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MULTIPLICITY OF SOLUTIONS TO NONLINEAR
BOUNDARY VALUE PROBLEM WITH NONLOCAL
. BOUNDARY CONDITIONS

ZHENG SoNGMU (¢ K A%) ¥

Abstract

In this paper the author considers the following nonlinear boundary value problem with
nonlocal boundary conditions

. &9 (. ou \_
{ = ;,;2=1 Ox; (a‘j =) 0%; ) =f (@ %)
w

| n=const, -—f ﬁ] a;,ﬂ cos(n, x;)ds =0,

4,551 ox; ,
Under suitable assumptions on f it is proved that there exists to E R, — oo <fp<< - oo suck
that the problem has no solution as ¢>1,, at least one solution at =1, at least two solutions
as t<<typ,

§ 1. Introduction

In this paper we consider the following nonlinear boundary value problem with
nonlocal boundary conditions
Lu=— 312 (ay(@) L) =f(, v, 1), n ,
(Pt ) ) % j=1_a£l7-s 3Q7j

7
4| p=const, (unknown), — jp iszl @y —g%cos (n, ®)ds=0,
s §= 4

(1.1)

where QC R* is a bounded domain with C*** boundary I', a;(w) € 0'**(Q),

éélaij§i§j>“ é &, a>0,
S Qx% R X R—>R is a 0! function with parameter %.

In the recent years wide atfention has been paid to such kinds of nonlinear
boundary value problem with nonlocal boundary conditions whioh arise in plasma.
physics and other physical problems. _

In[2] we apply the supersolution and subsolution method, different from the
methods used by other authors, to this problem and obtain the existence of solutions.

- In this paper by means of the supersolution and subsolution method combined with
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the technique in [7] we obtain the multiplicity results for (1.1).
We make the following assumptions on the problem (1.1):
(1) f. OxBxR—->R, fCOL
(ii) For each m € R there exists a function A(s) €0 (Q) such thab
Sfi(z, € t)=h(2) >0, Ve EQ, {=m, tER,
(iii) For each #€Q, tER, |

(1) limsup Lﬂ%géﬁ@; (1.2)
2) limnf i—(ﬂgibo, | | (1.3)
(iv) li}ffllp f—(w’—;’—-ﬁ< oo, _ | (1.4)

The above limits are assumed to be uniform with respect to € Q and ¢ in any finite
intervals.

‘We now have

Main Theorem. Under the above assumptions (1)—(iv) there ewists o€ B, —oo
<to< 400 such that the problem (P;) has no solution as t>ty, at least one solution at |
t="to, at least two solutions as t<to,

§ 2. Some Lemmas

Lemma 1. Let c(wl) €o*(Q), o(w)=0 in Q, c(w)#0, If u€O? satisfies

{Lu—{—cu>0(>0), in Q,
n ou @.1)
%| p=—const, —jp i§1aij Fral (n, 2,)ds<<0,
then u=>0 (>0) in Q, :
Proof See [2].
Define the supersolution u, and the subsolution . of (P;)as follows:
u+; U_ E 02)
Lu+>f<w: u+i('t>:
. n ou, ’ (2 -2>
{ Uy ' 1.1=00nS'b, _i,;z;l jp @ij —65;— Cos ('ﬂ, mi>d8<0,
and
In <f(w, u-, t),
u_|p=-const, — é j ay Bt cos(n, ©;)ds=0, (2.3)
j=1J0 8zvj
respectively.

We now have v .
Theorem 1. Let the assumptions(i)—(iv) be satisfied, then there ewists s, —o0
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<tg< 4o such that the problem (P,) has no solution as t>t,, and at least one solution
as t<t,

Proof Let the problem (P,)be solyable at t=c and denote by %, the solution. By
the assumption (ii), f;=>0, we have .

{ o=F (@, w, 6)=f(w, U, t)

2.4
u0|p=00ns13,. j Z @i 3 oos(-n a;,i)ds ( )

Thus u, is the supersolution of (P,) for t<Ce,

A On the other hand, the assumption (iii) implies that there exists a sufficiently
negative subsolution for <o, In fact, it follows from (1.2) that there exists s.<0
such that when £ <s_<0

f<“’§ Jo. &, 8 o, (2.5)

hence . '
fl@, & 8)>0, (2.6)
Taking u_=constant s<s_, we have
(Tu=0<f (o, u_, ¥, |
ron 2.7
{u_lp=oonst., ——j 2 @y g cos(n, @;)ds=0 ( , )
4 : T 7=t _
This means that we have the supersolution «, and the subsolution »_ with u_<wu, in

Q. Thus it follows from Theorem 2 in [2] that (P;) is solvable for i<le. The above
argument means that if (P,) is solvable at t=¢, then so is (P;) for any ¢>c,

Let fo=sup ¢. For our purpose it suffices to prove— <>O<to<+0°

Tt is easy 1o see that (P,) is equivalent fo

{LMALu—!—cou—f(m u, t)—{-couAF(w u, 1),
n ou (2.8)
= —1 ;e Nds=0
| p=oonst, J'P 5;31 % g, cos(n, o;)ds=0,
where  is any fixed positive number.

We first prove £o> —oo. Let so, $1, 0<<8y<<s; be two constants. If so<s<sl, then

by (ii) there exists ~ (@) >0 in Q such that for {<0 we have

Flo, 5 0T (@5 0) _p,q, 5, 08)>h(). (2.9)

JT'herefore |
' F(w, s, t)—F(a, s, 0)<th(w), (2.10)
Fx, s, t)—th(a)<F(o, s, 0)AF(w, s). (2.11)

Since we have the sufficiently negative subsolutlon ag stated before it suffices to

find a supersolution w, satisfying s,<u,<s; and

Lu,>th+Fo(a, u+)>F(w u+, i), |
' (2.12)
w,. | p=const, —j E} @y S 6 £ cos(-n, @;)ds<<0,

Let
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m= max F(z, s). (2.138)

@ EQ,5<8<8),

If m<<0, then u, =s; is a supersolution for #=0. So we only need to investigate
the case m>0.
Consider the linear boundary problem

Tw=g ‘
2.14
{fwlp=eonst., J 2 i; —F— 3 oos(n w;)ds=0, ( )

where g € IP(Q), p>n. By the results in [2], the above problem has a unique solution
WwEW(Q)=O0N(R), Moreover,

|| <Oi|w]wr><OC2|gl,. - (2.15)
Let Qy, Q. be the subdomains of 2 such that Q,CCQ,CCQ,
vol(Q—0y) 1/v<%§§l, (2.16)
and H(a) €0~ _
H(2)=] 0, @, (2.17)
(w- m, Q\ Qs _ '

with 0<<H (a;) <m. As is well known, such H () exists. Since h(2)>0 in Q,, we can
take ¢ sufﬁ(uenﬂy negative so that th(a) +m<0 in Qs For such #, we have

in D H (@) >1th(a) +m (2.18)
in Q.
Lot » be the solution of
Iv=H(w),
2,19
{ »| p=const, —J 2 @y 8 oos(rn @;)ds = (2.19)
Thus we have »>0 and
19]o<Os| H| ;<03 m vol(Q2—Q)?<s;—8o, (2.20)
Lot .
U, =So+v, (2.21)
Thus we have
S0, <S8, (2.22)
FO <w, U+><m, (2 023)

f/u+==Z@+T/so=H+a)so>H>tk+m>th+Fo(w, u ) =F (2, u,, t),
| 2.24
{u+|p=cons’o., —j E a,, cos(n ;) ds = ( )1

i. e, ws s a supersolution. This means for sufficiently negative ¢, (P;) is solvable.
~"This completes the proof of ¢p> — oo,

We now turn to the proof of fo<<+ oo, :

By (1.8) of the assumptlon (iii) and (i) there exist iy, St fa>> —00, 8,>—00
such that when u>s,, t>t,, f(, u, 1)>0,

Tt follows from(l.z), (1.3) that there exist positive constants >0, $,>0 such

that when £>s5,>0
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f<"’§ f@ 80 _, (2.25)
Hence :
f(w, & 1) +wE>0, as £>5,, (2.26)
There also exists a constant s_ <0 such that when £ <s_<0
f<w§ t>< —o, (2.27)
Hence |
J(w, &, 1)+ >0, as §<s_<0. (2.28)

Thus there exists a constant K such that for every o€ Q, £€R and >0 we have

f@, €, 6)+ot=>K, . (2.29)

Let # be the solution of

{Lz K
n o (2.80)
2| r=const., — L i’%l % 5a cos(n, @;)ds=
If u, is the solution of (P;) (¢>>0), then
{Eui- =f(w) Uy, t) +wu+)
' : = U+ _ o (2.81)
u+|p=oox}st., - L i,%l @45 By cos(n, @;)ds=0,
Therefore,
{ L(u—z)=0, |
' : no o (u—2) B (2.82)
(u—2) | p=oconst, —L ¢§1 % = G cos(n, @;)ds=0, :
It follows from Lemma 1 that ‘
u—2=>0, in Q, (2.83)
Therefors o
u=>z>min 24 m, (2.34)
vEQ
For ¢=0 we have |
@, & =1 (w, £ 0)+1 h(a), (2.85)
Let v be the solution of
Tv=h>0, |
n ’ (2.86)
v | p=oconst., -—L %1 i oos(n @;)ds=0,
By Lemma 1 _
>0, in 2, (2.87)
Thus we have '
{L(u 2—tv) =f (o, u, t)+cou K—th=f(s, u, 0)+ou—K=>0, |
no o(u—z—1w) _ (2.88)
(u—z~tv} |p=oonst., — L "’251 TR cos(n, @;)ds=0,
It follows from Lemma 1 that

u—z—tw>0, in Q, (2.39)
Since by (2.87) '
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minv>0, , (2.40)

wcd
there exists a sufficiently large number #>0 such that when >3,

u>s,, (2.41)
Let ¢;=max(#3, t2), then the problem (P;,) have no solution. In fact in this case
we have .
J(®, u, £1)>0, ' (2.42)
~ On the other hand, it is easy to see that the necessary condition forsolvability of
| (Py) is S
L, f(w, u, §)dw=0, (2.43)

which contradicts (2.42) for ¢=¢,. This implies (P;,) is not solvable, i. e, fo<<--o0.
Thus the proof is completed.
Lemma 8. The linear nonlocal boundary problem
{ Tu+wu=g(x) €0(Q),

2.44
| p=const., ——j 2 iy a oos(n w;)ds=0 (2.44)

with w>0 4s uniquely solvable. If we denote by u=Kg the solution; then K is & compact
operator mapping from O(Q) into OX(Q). Moreover, K is strongly increasing, 4. e, if
91(®) =>ga(@), then u;=Kg;>us=Kgs, in Q.

Proof Tt follows from[2] that for any g(#) € 0(Q) € L#(Q), p>n, the problem
(2.44) admits a unique solution w€W=?(Q2), Moreover,

|l o <O wro<Cilgls. e

Smoe the imbedding operator from W2?(Q) into 0*(Q) is compact, K is compact,

t00. By Lemma 1, K is strongly increasing. Thus the proof is completed.

§ 8. Proof of Main Theorem

Lot
={u;ueo1<§>; ulp=oonst, — 31 2% aos(n, a)ds=0 } (3.1)

equipped with C* norm. It is easy to see that K is a closed ordered subspace of O'(Q)
with natural order. Thus the problem (P;) is equivalent to fixed point equation
u=KF(z, u, ) AKF(u, t). (3.2)

Wo have proved in Theorem 1 that there exists £, — co<#y<-+ oo such that (P;)
‘has no solution as {>>%,, at least one solution as t<ty, |

Let #5 be any fixed number #5<to, We first prove that (Py) has at least two
:solutions.

For any 7€ (8, %), (P,) is solvable and the solution u, is a supersolution for
{P;,) as stated before.
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On the other hand, as proved before, the problem (P,,) always has the sufficiently
negative subsolution . Thus the problem (P,) has the supersolution w=uw, and the
subsolution ¥ with ' '

u<u, in @, (8.8)
Lot the ordered ‘interval in E be
| X =[u, 7] = {w€ B, u<u<u}, (3.4)
Since X is bounded in O(f2), it follows from Lemma 2 that KF (X, ¢5)i8 compact in

. Let
G=KF(-, i),
where we have set

w= max |fiw, s, t)]|+1, (8.5)

min y<s <Max

Thus by Lemma 1
G(X)cX ' (3.6)

and w; =Gu>u, us=Gu<u, By the property of monotfone operatbr G hag a fixed
point u, in. X . Moreover,
u<up<u, in Q, | (8.1
Suppose now is the unique fixed point of G in X , otherwise we have completed
the proof. Thus there exists ¢>>0 such that

U8B X, (3.8)
~ where B is the open unit ball in H. This means that for any v € B we have
' U<ty < 8V, (3.9)
Thus the Leray-Schauder degree ' ’ '
' deg(I - @, u+s8B, 0) (3.10)

is well defined.
By the well known definition and properties of the Leray-Schauder degree and
index™ we have
deg(I—@G, wp+eB, 0)=i(Q, uy+eB, E)=i(G, up+eB, X)

=¢(q, X, X) =1, : (38.11)
‘We claim that

there exists p>>0 such that uy-+eBpB and
VEEI=Tts, to+11, YuEE, [u]z=p, (3.12)
KF(u, t)+u,

If (8.12) is valid, then by the homotopy invariance of the Leray-Schauder

degree,
deg(I—@, pB, 0)=deg(I—-KF (-, th+1), pB, 0)=0, (8.18)

since, according to the definition of f,, K.F (-, to+1) has no fixed point at all in X,
Thus by (8.11) we have '
deg(I—@, pB\ (ue+&B), 0)=deg(I—@&, pB, 0)
- —deg(I—@, uy+8B, 0)=—1, (3.14)
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which implies that there is a fixed point of G in p B\(u+¢&B), Therefore, the
existenoce of at least two solutions of the problem (P;) is proved, provided we verify
(3.12), |

We now prove (3.12) by contradiction argument. Suppose now (38.12) is nob
true. Then we find sequenoces £;& I =[t}, to+1] and w;=u,, in B such that |u;]|z—>oc

and .
uj=KF (uy, 1), (3.15)
Let
=M 3.16
" Tl (819
The assumption (iii) implies that there exist u<w and £>0 such that
F(w, u, t)y=uu—rk (8.17)

for all u(x), @—>R and ¢€ [#, to+1].
Lot w be the solution of

Lw+(w—pw)w=—F,
n 3.18
{fw]p=eonst, ;J' Say —a?luf-cos(n, @) ds=0, (8.18)
It iy5=1 T
For each fixed point u, of KF (-, t), 1€ I, we have
{T’ut::‘F(ut; t>>,u’ut_"k)
_ (& o (3.19)
%;| p=oconst., =, i’%]lai,- e cos(n, @;)ds=0, ,
Thus
{L(ur—w) + (o — ) (u,—w) >0,
| %; — w| p=oconst., ~J, ,;2;1% B cos(n, @;)ds=0,
By Lemma 1 we have Vi€ 1 ,
w—~w>0, in Q. : (8.21)
On the other hand, by the assumption (iv)
lim sup i&,géjl<+oo, Vi€l (3.22)
fkos :
thore exist constants §+, My, M, such that when & >§+, t€l,
|f (@, &, 8)| <M:|€] (3.23)
and when 2CQ, £C [I%in w, 841, t€1,
f (@, & <M, ' (8.24)
Thus ' )
‘ F(uy, t 3.95
) uls 8.2
is bounded in O(Q),
Since :
v=K F (v, 1)) | - (3.26)

PAE
and K is a compact operator from O(£) into H, we can choose a subsequence, denoted

still by v, such that
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B

Wy ——> ¥ (8.27)
and
v=>—Y 50, in 03, (8.28)
lvill
which implies _ S
‘ =0, in Q, : (8.29)

On the other hand, the assumption (iii) implies that there exist >0, 8=>0 such
that ' ‘ '

F(u, §)=>(o+a)u—B, Yu, 3>R, t:EI, (8.80)
s B8 o ok 8
— : Uj, tj > ow+ta Uj -
R 1 P T R T
= (o+a) Ko~ K ﬁ"_ﬂ | (3.31)

Taking limit in (8.81), we obfain '
= (w+a)Kvle, (8.32)

By the difinition of K we obtain
{z@_ (w+a)v=0,

n v (8.38)
v|p=const, — L ‘%‘1@;5 Fra (n, @;)ds=0, ' .
Hence
{ Ly=av,
“ ov . (3 .34:)
9| p=const, — L sy%aﬁ Ba, %8 (n, z;)ds=0,
Thus it follows from =0, a>0 and
0=LLmdm>anmdw (3.35)
that _
=0, in Q, (8.36)

which contradicts |v| z=1. This completely proves that when t<#,, (P;) has at least
two solutions. ‘
When t=1%,, there exist ;< #, such that {;—>t. Let u; satisfy
‘ u;=K F (uy, t;), (3.37)
Tt can be seen from the previous argument that u; is bounded in E, and is also

bounded in O (), too. Henoe, F(u;, ¢;) is bounded in O(2). By the compactness of K -

from O (Q) into E we can choose a subsequence, denoted still by u;, such that u; BN
‘w. Thus by taking limit in (8.87) we obtain

u=KF(u, %), (3.88)
which means that u is a solution of (P,,). Thus the proof of Main Theorem ig

conapleted.
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