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MULTIPLICITY OF SOLUTIONS TO NONLINEAR 
BOUNDARY VALUE PROBLEM WITH NONLOCAL 

BOUNDARY CONDITIONS

Z h e n g  S o n g m u  * *

Abstract

In this paper the author considers the following nonlinear boundary value problem with 
nonlocal boundary conditions

Г л Эии I р =  const. — I У) cti, —— cos(w, xt)ds=0.
Jr  i,j* 1 OXj .

Under suitable assumptions on /  it is proved that there exists t0GB, — oo <{0<; +  oo such 
that the problem has no solution as t> t0, at least one solution at t= tQ} at least two solutions- 
as t<to.

1. Introduction

In  this paper we consider the following nonlinear boundary value problem with 
nonlocal boundary conditions

■ «, 0, mo,
/Т> \ J \  G&j / ,, , 4

'  *' 4 Г П g (.1.1)
м | г = const, (unknown), -  I 2  aij-~ c o s (n ,  ajt)ds=0,J Г i j = l  OXj

where Q c R n is a bounded domain with Gz+P' boundary Г , щ{т) G0 1+,J‘(Q)t

2  « у 2  if, «>o,_ ij= i e=i

f .  Q x JR xR ---->R is a O1 function with parameter t.
In  the recent years wide attention has been paid to such kinds of nonlinear 

boundary value problem with nonlocal boundary conditions whioh arise in plasma, 
physics and other physical problems.

In  [2] we apply the supersolution and subsolution method, different from the 
methods used by other authors, to this problem and obtain the existence of solutions. 
In  this paper by means of the supersolution and subsolution method combined with
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the technique in  [7] we obtain the multiplicity results for (1.1).
We make the following assumptions on the problem (1.1):
( i ) / : Q x R 'x R ---- > R , f£ 0 1.
( i i )  For each m £ R  there exists a function h(x) £ 0 (Q )  such that

f t(%, i ,  t)> h (x )> 0, f x £ Q } £> m , t£ R .

(iii) For each x ^ Q , t£ R ,

(1) limsup i ^ 00’ j*’ ^ <0; (1.2)

(2) lim inf ^ > Q ag (1.3)

(iv) limsup ^ < + o o . (1.4)

The above limits are assumed to be uniform with respect to x £ Q  and t in  any finite 
intervals.

We now have
M ain T heorem . Under the above assumptions (i)—(iv) there exists t0 £  R , — oo 

< t0< + oo such that the problem (P t) has no solution as t> t0, at least one solution at 
t= tQ, at least two solutions as t<.t0.

2. Some Lemmas

Lem m a 1. Let c(x) £ 0 ^ (Q )} c(x)l> 0 in Q, с(х)фО. I f  u(£02 satisfies 
РгН -см>0(>0), in Q,

и | г =  const, — j ̂  2  an cos(га, aJi)ds<0,

then м >0 (> 0 )  in Q . *
Proof See [2].
Define the supersolution u+ and the subsolution w_ of (P*)as follows:
Щ, m_ G O2,

[lM +> f{x , u+„ t),

w.U=const, — 2  I a u c o s  (n. x{)ds^0. 
i, J г  ОЩ

and
Рга_</(я, ra_, t),

n r
| г =  const, -  2  J

л  . •

ay 4 ^ -c o s (n, Xi)ds>0, 
г  d x j

(2 .1)

(2 .2)

(2.3)

respectively. •
We now have
Theorem  1. Let the assumptions ( i)— (iv) be satisfied, then there exists К  -o o
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< # o < + °°  such that the problem (P t) has no solution as t> t0, and at least one solution 
as t< t0,

Proof Let the problem (P#)be solvable at t=o  and denote by u0 the solution. By 
the assumption (ii), f t>0, we haye

■Lu0= f(x , u0, c )> f(x , u0, t).
i j Г -Л du0 / n i л (2.4)wc|r  =  const, •— 2  aa ~Ъ— cos(n, coo as=0.

■ J r  i, j~l O®}
Thus щ is the supersolution of (P t) for t< c.

On the other hand, the assumption (iii) implies that there exists a sufficiently
negative subsolution for t<o. In  fact, it follows from (1.2) that there exists $_<0
such that when £ < s_ <  0

o, (2.5)

hence
Ж  £, 0 > 0 .  (2.6)

Taking u- =  Constant s<s_, we have .
Lw_ =  0 < /(a ;, м_, t),

M_|r = const., — ( 2  °os(n, Mi)ds=0.  ̂ ^
JP  i , l=l  OX)

This means that we have the supersolution u+ and the subsolution m_ with m_ < m+ in
Q. Thus it follows from Theorem 2 in [2] that (P t) is solvable for t<c. The above
argument means that if (P t) is solvable at t —c, then so is (P f) for any t>o.

Let i0=sup e. For our purpose it suffices to prove — oo<to<H-°°.
I t is easy to see that (P {) is equivalent to

lM^Lu+cdU=f(()B, u} t)+6m AF(a!, u, t),
■ f n 8u ч (2.8)w r =const. — 2  ctu-k~ - cos(n, (Ci)ds=0,• Jrt,j~ i ощ

where со is any fixed positive number.
We first prove t0>  — oo. Let s0, s1} 0<so<si be two constants. If s0< s< s i, then 

by ,(ii) there exists him) > 0  in  Q such that for t< 0  we have

s’ s, 9t)>h(ei). (2.9)
. t

«Therefore
' F(a>, s, t) — F ix , s, 0 )<Й (ж ), (2.10)

F (x, s, t) — г*Л(а?)<Р(аз, s, 0) A I ’0(®, s)„ (2.11)
Since we have the sufficiently negative subsolution as stated before, it suffices to 

find a supersolution u+ satisfying s0< m+<Si and
Lu+> th + F 0{(o, u+)> F {x , u+, t),

du^ . (2.12)
-cos(-n, Xi)ds<0„

4
I г =  const, - f  2  au oos(-n, Xi)ds<Qt J r it j—i om,j

Let
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те =  max F 0(x, s). (2.13)
®efl,s<ss«ssi

If m <0, then. u+= Si is a super solution for tf=0. So we only need to investigate 
the ease m >0. ■

Consider the linear boundary problem 
' Lw = g

w [г = const., — f 23 ач ' oos(w, a/S)ds=0,  ̂ ^
■ J Z1 i, j = l

■where g £  L°{Q)} p>n. By the results in  [2], the above problem has a unique solution
w £ W 2,v(Q ) d 0 1(Q), Moreover,

||w|0«<0,1||w|jw..J.<O 2|y||j,. (2.16)
Let Q-i, Q2 be the subdomains of Q such that Q td d Q ^ d d Q ,

vol {Q -Q iy / P < ^ Z ^ l ) (2.16)
777/0 a

and H(w) £ 0 ° ,

■ a a  ( 2 Л 7 ). I m ,  Q\Q2
with As is well known, such H (x)  exists. Since h(x)> 0  in  Q2, we can
take t sufficiently negative so that th(jx>) + m < 0  in Q2. For such t, we have

in  Q .
H  (os) ̂ th (x )  +m (2.18)

Let v be the solution of
■ Lv= H (a?), 

d r =const, - [  23 «« ~§~~ oos(n, щ)(к=*0.
J r  i,5=1 OXj

Thus we have ^ > 0  and

(2.19)

Let

Thus we have

v U < 04H l9< 0a m  vol(Q — Qt) 1/p< h - s0. 

M+ =  S0+'y.

So<M+<Si,
F q ( x , m +) < to,

Lu+ = Lv+L80=II+G)So>E[^th+mPzth+Fo(x, u+)>F(®, u+, t), 

u+1г -const., -  2  ®y oos(w, a?{)ds=0,

(2 .20)

(2 .21)

(2 .22)
(2.23)

(2.24)

1. e, и+ is a supersolution. This means for sufficiently negative t, (Pt) is solvable. 
'This completes the proof of t0>  — oo.

We now tu rn  to the proof of tfo< +  °°.
By (1.3) of the assumption (iii) and (i) there exist t2, s+, t2>  — o°, s+ > —oo 

such that when u> s+> t> t+, / ( x, u, t)> 0 .
I t  follows from (1.2), (1.3) that there exist positive constants n>>0, sa> 0  such 

that when f  > sa> 0
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/ О ,  £, 0 >  — O).

Hence
£, t)+a>£>0, as £>s3'

There also exists a constant s_<0 such that when £ <s_ <0

■

g
Hence

/(®, £, t)+a>£>0, as £<s_<0.
Thus there exists a constant К  such that for every x £ Q , £(£.R and t>0  we have

(2.26)

(2.26)

(2.27)

(2.28)

/ (®, £, t )+ a> £> К .
Let й be the solution of

L z= K ,

£ I г “  constv -  f S  аи “i r -  cos(n. x£)ds=0,
J r  i,3- 1

(2.29)

(2.30)

If u+ is the solution of (P t) (tf> 0), then
' Im += J(x, u+, t)+cou+,

] u+1 jn == constv - f  S  aii cos(n} x,£)ds=0, 
J r  i , j=1

Therefore,
L ( u  — z ) > 0 ,

(и й) | г =  constj - [  2
J r  i , j=l

I t  follows from Lemma 1 that

(2.31)

^  _ d ( u —z) 
dxj cos(w, Xi)ds=0„

Therefore 

For we have

u ~  2> 0, in Q,

min
®sa

/(® , £  *)>/(®, й, 0)+« A(flj).
Let « be the solution of

/y|r  =  const., - f  2  ffly-|^-cos(n; ®0ds=0.
Jr i,j=i С7»;

By Lemma 1 _
-u>0, in £2.

Thus we have
' L(u—z — tv )= f (x ,  u, t)+OL>u—K  — t k ‘̂ ‘f (x ,  u, 0)+a>u — K ^ 0 ,

* , . Nl , f d ( u - z - t v )  , N, л (2.88)(w- г  —fa)) r  =  const., — 2  aw------7Г------ cos(rc, a/Jds = 0o
'Л  J r  i , j= l

I t  follows from Lemma 1 that
u —z — t<»>Q, in Q, (2.39)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

Since by (2.37)
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min.D>0, . (2.40)

there exists a sufficiently large number t \> 0 such that when t&*t%,
u> s+. (2.41)

Let max(f£, h ), then the problem (P #l) have no solution. In  fact in this case 
we have .

. f ( x ,  u, O > 0 . (2.42)
On the other hand, it is easy to see that the necessary condition for solvability of

( Л )  is
u, t)dx=0, (2.43)

which oontradicts (2.42) for t = t1. This implies (P tl) is not solvable, i. e, tf0<  +°°- 
Thus the proof is completed.

Lemma 2. The linear nonlocal boundary problem

{Lu+oeu=g(x) £ .0 (0 ) ,
, г » du f v , л (2.44)

и Ь  =  const., — >j в» -z— cos (n, mods =  0 
J г  i , j=i  ОЩ

with o)>0 is uniquely solvable. I f  we denote by u= K g the solution, then К  is a compact 
operator mapping from  0(Q ) into 0 X(Q). Moreover, К  is strongly increasing, i. e, i f  
gi(x)> g2(x), then u1=Kgi >Ub=Kg'i in  Q,

Proof I t follows from[2] that for any g(a>) £ 0 (Q ) £ L P(Q), p>n, the problem 
(2.44) admits a unique solution u(zW a'p(Q), Moreover,

IMIo'^OiMtvs-^OalMIp. (2.46)
Since the imbedding operator from W 2,P(G) into 0 1(Q) is compact, К  is compact, 

too. By Lemma 1, К  is strongly increasing. Thus the proof is completed.

§ 3. Proof of Main Theorem

Let

Р = |м [м 6 0 |1(й ), M|r=const, — f "w— cos(rc, » i)ds=ol (3.1)
L J r  o x j  J

equipped with G1 norm. It is easy to see that E  is a closed ordered subspaoe of 0 1(Q)
with natural ordor. Thus the problem (P t) is equivalent to fixed point equation

u=KF(a>, u, t )A K F (u , t). (3.2)
We have proved in  Theorem 1 that there exists t0, — o o < i 0<  +  oo such that (Pt)

bas no solution as t> t0, at least one solution as t< t0.
Let tl be any fixed number tl< t0, We first prove that (Pt*) has at least two

solutions.
For any v £  (Ц, t0), (P T) is solvable and the solution uv is a supersolution for 

(Pt*) as stated before.



On the other hand, as proved before, the problem (P n) always has the sufficiently 
negative subsolution u. Thus the problem (P T) has the supersolution u —u^ and the 
subsolution и with

u< u, in iQ. (3.3)
Let the ordered interval in  E be

X =  [м, w] =  {м£Х, (3.4)
Since X  is bounded in  О (Q), it follows from Lemma 2 that K F ( X ,  to)is compact in  
E . Let

G - K F ( - ,  it),
where we have set

co= max I/*(a?, s, f0) | +1. (3.5)
min w<s <max и

Thus by Lemma 1
( ? ( I ) d  ' (3.6)

andui = Gu>u, u2^=Gu<U' By the property of monotone operator G has a fixed 
point щ in  X .  Moreover,

u<tio<u, in  Q. (3.7)
Suppose now щ  is the unique fixed point of G in  X , otherwise we have completed 

the proof. Thus there exists s> 0  such that
щФ sB c zX , (3.8)

where В  is the open unit ball in E . This means that for any v £ B  we have
ll<Uo<8'0<U. (3.9)

Thus the Leray-Sohauder degree
deg( I  — G, u+ sB , 0) (3.10)

is well defined.
By the well known definition and properties of the Leray-Schauder degree and 

index1-7-1 we have
deg ( I —G, щ +еВ, 0 )= i(G , щ + еВ, E )= i(G , u0+sB, X )

==£((?, X , X )  =  .1. (3.11)
We claim that

’ there exists p> 0  such that щ +sBcipB  and 
• y tG I=  [to, t o 1[], \juG.E, [|м||и = р, (3.12)

K F (u , t) Фи.
If (3.12) is valid, then by the homotopy invariance of the Leray-Sohauder 

degree,
deg(J-<?, PB, 0 )= deg ( I - K F ( % t0+ 1), PB, 0 )= 0 , (3.13)

sinoe, according to the definition of t0, K F (* , ^o+l) has no fixed point at all in  E. 
Thus by (3.11) we have

deg( ! —<?, PB \(uo+ sB), 0 )= deg (I~ G , pB, 0)
—deg (1-6?, Щ+8В, 0) =  - 1 ,

No. 1 Zheng, 8. M. MULTIPLICITY OP SOLUTIONS TO NONLINEAR BVP 11

(3.14)
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which implies that there is a fixed point of Q  in p  B \ ( u 0 + s B ) . Therefore, the 
existence of at least two solutions of the problem (P ^) is proved, provided we verify 
(3.12). .
• We now prove (3.12) by contradiction argument. Suppose now (3.12) is not 
true. Then we find sequenoes t j £ l =  [$, t0+ l ]  and Uj—utj in E  such that ||м*Цв->оо 
and

■ Uj — K F (uj, tt) , (3.15)
Let

Uj

3 m u -
The assumption (iii) implies that there exist /л,<а> and &>Q such that

F(oo, u,
for all u(m): Q ^ R  and #G [to, to+1].

Let w be the solution of
' Lw+(a> — fi)w =  — к,

дгиw p=const , - fJ r i,j=l dxj ■cos(n, Xi)ds=0„

For each fixed point ut o fK F ( ° } t ) , t G J, we have 
Lut*=F(ut, t)^fjbut — k,

Thus

f n 8utщ I r — const., — 2  ~a— °os (п, ds= 0„Jr 1 t/Qbj

(3.16)

(3.17)

(3.18)

L(ut — w) 4- (o> — jju) (ut — w )>0, . •

Щ -  WI r =  const., -  '8^dv]W~  00S (nJ = 0o

By Lemma 1 we have \/t GI
w*—w>0, in Q .

On the other hand, by the assumption (iv)

limsup f ’ — <  +  °°, \/t G I ,
i-*+« g ■

there exist constants s+, M2 such that when f  > s +, t G i,

and when so G Q, £ G [niin w, s+] ,

°  / ( « ,  £,
Thus

. F (  uh tj)
_  M U

is bounded, in  О(Q),
Since

__ tt F (uh tj)
. _  M U  ■ ■ ■

and К  is a oompact operator from O(Q) into E , we can choose a subsequence, denoted 
still by Vj, such that

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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and

which, implies

E
Vj -----> V

V j >-
w

Ш а
-> 0, in Q ,

(3.27)

(3.28)

i;>0, in Q. (3.29)

On the other hand/the assumption (iii) implies that there exist a> 0 , /в>0 such
that

Thus
F(u, £)>(й>+а)и—@, \fu; Q-^R, t £I .  

о ъ =  К  К  ( й>+ 0!) %  . г г  &
*' л  Цч,!, • i«,IU A K l>

=  (со+а)-ЙГ1>.— К  тгДт—.
N il я- ,

Taking limit in  (3.31), we obtain
1)>(й)4-а)ЙГ1^я.

By the difmition of К  we obtain
' Lv— (a>+a)v^0,

(3.30)

v \r  = const, -  f 2 ay — - cos(n, as^ds = 0, 
Jr <,i=i

Hence

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

w==0, in Q, (3.36)
which contradicts N|[b= 1. This completely proves that when t< t0, (P f) has at least 
two solutions.

When t= t0, there exist ^ < t0 such that t3~>t0. Let % satisfy
( i t j ,  t j ) . (3.37)

I t  oan be seen from the previous argument that щ is bounded in E, and is also 
bounded in О (£?),too. Hence, F (uh t}) is bounded in C(Q). By the compactness of К

_  E
from 0(G ) into E  we can choose a subsequence, denoted still by щ, such that щ -— »
и. Thus by taking limit in  (3.37) we obtain

u = K F (u , t0) } (3.38)

which means that и is a solution of (P #0). Thus the proof of Main Theorem is
completed. •

{ L v ^ a v ,
C “ dv

« I г = const, -  2  % 1Г~ cos (»> = 0,J Г 006i
Thus it follows from «>0, a > 0  and

0=1  Lv da>> |  w  das Jo Jothat
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