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THE EXISTENCE OF ALMOST PERIODIC
SOLUTIONS OF SINGULARLY
PERTURBED SYSTEMS

Houane Yoansnar (%; N

Abstract

First the author considers the system (1) %;3-=f(t, %,Y,8), € %%--—: 9(t,z,y,8) and its:

degenerate system (2) %% =f(, %, y, 0), g(t, x, y, 0)=0. In both noncritical and critical
cases, sufficient conditions are established for the existence of almost periodic solutions of
system (1) near the given golutions of system (2). The main method of proof is that, by

performing suitable transformation, the author establishes exponential dichotomies, and
then applies the theory of integral manifolds. Secondly, for the antonomous system (3)

-‘C%;= (%, ¥, &), & -jy-?=g(w, ¥, €), analogous results are obtained by performing the

" generalized normal coordinate transformation.

§ 1. Introduction

In this paper, at first, we consider the singularly perturbed nonautonomous
system

dw
‘_':f(t: z, ¥y, 8):
di 1.1)

dy _
6'(7?' g(t: z, Y, 8):

where & is a small real parameter, @, y are respectively real n and m dimensional

vectors, f, g are respectively real n and m dimensional vector functions. When &=0,

we get the degenerate system
do :
"&‘t""f'(t; 2, Y, O):

. g(t} w} y’ 0)=0-
The question is under what conditions system (1.1) has a solution which

(1.2)

converges to a given solution of (1.2). The investigation on this problem with

Tespect to periodioc solutions have been done by many authors, for instance, L. Flatto~

N. Levinson ™!, E. R. Reng™ and so on, that with respect to almost periodie solutions.
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was given by J. K. Hale-G. Seifert™ in 1961. Later, using exponential dichotomies,
K. W. Chang™ obtained a better result in 1968. These results have many applications,
especially, in the field of nonlinear mechanics. All these results, however, were not
concerned in the critical case. For example, L. Flatto~N. Levinson supposed that the
first variation system of (1.2) had no nontrivial periodic solution, J. K. Hale-G.
Seifert supposed that the trivial solution of the first variation system was exponentially |
asymptotical stable, and K. W. Ohang then supposed that the first variation system
admitted an exponential dichotomy. In the critical case, i. e., when the first variation
system of (1.2) has zero characteristic exponents, o solve this problem is obviouslj
much diﬁ’ioult because all these conditions mentioned above do not hold now.

In this paper we discuss both nonoritical and critical cases, and establih sufficient
conditisns for the existence of almost periodic solutions of system (1.1) near the given
solutions of system (1.2). The main method of proof is that, by performing suitable
transformations, we establish exponential dichotomies, and then apply the theory of
integral manifolds. |

Secondly, we consider the singularly perturbed autonomous system

do
‘a%““f(w; Y, 8):

1.3)
W—— = 4 :
& dd@t 9, Y, )
and its degenerate system
dw
dt f(wJ y’ >5 (1.4)

9(w, y, 0)=0, .

The problem on the exisfence of periodic solutions can be found in W. Wagsow™
and K. W. Chang'. In this pa,per; by performing the generalized normal coordinate
transformation, we change our problem into that of the nonautonomous systems and
obtain satisfactory results.

Evidently, as a corollary of our results, the same problems on periodic or quasi-
perio&ic solutions are also solved. In particular, for the critical case, it will be
significant. Moreover, our results can be also used to investigate the initial value
problems and the boundé,ry value problems in the singular perturbation theory.

In this paper we shall use the definition of “characteristic exponenents in the
extensive sense” introduced by Lin Zhensheng™. Moreover, we define the number of
zero characteristic exponents in the extensive sense for a linear system as follows.

Let #(¢) be a nontrivial solution of system

(1.5)

Put ' . |
F={o(); Ma(®))<0},
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P={o(2), Ma(t)) >0}

Denote the maximum number of linearly independent elements in N and P by » and
s, respectively. Obviously, if A(#) is bounded and system (1.5) has zero characteristic
~ exponents in the extensive sense, we have 0<(r-+s<n. In this case we say that system
(1.5) has n— (r+s) zero characteristic exponents in the extensive sense.

§ 9. The results for nonautonomous systems

Suppose that system (1.2) has a family of almost periodic solutions

e=u(t, a), y%m(t,‘ ®), ' (2.1)
where u(t, &) and »(#, &) are almost periodic in ¢, a=0Qol. (@, -, &), and a, as,
*++, oy, are k independent parameters, i. e., the rank of nx b matrix

(au(t, o) .. ou(t a))
owy ooy,

is equal to k. Then the first variation system of (1.2) with respect to (2.1) has the
form

dt = A(t, a)z ' 2.2)

where A(t, &) =f.(t, @) —fy(t, @) g, (¢, @) ga(t, a) Here f,(t, a) denote J; (, u(s,

@), v(t, &), 0) and similar meanings are attached to f,(f, &), fo(t, @), ¢.(¢, a),
9,(t, &) and ¢.(¢, a). Meanwhile, we assume that f and g are almost periodic in £,
uniformly continuous and of O® in all arguments; the Jacobian matrices f,, fy, fe,
9o, Ju, Je arve all almost periodic in ¢, uniformly continuous in all argumeﬁts- the
inverse matrix ¢;'(t, «) exists and ¢; (¢, @)g,(¢, o) has continuous and bounded
first derivatives.

It is easy to verify thai each gﬁgo’roﬁ-( j=1, 2, -, k) is a nontrivial solution

]

of system (2.2), and hence system (2.2) has ab least k zero characteristic exponents.

We obtain the following theorem.

Theorem 1. Suppose that

(1) system (1.2) has o family of almost periodic solutions (2.1) with k
independent parameters, and w (¢, &), v(¢, &) are also almost perdodic in each o;(j=1,

 B);

(II) the first wwat@on system (2.2) has k zero characteristic evponents in the -
extensive sense;

(IIL) every eigenvalue of g,(f, a) has nonzero real part for all ¢ and .

Then, for ¢ sufficiently small, system (1.1) has a unique family of almost periodic

solutions '
‘v=w<t; «, 6); y=y<t1 «, 8) ) ‘ (23}
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satisfying , :
2@, &, &) —u(t, )| +]y(¢, &, &) —(, o) [0 as 60,
Remark 1. If we remove the assumption that u(tf, «) and v(¥, «) are almost

periodic in each &;(j=1, 2, -+, k) in hypothesis (I), then we can also come to the

conclution of Theorem 1 by means of the averaging method and other suitable
conditions.
In the absence of & in Theorem 1, as a special case of Theorem 1, we obtain
immediately the result for the noneritical case ag follows.
. Theorem 2. Suppose that ' v
(I) system (1.2) has a nonconstant almost periodic solution
w=u(?), y=v(t); (2.4)
(II) the first variation system of system (1.2) with respect to (2.4) has no zero
characteristic ewponent in the ewtensive sense;
(III) every eigenvalue of g,(t) has nonzero real part for all t.
Then, for & sufficiently smaZZ, system (1.1) has a unique almost periodic solution
| w=a(t, 8), y=y(i, 5) (2.5)
satisfying ..
e, 8)—u(®) |+ |y, &) —v@)[|—>0 as 0,
Remark 2. Theorem 2 can also follow directly from the result of K. W.
Chang™ and Theorem 3.1 of Lin Zhen-sheng™,

§ 3. Some lemmas

We need the following lemmas.
Lemma 1. Let wy(8), «=, a(t) be k mdependent almost periodic solutions of the

linear system
| =A(t)w, ‘ (3.1)
where A () is an almost periodio nx n matrie Junction. Then there ¢s an almost periodic
nX (n—k) matrie function S(t) such that Q(1)=(w:(8), -, (ws(2), 8()) is @ regular
matrie function.
Proof Put a;(t) =00l. (@;(t), +--, win(¥)) for j=1, ---, k. By Theorem 5.7 of
A. M. Fink ([8 p. 85]), we have itlélgllw,-(t) | =38o>0 because @;(¢) is a nontrivial

almost periodic solution of system (8.1). Choose 8=8;/4n and let L(3) be the
. inclusion length of almost periodic vector function @;(¢) helonging to 3.

We firgt show that there is an almost periodic nXn elementary matrix function

J(f/) such tha,t for E,(t)“J(t)(I),(t) and Ej(t) "‘001 (5;1@), e, Ejn(t)), we have
inf (2;1(8))=28>0, and hence 1nf (1(8)) =8>0.

0<t<L(S)
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In fact, if the conclution is false, we'can find a sequence of J®(#) such that, for
o (1) =J9()@;(t) and the maximum interval [0, L] with o{(¢)>25, one has
L~ Ly as ¢—>c0, but L;<<Ly<L(3). Now let u be a sufficiently large integer and put
g V() =J @ () g (4), where
G AN E O O Ol

w(u) (t) w(u/) (t)
J’(ﬂ«+1)<t)_= 0 . 1
0 0 1

and 0<A<1. Then in the interva,l [0, L,.1], we have
SO =) + 3 58 [+,

and L,i1>>L,, which is contrary to the assumption.
By the almost periodicity of «;(¢), for any tER, there is a real number + such
that 0<t+7<XL(3), and
Bt ) —Ep(t) | <9,
Oombining it with inf (@ (%)) =258>0, we obfain
0<t<L(3)
inf(z;1(¢) ) =93>0,
; teR
Then, by using the induction in £, it is not difficult to show that there are almost
periodic n X n elementary matrix function J4(¢) and almost periodic & X & elementary
matrix fonetion J4(f) such that, for(El(t), e Ty (i)) =J1(@) (@ (t), o, wu(8))Ja(8),
the value of the k—order determinant consisting of its first £ row is greater than 7010
for ¢ € R. Moreover, the inverse matrices J11(¢) and J51(f) are also almost periodie
in i. ' | |
Now take Sp= ( 7

X (n—k) unit matrix. Then the matrix function (w1(2), *=+, m(8), So) is an almost

: J3 (@) 0
periodic regular matrix function for ¢ R. Let J 3=< 20< ) I ) and let
=K

Jfl(” (51@); % Ek(t); So)Js(t)=(w1(t>, ° “’k(ff): S(t».

Then the matrix function §(¢) is what we required, and it is almost periodio in $

0
* >, where S, is the nX (n—k) matrix and I, ; is the (n—Fk)
k

because of its construction.
Lemma 2. Consider the system

8————A(t)w ' (3.2)

where & is a real small pammétefr, A(t) is an dmost periodic n X n matrie function. If
every eigenvalue of A(t) has real part different from 2ero for tC R, then system (8.2)
admits an exponential dichotomy for & sufficiently small. '

For the proof, please refer to K.W. Chang™and W. A. Qoppel™,
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Lemma 3. Consider the almost periodic linear system (3.1). If it has no zero
characteristic exponent in the eatensive sense, then it admits an exponential dichotomy.

This is Theorem 3.1 of Lin Zhensheng™,

Lemma 4. Consider the system

do
v =F(, € m, a 8),

ili-fB(t, a)é+ By (¢, a)n+G(t, £, m, @, &), (3.8)

s D1 -0G, an+HG, &, m, a 6),

where & s @ real small parameter, a, &, 1 are k, n~k, m dimension vectors, respectively.
Suppose that the mairie funciions B, By, C are all almost periodic in t and each

dan
dt

nential dichotomies; the vector functions F, G, H are continuously differentiable in all
arguments, almost periodic in ¢ and each o; uniformly in other arguments, F=O0(|¢|
+l77|+|6|) G, H=0(|&|2+|n|?+]8]), and for any ¢, , there is a constant M >0
such that
|F(, 0,0, a 8)|+ |G, 0,0, o s)u+|[H(t 0,0, a, &) |{<Ms
Then system (8.3) has the center integral manifold.
For the proof of this lemma please refer to Lin Zhensheng™ and J. K Hale"®

component oy of «; both system ig——B(t a)¢ and system & —-=0(%, a)n admit ewpo-

§ 4. The proof of Theorem 1

ou(t, o) . ou(t, a)
3061 ’ ’ Oy

(2.2), by Lemma 1, there is an nX (n—£k) matrix function S(?, «) which is almost

periodic in # and each a; such that Q(f, ) =<—gg—, " T
1

ds (¢, 'oa) o8t &) e ...

exist, which are also almost periodic in ¢ and each «;. For convenience, write

ou(t, ) (0w . du oS8 (%, a)=( a8 .. a8
o0 —< ooy’ 7 Qo )’ oo ooy’ 7 Ooy ) and let

P1 R .
@, =P (%),

where P;(%, ) is a k X n matrix function, P, is a (n—£) X n matrix function. It is easy
0 see that Py(¢, «)and Pa(¢, o) are also almost periodic in ¢ and each a;, and we have

| &y p,
PQ;(?l)(%, S>= Pi(@a) P,8 =<-(Z)k .I:)—k). (4.1)

ou
Py(Ge) PsS

Sinoe are k independent almost periodic solutions of system

S, a) ) is a regular

matrix function. By our assumptions, we see that
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In order to emphasize the special role that the given solutions (2.1) play, for
system (1.1) we are going to perform the following transformation
w=u(t, a)+8(, a),
y=v(t, &) —9;(%, a)g.(t, «)S(, a)¢+n,
where £, n are real n—k dimension and m dimension vectors respectively. The
Jacobian of this transformation on (2.1) satisfies the inequality

(4.2)

w o w g g
dot. [ 2 % )l e | >0,
oy a0 oy . eI

ow O on "

Bince §=0, %=0 when ¢=0, by continuity, it follows that transformation (4.2)
can be satisfactorily performed at least in a neighberhood of (2.1).
Now, by (4.2), the derivative of & can be represented as

do _ du  ou do ﬁ§+<ﬁ§1’ §k)——+8 € (4.8)

@ At om dr " oo
On the other hand, by (1.1), the ‘Taylor expansion of f(f, #, y, &) at point
(t u, v, 0) glves

= =f(%, u+8¢, v—gy g,,S£+n, 8)

=f(t, u, v, 0)+A8¢ +fm+f88+6‘1(t, £, 0, 8), (4.4)
where G4 =0(|£ |2+ ]+ [s[). Combining (4.8) and (4.4), we getb ‘

.y 0 08 s
(-aal aai §1; 5 a“k §k> +S

(48— B e+fim+Galt, £ 0, a, 0), (4.5)
where Ga=/f,e+G:=0(|£|*+|n|*+]e]). Since &, 7 are sufficiently small for s
sufficiently small and Q(%, &) =(—2’—Z—, S) is regular, by the continuity, we see that

the determinant of the coefficient matrix of the linear equation system with respect

10 %% and Z’é; is different from Z6T0. Therefore we can determlne d and cclg by
(4.5). Now let us make the further estimation. Let
9o Bt £ m 0 8). (4.6)

From the assumptions, it follows that F=0(|§|+|n|+|e|) is continuously
differentiable in all arguments, almost periodic in ¢ and each a; uniformly in other

arguments, and for any ¢>0 and any £, there is a constant M;>0 such that

"F(t: 0: 0: a, 8) ”<M18.
Now we substitute (4.6) into (4.5) and then multipy both of the two sides from
the left by P,(¢, ). On account of (4.1), it follows that
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_‘?§_=B(t, DE+Bi(t, yn -G, &m0, 8), 4.7

WherQB(t, a) =P2< S — dS) .Bl(t a) P2fg, G P2G2 P2< aS gl) °y aa §k>

Moreover, it is easy to see that G=0(|£]?+|n|2+]s]) is contmuously differentiable
in all arguments, almost periodio in ¢ and each a; uniformly in other arguments, and
for any >0 and any ¢, o, there is a constant M,>0 such that
‘ 1G@, 0,0, a, 8) | <Mae,
Then, by @.1, (1 2) and (4.2), it follows that
an _. 9y _
@ w tw I (0=670.5)
=9(t, 8¢, v—g,79.,8+n, &) —e %(’v—yfgaﬂé)

=986 +9,(~ 95986 +m) +ges+Ha (Y, €, 1, @, ) —¢ —gy(%g;lgﬁf),

where Hy=0(|£|*+ ||+ |¢|). Therefore, we have

€ %%—O(t: “)77+E(t: g; 7}} &, 8): (4‘8>

where O(t, a) =g¢,(, ), H=gss+Hi—s—(%— (v—gy19,8¢). Moreover, H=0(|&|?+

|n|2+|e]) is continuously differentiable in all arguments, almost periodic in ¢ and
o; uniformly in other arguments, and for any >0 and any £, a, there is a constant

M3>0 such that B
"H(t) OJ 0) «, 8) II<M36°

Now we show that the system

df =B, )¢ (4.9)

admits an exponehtial dichotomy.
In fact, by assumption (II), system (2.2) has k zero characteristio exponents in
‘the extensive sense. For (2.2), we perform the regular transformation |

2=Q(, a)h,
Since
dz _ d (ou dh
di i <doa’ S)h“LQ_

. u
—<A_a_o?’ ) Qo dt’

dz . (494
L~ 40, ayr= AQh =(4 32, AS)h,

and meanwhile,

we have

(0 45 -G )

Let both the two sides be multiplied from the left by P (%, a). On account of (4.1),
it follows that '



admits an exponential dichotomy, too.
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i 0 ﬂ@m—ﬁ>
@ 0.&@@—“)

dh _ (0 * 5
dt \o B@ &)/

Hence, system (4.9) has no zero characteristic exponent in the extensive sense.

or

Othefwise, system (2.2) has more than % zero characteristic exponents in the extensive
sense which contradicts the assumption. Thus, by Lemma 3, we see that system(4.9)
admits an exponential dichotomy.

Meanwhile, for ¢ sufficiently small, by Lomma 2 and assumption (IIT), we see
that the system " | '

s%l_o(t )7

Thus, by performing transformation (4.2), system (1.1) is carried into system

PG € a 9, |
‘éf ~B(t, 0)é+Bi(t, a)yn+QG, €, 1, a, 6), (4.10)
8%1——0(t On+HGE, £, 1, a, 8),

“which satisfies the conditions of Lemma 4 for & sufficiently small. Therefore, system

(4.10) has a center integrallmanifold for & sufficiently small. The proof of Theorem
1 is completed.

§ 5. The results for autonomous systems

We suppose still that system (1.4) has a family of soliltions (2.1), and the rank
of the nx (k+1) matrix

(du(t, o) ou(t, a) . ou(t, @)
dt ’ 6661 ? ’ 3ak

is equal 'to k1. Then the first variation system of (1.4) with respect to (2.1) has
the same form as (2.2). Cerfainly, in this case, the assumption that f, g and their

Jacobian matrices are all almost periodic in ¢ must be removed. However, apart from

ﬁ%%j_“l (j=1, -, k), id_u%é—gl is also an almost periodic solution of system (2.2), k

and hence system (2.2) has at least (k+-1) characteristic exponents equal fo zero.
- We obtained the following theorem.
Theorem 3. Suppose that
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@) system (1.4) has a family of almost pertodic solutions (2.1) with k independent
parameters, and u(t, a), v(t, &) are also almost pertodic in cach o;(f=1, -+, k);

(IT) the first wm?dtfilon system (2.2) has (k+1) 2ero characteristic ewponents im
the extensive sense;

(III) every eigenvalue of g,(t, o) has nonzero real part for all ¢ and a.

Then, for & sufficiently small, system (1.3) has a unique family of almost periodic
solutions as (2.8).

Corresponding to Theorem 2, we have the result for the noncritical case as
follows. ‘

Theorem 4. Suppose ihat

(1) system (1.4) has a nonconstant almost periodic solution(2.4);

(IL) the first variation system of (1.4) with respect to (2.4) has one zero
characteristic exzponent in the extensive sense; »

(III) every eigenvalue of g,(t) has real pars different from zero for all ¢.

Then, for & sufficiently small, system (1.8) has & unique almost periodic solution
as (2.5). : ’ ‘

Remark 8 A direot proof of Theorem 4 has been given in Huang Yuanshi®®,

- §6. The proof of Theorem 3

By Lemma 1, there is a nX (n—k—1) matrix fanction §(¢, &) which is almost

periodio in % and each o;(j=1, ---,'k) such that Q(z, oc)=<—9l.y—, ou , ou s S)
dS dt 30&1 a&k

and—a-s— (=1, ---, k) exist, which are
6(Zj

is a regular matrix funotion. Moreover

7 dt
also almost periodio in ¢ and each «;. We write
Pi(t, o)
Q3@ a)=P(t, a)=| P3¢, a) |,
P3(t, o)

where Py, Py, Pgare1Xn, kxn, (n—Fk—1) Xn matrix functions, respectively. They

are all almost periodic in ¢ and each a;, meanwhile

P, (ﬁ‘i) P, (ﬁ“_ P.S

P\ dt o0
PQ~ 1123 »<%;_, -Z-Z—, S)= ﬂ(%) Pg(gg_ P,S
3 (%) n(2) s
1 0 0
=0 I 0 6.1)
0 0 Iy
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For the autonomous system (1.3), we are going to perform the following trans-

formation

i

w=u(8, a) +8(8, )¢,

y=v(, o) —g;* @, a)g:(%, &), )+,
where & is a real parameter, &, n are real (n—k—1) and m dimension vectors
respectively. Wo call this transformation “the generalized normal coordinate
transformation”. Evidently, this transformation ocan be performed at least in a
neighberhood of (2.1). Furthermore, when &=0, we have ©#=0, § 0, n 0.
Therefore, we can assume that

- (6.2)

‘ff —14+0@®, £ n, a, &),

“where O(8, £, 1, a, &) =0(|¢]+ [n}+1e]) i contmuously differentiable in all
arguments almost perlodlc in ¢ and each a; uniformly in other arguments, and for
any £¢>0 and any 3, @, there is a constant M >0 such that

168, 0,0, a, 8)|<Me,
As in the proof of Theorem 1, by performing transformation (6.2), system (1 3)
is carried into system

a9
S—14+009, &, 1, 0, 8),
do

= F @, &, n, @, €),

% _B®, DE+B(O, 1+, &, m, a0,

dt
From this, it follows that
do
as

gg B(S, a)é+Bu(, a)n+G(ﬁ ¢ a 8),

6—(%3———0((9‘, “)ﬂ*‘ﬁ({}, f, n, a, 8);

which satisfies the conditions of Lemma 4 for ¢ sufficiently small. Theorem 3 is proved

6 ii=0<e9, Dn+H®, & 1, a ),

=F (8, § 1, & &),

completely.

§ 7. Applications

In [12] and [18], S. Cerneau first consider some problems on the singularly
perturbed system of the form
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-d—f-=f(t, @, y,8), & thl =g(t, o, v, &), (7.1)

where ¢ is a small parameter, #, y are respectively n, m dimension vectors, f , g are
respeotively m, m dimension vector functions, and Q=diag. {e%, -, &}, hy, *+-, hn
are integers, 0<hy;<<+-+<<hn, Then F. A. Howes™ considered the existence and
asymptotic behavior of periodic, almost periodio and bounded solutions of system
(7.1) whens—0. He rlso considered the corresponding aufonomous system

Bt 99, 0By, y, 9.

His prinecipl tool is a famous iemma of M. Nagumo. However, in the nonautonomous
case, his hypotheses for the first variation system resemble closely the hypotheses of
L. Flatto-N. Levinson™ for periodic solutions, and the hypotheses of K. W. Chang™’
for almost periodio solutions. And in the autonomous case, his hypotheses for the -
first variation system is similar to K. W. Chang . It is easy to see that our results
oan be applied to systems (7.1) and (7.2), and the results of F'. A. Howes™* can be
generalized immediately to the oritical case. .
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