l ,  16, 16], Dm = [1 1 , 16, 12], 
£ 20= [1 3 , 17, 14], £ 21= [1 4 , 17, 18], D22=  [14, 18, 15], X>23=  [16, 18, 19], and 

Z>24= [1 6 , 19, 16].
Let К = clos (Hi U • • • Ul B2i) be the closure of the union of these cells. Then the 

boundary dK  of К  is a simple closed hexagonal ourve. We w ill construct a bivariate 

Б-spline in  S3(A') supported on К  I t  is easy to see that there is no non-trivial 
locally supported bivariate spline in  Si (A') supported on

iTo =  clos (D8 U A) (J Aw U D i5 U D16 U Б17) . (2 .6)

Hence, К  is the smallest compact support that is symmetric with respect to l1>0, l2l0 
and Z3l0. W e have the following result.

Theorem 2. 2. There is a uniqm bivariate spline function В (so, y) in SI (A') which 
is symmetric with respect to lli0, ?2,o and Z3,0, such that B{0, 0) = 1 /3  and that В (so, у)
— 0 for all (so, у') outside К . This bivariate spline В (sc, y) is strictly positive in the 
interior of dK  and its restriction on K 0 U olos (Б* U As U Б е U Dn U В 20 U B21U D23 U B 24 
U Б 19 U D12 U A> U Б 4) is of smoothness class G2. Let Pi(oo, y) £ P 3 denote the restriction 
of В (so, y) on Di} i —1, •••, 24. Then

Pio(p>, У) ( g  12 aj2+ 72 ж3)  +  ( 12 +  72 x) y2+ 162 yS>

PuQ», 2/ ) = (

+

9 4

1

so- 1  so2

(•

144

1

\  . /  ч / з  . ч /з  V 3
И  и + Т Г в 3)

18 144 ®)3T
7 ч /3 
1296 У
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p “ (”'
OU-^ljt y 3 

824 y ’

>0 , У) =  ( aj arК ч/ 3 . ч / 3 ч/З"

+

144 /  V 8

о б \ /  3 a

9
as- 144 *  ) 2/

( э  48 Х) Г  1296 Г>

p*(p, ^ = ( - f

P s( ^ 2/) =  ( 4 - ~ ^ )  +  (-

ч /Т  , ч /З
9

s/8  , V 8
6 72

® )»Ч §Ч Н И ш *
n/ 3

Pe(®, 2/)
_1
12

5 ч /3
648 ST,

PiO , a') =Рб(-® , 2/), Ра(®, 1/)=Р4( - я ,  2/), Pe(®, 1/) =Pis( — 2/),
P t(®, ! /)“ P u ( - « ,  2/) , Pe(®, 2/ )= P io ( - !» , i/), P m (®, y )= P i2(~as, ~ y),

Pu(x, 2/) = P n ( - ® ,  ~ 2/) , P m .(®, 2/ ) = P io( “ ®, ~ 2/), Pie(®, 2/) =  Pi>(®, ~ 2/), 
Pir-.(®, 2/ )= Р ю (^  - у ) ,  Р и (®, 2/) =P u (® , - 2/), Pi»(®, 2/)=P is(® , - 2/),

P»>(®, y)=*P5( - x ,  ~ y ) ,  P»(®, 2/)= P < t ( -« , ~ 2/), Paa(®, 2/) =Pe(®, ~ 2/),
Pae(®, y )= P i(n , - y ) ,  and Pat (as, y )= P 5{x, - y ) .

To prove this theorem, we first construct the polynomial P i0 (#, 2/) • This 
polynomial is uniquely determined by the ten interpolation conditions:

Р ю ( Л о ) = 4 ( 1 + й ) ,  Р м ( Л ) - Р м (4 й )= = |А ,

Р10((Л о+ Л + Л 1> /3 ) = |( # + Л ) ,  -^ Р ю (Л о) = -1~Р 10(А10) =0,

the tangential derivatives of Рю(®, 2/) along from to J .6 at J -ц and from J ,6 to 

J .X1 at J-e are equal to.®, and the outer normal derivatives of Px0(®, 2/) with respect 
to the line ?i,x at -46 and -4ц are equal to w. Here, Д, t, w and ® are parameters. Since 

P(a?, 2/) is symmetric with respect to Z3l0, P 17 (ж, 2/) =  Pio(®, ~  2/) and since

P X7 (ж, 2/) -P io(® , 2/) =Cfio,i7(®, 2/) Сгз,о<>, 2/ ) ]2, 
where Cho,i7(<r, 2/) is the smoothing cofactor of P(cc, 2/) across the grid-segment 

-dio^n, it can be shown that

8 0 -1 6 ч /3 и
81

and ® = 4/ З w.

Next, we use the conformality conditions of В (as, y) at the grid-points Alt and J .13 
simultaneously. These algebraic equations determine h and и uniquely, namely: 
h—1/2  and и— — З4/  3 / 8. Hence all the parameters of Рю(а>, y) are determined. The 

polynomials Рц(ж, у), Р м (®, 2/) , Рб(®, 2/) , Р<(®, 2/), Рв(®, 2/) and Р в(®, 2/) are 
determined (uniquely) by first finding the smoothing cofactors. They are:
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Gw, и  (as, y) = S a s + y -8 s /8 ) ,

On, is (as, y) = 432  ̂x + y  4 \ /B ) ,

Оц,5(а>, y ) “

0 5,4(as, y) =

Oi,z(as, y) = ( y ~ 2 \ / l i ) , and

^з, э (as, y) = 4 V 8 >-

The other polynomial pieces are obtained by symmetry. In the above construction 

of В (as, у), we have set B (x,y)  = 0  for all (as, y) outside К . It is clear that B(as,y)>0  
in  the interior of dK , and the smoothness conditions can easily be verified since 

В (as, y) is obtained from Pw(a>, , y) by using the smoothing cofactors.

3. Approximation properties of the I?-spIines
Let litj, i —1, 2, 8, —1, 0, 1 , •••, be the lines in  (2.4) that define a

cross-cut triangulation of the first kind A' of R 2, and В (as, y) be the bivariate O1 
cubic 5-spline function obtained in  Theorem 2.2. I f  6ч= (ash yt) is a grid-point of 
the partition A!, we define

Bi(as, y)=B(as-asi, y - y i ) .
Here, we need (as0, Уо) =  (0, 0) and note that B0(as, y) =B(as, y). Each Bt(x, у) is 
a bivariate 5-Spline function in  SKA') whose support is enclosed by the simple 
closed (regular) hexagonal curve joining the points (a>i+4, yt), (aSi+2, yt+ 2л/~3 ), 
(aSi-2, y i+ 2 \ /  3 ) ,  (asi-4, yt) , (xt- 2 ,  y{-2 s /~ 8 ) , (ж»+2, y{- 2 s /  3 )  and (ж*+ 4 , y<) 
consecutively. The interior of this curve w ill be denoted by Hi and its closure by 

Hi. Let PA be a domain in  R2 and Q=Q(PA) =  {i: Hi П РАфЩ. We w ill now show 

that the bivariate 5 -sp lin es 5 г(as, y) form a partition of unity, as in  the following:

Theorem 3. 1. For all (as, y )£ P t

- S  B i(as,y )= l. (8.1)

Since Bi(as, y) > 0  for all (as, y) p H i  and Bi(as, у) — 0 for all (as, y) P^PA\Hh the 

identity (3 .1 ) implies that {B cipO ^A )}  is a partition of unity for PA. To prove 

(3 .1 ), let

F(x, У) = S  У).i£U(0f)



We first note that В (A o) =  1 /3, £ ( A )  = £ ( A i )  =  1 /9 , £ ( A )  =  £ ( A )  =  B(A7) 
= B (A la) =  0, B ( ( A + A + A ) / 3 )  =  £ ( ( A + A i + A ) / 3 )  = 17 /2 4 3 ,£ ( ( A + A + A ) /  
3) = £ ( ( A + A + A ) / 3 )  = 5 ( ( A + A i + A * ) /8) = 6 /486 , and £ ( ( A + A o + A ) / 3 )  
=  £  ( (A + A o -b A i )  /3 ) =69/243. The rest of the values of В (сс, у) at the grid-points 
and mid-points of the cells oan be determined from these values by symmetry. 
Consider any cell D of the grid partition A  such that 1>{\ААФ§. It is clear that D(D) 
has cardinality 12 . The value of F (со, у) at each of the three vertices of D is

8(°)+1-(т)+в(т)“1'

ааай « ( w M l f M i s s ) - 1
at the mid-point of D. Also, it is easy to verify that 8F/dx and dF/dy are both equal 
to О at the three vertices. Hence, F(po, y ) —l  for all (x, y) ^B. Since D is any cell 
and F(x, y) is continuous, this completes the proof of the theorem.

The above result oan be extended. To do this, we define the operator

V: C ($ )-* S l(A ,@ )  
by

( F / ) ( s ,  S /) -  s  / О » . , » ) (3-2)i&QCSS)
for all /  6  C (*3) . This is a generalization of the variation diminishing spline operator 
in  univariate spline funotion theory. Hence, we w ill also call it a variation dim ini
shing bivariate cubio spline operator with respect to the grid partition A. W e have 
the following result.

T heorem  3.2. V f  = /  for all f £  P i.
To prove this result, we first note that V  is a (positive) linear operator on О(<3) . 

Hence, by a linear transformation and using Theorem 3 .1, it is sufficient to prove 

that (Vf) (x, y) = f(x , y) for f (x , y )= x  and f (x , y )= y  and (x, y) £ K 0) where K 0 
is given in  (2 .5 ) . By Symmetry it is sufficient to prove the identity on Dio and for 
f ix ,  y) =x. Let f (x , y) =x. By using the computation analogous to the proof of 
Theorem 3.1 , we see that V f  and /  agree at the vertices and the mid-point of the cell 
Dio. It can also be verified that d (V f)/8 x = 1 and 8 (V f)/8 y= 0  at the three vertices 

of Dio. Hence, V f = f  on H10.
Next, we w ill apply this result to study the approximation properties of the 

variation dim inishing bivariate spline operator V. of. course, we have to refine the 

grid partition A . To do this, let 8>0  and consider the cross-out triangulation As of 

R s consisting of lines Lit^ L iij(S) defined by:

n/  3 x + y - b s f b  j = 0 ,
« L2tj: Z x - y - b \ f b  j = 0 ,  j= - - - ,  - 1 ,  0, 1,

.A.j-: 2/ + S \ /  3 j / 2 =  0,
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This grid partition divides R2 into regular triangular cells where the length of each 
of the three sides of the triangle is S. If B fx, у) is the bivariate cubic JS-spline 
function in  Sl(A') defined above, we define our (normalized) bivariate cubic B- 
splines Nt,s(x, у) in  8 \ (4 ,) by

#«.«(*, y )-B «(2® /8 , 2y/8). (3 .4)
Hence, NitS(p, y) has support on a regular hexagonal region H il& consisting of 24 
regular triangular cells of Д  and centered at GtlS: =  (8ojj/2, %</2) ,  where <?{=  (aj{, я/,) 
are the grid-points of A'. Again, Nit&(x, y) > 0  for all (a>, y )£ H ilS and N{,s(x, y) =0  
for (ao, y) G Ra\-H),a. Let A1 be a compact set, ^  a bounded domain containing F, 
and

fle- O 4( J O - { № i4n ^ 0}.
Hence, there is a 80> 0  such that Gi,&£3 whenever £G^a and 0 < S < 8 0. Also, let 
0(3)') be the Banach space of functions continuous on 3  with the supremum norm 
I «I®, and let C *(3) be those functions in  0 ( 3 )  which are «-times continuously 

differentiable on ^ r e la t iv e  to 3 .  I f  f  £С г (3 ) ,  then for each (x0) Уо) in  3 ,  the 

derivative of /  at (ж0, Уо), denoted by D f (x0) y0), is the linear functional on R9 
defined by

Df(ot>o, y0) (<d, y) =/i(® o, 2/о) ж+ / 2(ж0, y0)y .

Here and in  the remainder of the paper, we use the standard notions:

dff t

f 12 =

fa *

& f

f*
df * _ d af  
d y ’ f 11 do?

fdxdy’ J21 dydx’ dy2 ’
Where f= f(< c , y ) . I f  f £ C 2 (3 ) , then its second derivative Daf ( x 0) yf) at a point 

(os0) y0) G 3  is the linear transformation from R2 X R2 to R defined by 

D2f(®o, Уо)((оо, у), (м, v)) =/n («o, yo)®u+f12(cvo, Уо)м 

+ / 2i(«o, y o )y u + f22(<c0, yo)yv.
Also, denote || Daf  || =  max{ || Dsf  (cc, y) |[: (cc, y) G 3 } ,

where || Daf  (%, у) || is the norm of the linear transformation B af(x , y).

Let V a, S > 0 , be the variation diminishing bivariate cubic spline operator

_  & f f 22'
Й2/

defined by

( ^ / ) ( ® л ) = 2 Ж 2 / * ) ^ м (*л ) .  (3 .6)i&Qa
Hence, by Theorem 3.2 , we have, on F

n / - / , / e P i .  _  (3 .6)
We next discuss the error analysis for the approximation of f £ 0 ( 3 )  by V f 
£81 (Д , 3 ) . W e use the standard notation

" ( / ,  S ) «  max _ { |/ ( a 5, y ) - f ( u ,  «)|:Ц (», у ) - ( и ,  u ||< S }. (3 .7)(а;, у), (u,v)es>
The following result is obtained.
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Theorem 8.3. Let f  £ 0 ( 9 ) .  Then for 0 < 8 < 8 o
\\f'-Vsf\\F< a > (f,2 8 )t 

If, m  addition, f ^ O 1 ( 9 ) ,  then

\\f~ V tf\\F< - ^ - — 8»max[co ( f t, ^  8 V 3 8 Y 1 
2' 3 Л '

cmd i f f £ G a( 9 ) ,  then

(8 .8)

(8 .9)

(8 .10)

The proof of (3 .8) is trivial by using the property of partition of unity of { if  
namely

I ( / - Г . / )  (a, J/) | -  2  ( / ( * ,  9) - / ( « , ,  !/.))№ ,.(*, 3/) I
I

<  2  I/O®, 2/) - / ( %  Уд\NU*> У) I,i£fle
since Nt.iQo, y )> 0 .  By using the support property of NilS and that S  А<,а=1, we

have the required estimate (3 .8 ) . Note that 2S is the radius of H il&. Next let 
f £ G x(9 )  and let Ddli be a cell of A'd such that

(8 .11)

Also, let (x0, y0) be the center of Ddli. Then by the Mean Value Theorem, we have 

/  О», У) = /  (®o, Vo) + f i  (w, v) (x  -  x0) + / 2 (u, v) (y -  y0) 
for some (u, v) =  t(x, у) +  (1 —t) (x0, yo), where 0 < i < l .  Let

P (я, У) = /  (®o, Уо) + f i  (%, yo) (я ~  йо) + f 2 (я0, Уо) (У -  Уо) . (3.12)
Then we have

f(x , у) -p (x , у) -  (fi(u , <v) - f i ( x 0) y0)) (x -x 0)
+  (M u , <v) ~ f 2(x0, y0)) (y~yo) .

Hence by (3 .6 ) , we have, from (3.11)

\ f -p h u . +  W b ( f -p )  \\m.i 
< ( l + |F a | | ) | | / - ( P |s , ,

V 3 8 \  , /л - /3 S '
(̂1 +B^aH)inax[6J ( A  -  g3 8~)> " ( / з ,  —

where g(8) : = т а х { |ж —(c0[ +  \у~Уо\‘ (я, у) €  A,*} =  ( 3 + V  3 )S /6. Since it is clear 
that I Fa [|=1, the inequality (3 .9) follows. Now let f £ 0 2 ( 9 ) . Then by Taylor’s 

Theorem, we have

f& , y )= p (x , y )+ -^ D af(u , x ) ( ( x - x 0, y - y 0), (x -x 0, y - y 0))

for some (u, x) (x, y) +  (1 —t) (x0, y0), t £  [0, 1 ] ,  where p(x, y) is the linear 

polynomial given in  (3 .1 2 ). Hence by an argument similar to that given above, we 

have

]/-F ./ Ir-| l/ -F ./| | IJ..„J.<2l/-p|U,a< A 8 s|Ds/ i.
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This completes the proof of the theorem.
The above result can be extended to the most general oross-cut triangulation of 

the first kind. From Lemma 1 .2 , we know that any cross-cut triangulation A of the 
first kind of Rs is made up of lines

r M i,} :«i (<&—a?0) +Ъх(у—Уо) + jr)i=0,
j  M 2)j:a2(a>~a>o) +  Ь2(у ~ y0) + J772— O, (3.13)

'<Ms,j:ai (x~a}O) + b 3(y~yo)+jr]&=0>

where j  =  •••, —1, 0, 1, •••, and (а1г Ъ%), (a2, Ъ2), («з, 63) are pairwise linearly 

independent ordered pairs (co0} y0) is some grid-point of А, щ is some positive 

number, and rj2, 773 must satisfy the relationship

(йаЬз— Й3&2) Vi а  (®1&з Й361) 772 =  (fli&2— &Фх) Vs. (3.14)

Write 17i= \/T T 8 where 8> 0. We w ill call 8 the mesh-size of the gridpartition (or 

triangulation) d. Note that if  (<c0, 2/0) =  0 and («1, 61)= = (\^ 3 ,;1 ) , (02, &2) == (*/3~, 
—1), (аз, 63) =  (0, 1), then the grid partition A coincides with the grid portition A' 
in  (3.3) with this relationship between fji arid 8. Recall also that 8 is the length of 
each grid-segment in  Д . Let

d (8) = d ( 8; (ai, 61) ,  (a2, b2) , (аз, &з); (<c0, y9))  ,

denote the grid portition A determined by the lines (3.13) With 771=  s /  3 8, and let 
A be any cell of d (8) .  It can be proved' that the lengths of the three sides of the 

triangle A are
\/3 (а |+ 6 з )  q
']«1&3 —03&l|

^ S ± 5 ? S a n d
|a20i —aiflt] (3,15)

s /  3 (a\ 4- Ъ\) а2Ъз — Ъ2аз [ g
I (axЪз -  a36i) (a2bx -  axb2) \ ’

and the distances from the center of A  to the three vertices are

\ /  3 [ (2аз,5а&з—а2ЪхЪз — йз5д,52) 2 (%а2азЪх аха>Ф3—a%a382) a] g
3| (a2bx~axb2) (axb3~azbx) | . ' ’ '

\ /  3 [ (2й2&1&3 ~  а-уЬзЬз ~  2~b (2й1Й352 ~  аХ&%Ьз ~  аФ&Ьх) 2] * /q
3 | ( а А - й 182) ( ^ з - « з 5 1) |  . '

\ /  3 [ (2a35i&2—ахЪ2Ьз—e25ib3)S'h (2й1й2̂ з ®хазЬ2—&2афх) 2] 1/,s g
3 | («2&1~ «l&a) («i&3 — «3&1) |

Let a, /3, у  be three positive numbers difined as follows: «*8 is the maximum of the 

lengths of three sides of the triangular cells of d(S) given in  (3.15), /3*8 is the 

•тя.уттгштп of the distances from the vertices of a cell to its center given in  (3.16), 

and у  is the maximum of the three numbers



CHIN. ANN. OF MATH'. Vol. 4 Ser. В522

s /  3 [ 12аз&2&з — — Дз 1̂&а j-~Ь 12аз0?з5j, — Д1Д2&3 Дзйз&аП
3| (a2bi—a1b2) («163—a36i) |

\ /  3 [ 1 2a2htbs— gj6a&3 — йз5з,5з| +  12<Zi(tg ba — cii<iabs~№aa3^i[1
3) (aa&i-ai&a) («1&3— О3&1) I

\ /  3 [ 12(?3&̂ 5a— Дз,6в̂ з —  wibibs 1 4- 12а%д2Ъ2 —~ йдЯзбз ^2̂ 3̂ ! П 
3 I (02&1 Й162) ($1&3 йдЬд.) |

(3.17)

In  the speoial case when /1(8) is the cross-out regular triangulation Д  of Ra, we have 

« = 1 , £ =  « / 3/8  and -ŷ = (8+  V 3 ) / 6 .
Let i7jia(a;', 2/') he the bivariate cubio 5-sp lin es in  81 (Д ) defined in  (3.4).  Consider 

the (non-singular) linear transformation

. ‘ax(a-a0) + 61(2/ - 2/0) =  У'>

,% (* -% )+ 6>(8/-j /o ) -  ~ ^ r -a :' + s (j l'fh j/'

(3.18)

between the grid-partition Д  and /1(8) ,  and define the (normalized) bivariate cubio 

£-sp lm es Nitd(a>, у) in  5 i(J (S ))  by

# . , . ( * ,  < /)-# < ,i(®', 3/0, (3.19)
where (ш, з/) and (a)', g/0 satisfied (3 .1 8 ). Then ^ !(8 has support on a hexagonal 
region Fi)S centered at a grid point Et of /1(8) and consisting of 24 triangular cells 

of /1(8). As before, let 5  be о compact set, 3  a bounded domain containing F , and 
define the index set

4 = 4 ( i 0 = { i :
Let 80> 0  be chosen such that Е & З  whenever and 0< 8< 8Ol Also, define
the variation diminishing bivariate oubio spline operator Fj: 0 ( 3 ) —>8l(A(8)) by

( ? . / )  (*, v) -  2 /C E ,)ft..(® , » ).
<eSa

Then by a proof similar to that of Theorem 3.3, we have the following result: 

Theorem 3. 4. Let f £  0 ( 3 ) .  Then for 0<8<So,
_  i / - ^ / I U < < » ( / ,  2«s) .

If , in addition, f  ̂ C x( 3 ) , then
I l / - r s/||r<2r8m axta.(/1,.fig), » (/ a, /38)],.

and i f  f  £O a( 3 ) ,  then
u - r , n r < m m .

4. Final Remarks
The bivariate 5 -sp lin e  series

2 dWM(®, y) 
tea»

(4.1)
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«can be used to study the approximation and interpolation, of functions on or &  
by bivariate spline functions in  81 (A (8) ) .  It can be proved, however, that 
i  G &»} is on ly  a basis of a proper subspace of 8 \ (A (8) ) .  Therefore, it is quite fortunate 
that we have the Jackson order in  uniform approximation of funotions in  О (J&) and 
; G1 (@ ) . Also, by using the variation dim inishing bivariate spline operators, the order 
0 (8 a) is the best we can hope for, even in  univariate spline approximation. In  

interpolation, i f  the sample points are taken at the grid-points of the partition / 1(8) ,  
then by an appropriate ordering of the grid-points, the coefficient matrix in  determin
ing the Л-spline series (4 .1) is a symmetric Toepli z matrix whioh has at most 

seven non-trivial diagonals.
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