NONUNITAL POSITIVE LINEAR MAPS ON C*-ALGEBRAS

LI BINGREN (李炳仁)*

Abstract

In many cases, studying positive linear maps on C^* -algebras, we always assume that it is unital(i. e. it carries identity to identity). In this paper, the author discusses nonunital positive linear maps on C^* -algebras. First, similar to positive functionals on A, if Φ is a positive linear map from C^* -algebra A into B, then

 $\|\Phi\| = \sup\{\|\Phi(a)\| | a \in A_{+}, \|a\| \leq 1\} = \lim \|\Phi(v_i)\| = \lim \|\Phi(v_i^2)\|$

where $\{v_i\}$ is an approximate identity of A. Then the author proves that if Φ is an *n*-positive linear map from A into B, and $\|\Phi\| = 1$, then Φ can be extended to an unital *n*-positive linear map $\overline{\Phi}$ from $A + I_A$ into $B + I_B$ (or into B, if B has identity). This result can also be used to generalize some results about unital positive maps.

Let A, B be two C^* -algebras (not necessary with identity), Φ be a linear map from A into B. Φ is called positive if $\Phi(A_+) \subset B_+$. It is known^[1] that if Φ is positive, then Φ is bounded. Let $M_n(A) = A \otimes M_n$, $M_n(B) = B \otimes M_n$, and $\Phi_n = \Phi \otimes I_n$, then Φ_n is a linear map from $M_n(A)$ into $M_n(B)$. Φ is called *n*-positive if Φ_n is a positive map from C^* -algebra $M_n(A)$ into C^* -algebra $M_n(B)$. It is also known that if Φ is *n*positive, then Φ_k is also positive from $M_k(A)$ into $M_k(B)$, $\forall 1 \leq k \leq n$. Φ is called completely positive, if Φ_n is positive for all positive integer *n*.

Proposition 1. Let $\Phi: A \rightarrow B$ be positive, then

$$\|\Phi\| = \sup\{\|\Phi(a)\| | a \in A, \|a\| \le 1\} = \lim \Phi(v_l)\| = \lim \|\Phi(v_l^2)\|$$

where $\{v_i\}$ is an approximate identity of A.

Proof Because Φ is bounded, we have

$$\alpha = \sup \{ \| \Phi(a) \| | a \in A_+, \| a \| \leq 1 \} \leq \| \Phi \| < +\infty.$$

Now we define a linear map $\overline{\Phi}$: $A \stackrel{.}{+} I_A \rightarrow B \stackrel{.}{+} I_B$ as follows

 $\overline{\Phi}(a+\lambda I_A) = \Phi(a) + \lambda \alpha I_B \quad \forall a \in A, \ \lambda \in \mathbb{C}.$

We say that $\overline{\Phi}$ is positive. In fact, let $h + \lambda I_A \in (A \dotplus I_A)_+$, then $h = h^* \in A$, and $\lambda \ge 0$. Let O(h) be the O^* -subalgebra of A generated by h. Because O(h) is commutative, by [1], Φ . $O(h) \rightarrow B$ is completely positive.

Let $B \downarrow I_B \subset B(H)$ and $I_B = I_H$ (the identity operator in Hilbert space H). By

* Instute of Mathematics, Academia Sinica, Beijing, China.

Manuscript received March 3, 1982.

Stinespring Theorem^[1], there exists a nondegenerate representation $\{\pi, K\}$ of O(h)and a bounded linear operator $V: H \rightarrow K$ such that

$$\Phi(c) = V^* \pi(c) V, \ \forall c \in O(h).$$

If we define that $\pi(I_A) = I_k$, then $c \to V^* \pi(c) V$ is a completely positive map from $(C(h) \downarrow I_A \text{ into } B(H)$. In particular,

$$V^*\pi(h+\lambda I_A)V=\Phi(h)+\lambda V^*V$$

is a positive operator in H.

If $\{u_t\}$ is an approximate identity of O(h), by [1], we have

$$V^*V\xi = \lim \Phi(u_t)\xi, \ \forall \xi \in H,$$

so that $\|V^*V\| \leq \overline{\lim_{t}} \| \varPhi(v_t) \| \leq \alpha$, and $0 \leq V^*V \leq \alpha I_H = \alpha I_B$. Now by $\lambda \geq 0$,

$$\overline{\varPhi}(h+\lambda I_{A}) = \varPhi(h) + \lambda \alpha I_{B} \ge \varPhi(h) + \lambda V^{*}V \ge 0$$

and $\overline{\Phi}$: $A \dotplus I_A \longrightarrow B \dotplus I_B$ is positive.

Now by [2]

$$\alpha \leqslant \|\Phi\| \leqslant \|\overline{\Phi}\| = \|\overline{\Phi}(I_{\mathbf{A}})\| = \alpha,$$

so that

$$|\Phi| = \sup\{|\Phi(a)| | a \in A_{\perp}, ||a| \leq 1\}$$

Finally, let $\{v_l\}$ be an approximate identity of A, $a \in A_+$, $||a|| \leq 1$. Then $\|\varPhi(a)\| = \lim_{l} \|\varPhi(v_l a v_l)\| \leq \lim_{l} \|\varPhi(v_l^2)\| \leq \lim_{l} \|\varPhi(v_l)\| \leq \|\varPhi\|$,

so we also have

$$\|\Phi\| = \lim_{l} \|\Phi(v_{l})\| = \lim_{l} \|\Phi(v_{l}^{2})\|.$$

Thus the proof is complete.

Remark 2. From the proof of Proposition 1, we have also seen that if $\Phi_{:}$ $A \rightarrow B$ is positive, then

$$\overline{\Phi}(a+\lambda I_A) = \Phi(a) + \lambda \|\Phi\| I_B \tag{1}$$

(or if *B* has identity e_B , we can define $\overline{\Phi}(a+\lambda I_A) = \Phi(a) + \lambda \|\Phi\|e_B$) is a positive map from $A \downarrow I_A$ into $B \downarrow I_B$ (or into *B*, if *B* has identity). However, if $\|\Phi\| = 1$, $\overline{\Phi}$ will be unital, and it is also clear that $\overline{\Phi}$ is the minimal positive extension of Φ .

Corollary 3. If Φ , $A \rightarrow B$ is n-positive, then $\|\Phi_n\| = \|\Phi\|$.

In fact, if $\{v_l\}$ is an approximate identity of A, then $\{V_l \otimes I_n\}$ is an approximate identity of $M_n(A) = A \otimes M_n$. So by proposition 1

 $\|\Phi_{n}\| = \lim_{l} \|\Phi_{n}(v_{l} \otimes I_{n})\| = \lim_{l} \|\Phi(v_{l}) \otimes I_{n}\| = \lim_{l} \|\Phi(v_{l})\| = \|\Phi\|.$

Lemma 4. Let C be a C^* -algebra. There exists a completely positive linear map of norm one

 $\Lambda: (O \otimes M_n)^* \longrightarrow ((O \downarrow I_c) \otimes M_n)^*$

such that for each state ϕ on $C \otimes M_n$, $\hat{\phi}$ will be a state on $(C \downarrow I_c) \otimes M_n$ and

$$(\phi(\mathbf{x}+\lambda I_c)\otimes M) = \phi(\mathbf{x}\otimes M) + \lim \phi(\lambda r_i\otimes M)$$

 $\forall x \in \mathcal{O}, M \in M_n, \lambda \in \mathbb{C}$, where $\{r_i\}$ is an approximate identity of \mathcal{O} .

Proof See [3].

Proposition 5. Let $\Phi: A \rightarrow B$ be *n*-positive. Then, $\overline{\Phi}: A \stackrel{.}{+} I_A \rightarrow B \stackrel{.}{+} I_B$ (See(1)) is also *n*-positive.

Proof We can assume that $\|\Phi\| = 1$, and consider the following maps

$$(B \otimes M_{n})^{*} \xrightarrow{\mathcal{D}_{n}^{*}} (A \otimes M_{n})^{*}$$
$$\overset{A \downarrow}{\longrightarrow} (A \otimes M_{n})^{*} \xrightarrow{\bar{\mathcal{D}}_{n}^{*}} (A \otimes M_{n})^{*} \xrightarrow{\bar{\mathcal{D}}_{n}^{*}} (A \otimes M_{n})^{*}$$

(the diagram is not commutative) and let $f \in ((B \downarrow I_B) \otimes M_n)^*_+$.

If
$$g=f|_{B\otimes M_n} \in (B\otimes M_n)^*_+$$
, by Lemma 4, $\operatorname{in}((B + I_B) \otimes M_n)^*$ we shall have $\hat{g} \leq f$.

Let $h+I_A \otimes M \ge 0$ in $(A \ddagger I_A) \otimes M_n = M_n(A) \ddagger I_A \otimes M_n$, where $h \in M_n(A)$, $M \in M_n$. Then $h=h^*$ in $M_n(A)$, $M \ge 0$ in M_n . So

$$\overline{\varPhi}_n^*(f-\hat{g})(h+I_A\otimes M) = (f-\hat{g})(\varPhi_n(h)+I_B\otimes M) = (f-\hat{g})(I_B\otimes M) \ge 0.$$

This means that

$$\overline{\Phi}_n^*f \geqslant \overline{\Phi}_n^*\hat{g}.$$

Now let $\{u_s\}$ be an approximate identity of B, and $\{v_l\}$ be an approximate identity of A. Then $0 \leq \Phi(v_l) \leq I_B$. By Lemma 4 and $M \geq 0$ in M_n ,

$$\overline{\Phi}_{n}^{*}\hat{g}(h+I_{A}\otimes M) = \hat{g}(\Phi_{n}(h)+I_{B}\otimes M) = g \circ \Phi_{n}(h) + \hat{g}(I_{B}\otimes M)$$

$$\geq g \circ \Phi_{n}(h) + \lim_{i} \hat{g}(\Phi(v_{i})\otimes M) = \lim_{i} g \circ \Phi_{n}(h+v_{i}\otimes M)$$

$$= \widehat{\Phi}_{n}^{*}g(h+I_{A}\otimes M).$$

Because Φ_n is positive, Φ_n^* is also positive, so that

$$\oint_{n}^{*} g(h+I_{\mathcal{A}} \otimes M) \geq 0.$$

Therefore

$$\Phi_n^* f \geqslant \Phi_n^* g \geqslant \Phi_n^* g \geqslant 0,$$

and $\overline{\Phi}_n^*$ is positive. Hence $\overline{\Phi}$ is *n*-positive^[1] and the proof is complete.

Remark 6. By [4] and Proposition 5, we have the following result. If $\Phi: A \rightarrow B$ positive, and let $t, a \in A$ such that $t \ge a^*a$, ta = at, then

 $\|\Phi\|\Phi(t) \! \geqslant \! \Phi(a)^* \Phi(a), \ \|\Phi\|\Phi(t) \! \geqslant \! \Phi(a) \Phi(a)^*.$

Remark 7. Let $L = \{ \Phi | \Phi, A \rightarrow B \text{ positive, and } \| \Phi \| \leq 1 \}$ (this is a convex set), and Φ be an extreme point of L, a be a central element of A such that $\Phi(a)$ is also a central element of B. Then by [5] and Proposition 5, we have

$$\Phi(ab) = \Phi(a)\Phi(b), \forall b \in A.$$

Remark 8. By [6] and Proposition 5, we also have the following result. If Φ : $A \rightarrow B$ 2-positive, then for each $h \in A$,

$$\|\Phi\|\Phi(a^*a) \geq \Phi(a)^*\Phi(a).$$

References

[1] Takesaki, M., Theory of operator algebras I, Springer-Verlag, 1979.

- Russo, B. and Dye, H. D., A note on unitary operators in C*-algebras, Duke Math. J., 33(1966), 413-416.
- [3] Lance, C., Tensor products of nonunital C*-algebras, J. London Math. Soc., 12(1976), 160-168.
- [4] Choi, M. D., Some assorted inequalities for positive linear maps on C*-algebras, Preprint.
- [5] Stormer, E., Postive linear maps of C*-algebras, Lecture Notes in Physics, 29 (1974), 85-106, Springer-Verlag.
- [6] Choi, M. D., A Schwartz inequality for positive linear maps on C*-algebras, J. Math., Canada, 18 (1974), 565-574.