GENERALIZED SEMIGROUP ON (V, H, a)

YAO YUNLONG (姚允龙)*

Abstract

Let V and H be two Hilbert spaces satisfying the imbedding relation $V \subseteq H$. Let $-\mathscr{A}$: $V \rightarrow V'$ be the linear operator determined by $a(u, v) = \langle \mathscr{A}u, v \rangle$ for $u, v \in V$, where a(u, v) is a continuous sesquilinear form on V satisfying

$$a(u, u) + \lambda |u|_{H}^{2} \ge c ||u||_{V}^{2}$$

for $u \in V$ and some $\lambda \in R$ and c > 0.

In this paper it is proved that $-\mathscr{A}$ is the generator of an analytic C_0 -semigroup on V'. Furthermore, if b(u, v) is a continuous sesquilinear form on $H \times V$ and $\mathscr{B}: H \to V$, the linear operator determined by $b(u, v) = \langle \mathscr{B}u, v \rangle$ for $u, v \in V$, then $-\mathscr{A} - \mathscr{B}$ is also the generator of c_0 -semigroup on V'.

Also, similar results are proved on "inserted" spaces $V_{\theta}(\theta \ge -1)$ which are determined by the spectrum system of \mathscr{A} .

§ 1. $-\mathscr{A}$ is a Generator on V'

Let V be Hilbert space, H be the pivot space and H = H' (H' is the dual space of H). We assume that V is dense and continuously imbedded in H, and $V \subseteq H$. Hence, we have the inclusions

$$V \varsigma H = H' \varsigma V' \tag{1.1}$$

Denote by $\|\cdot\|_{V}$ (resp. $|\cdot|_{H}$) the norm in V (resp. in H) and by $(.,.)_{V}$ (resp. $(.,.)_{H}$) the corresponding scalar product.

Let

$a(u, v) = \text{continuous sesquilinear from on } V \times V$ (1.2) and assume that for some c > 0

$$a(u, u) \ge c \|u\|_{V}^{2}, \forall u \in V$$

$$(1.3)$$

and that

$$a(u, v) = \overline{a(v, u)}, \forall u, v \in V.$$
(1.4)

By Lax-Milgram theorem, there exists a unique linear bounded operator $\mathscr{A} \in \mathscr{L}(V, V')$ with domain $D(\mathscr{A}) = V$ dense in V' which is an isomorphism such that

 $a(u, v) = \langle \mathscr{A}u, v \rangle, \ \forall u, v \in V,$ (1.5)

Manuscript received July 22, 1982.

^{*} Institute of Mathematics, Fudan University, Shanghai, China.

where $\langle ., . \rangle$ denotes the scalar product between V' and V.

Let linear operator A with domain $D(A) = \mathscr{A}^{-1}H$ be the restriction of \mathscr{A} , that is

 $A = \mathscr{A}|_{D(A)}, \text{ where } D(A) = \mathscr{A}^{-1}H.$ (1.6)

It is well known that -A is the generator of an analytic semigroup e^{-At} on H. This result is very restrictive and does not allow us to consider unbounded control problem of practical importance. We are going to show that $-\mathcal{A}$ is a generator on V'.

Set $(u, v)_a = a(u, v)$ for $u, v \in V$. It is obvious, by hypotheses of (1.2), (1.3) and (1.4), that $(., .)_a$ is a scalar product of V and it is equivalent to the original scalar product $(., .)_v$. Hence $V_a \stackrel{\text{def.}}{=} (V, (., .)_a)$ is also a Hilbert space and $V'_a = V'$ $(V'_a$ -the dual space of V_a). The dual norm of $\|\cdot\|_a$ in V'_a is defined by

$$|f|_{-a} = \sup_{v \in V - \{0\}} \left(|f(v)| / ||v||_{a} \right), \ \forall f \in V'_{a} = V', \tag{1.7}$$

which is equivalent to the original dual norm $|f|_{V'}$ in V'. Denote by $(.,.)_{-a}$ the corresponding scalar product in V'_a . Obviously, T_t is a semigroup with generator $-\mathscr{A}$ on V' iff so is T_t on V'_a .

From
$$\langle \mathscr{A}u, v \rangle = a(u, v) = (u, v)_a, \forall u, v \in V$$
, it follows that
 \mathscr{A} is Riesz map from V_a to V'_a . (1.8)

Now we can show

$$(u, v)_H = (\mathscr{A}u, v)_{-a}, \forall u, v \in V.$$

$$(1.9)$$

In fact, for $u, v \in V$

$$(\mathcal{A}u, v)_{-a} = (\mathcal{A}^{-1}\mathcal{A}u, \mathcal{A}^{-1}v)_{a} \quad (\mathcal{A} \text{ is Riesz map})$$
$$= (u, \mathcal{A}^{-1}v)_{a} = \overline{a(\mathcal{A}^{-1}v, u)}$$
$$= \overline{\langle \mathcal{A}\mathcal{A}^{-1}v, u \rangle} = \overline{\langle v, u \rangle}$$
$$= (u, v)_{H} \quad (H \text{ is a pivot space}).$$

Theorem 1. The linear operator $-\mathscr{A}: V \rightarrow V'$ is the generator of an analytic semigroup (denote by $e^{-\mathscr{A}t}$) on V' which is strongly V'-continuous in t on the right half plane Ret ≥ 0 and strongly V'-analytic on Ret ≥ 0 . Moreover

$$e^{-\mathscr{A}t}V' \subset D(\mathscr{A}^{\infty}) = \bigcap_{n=1}^{\infty} D(\mathscr{A}^n), \ \forall \ \operatorname{Ret} > 0, \tag{1.10}$$

where $D(\mathscr{A}^n)$ is the domain of \mathscr{A}^n .

Proof From (1.1), ..., (1.4), by Lax-Milgram theorem and (1.9), it follows that \mathscr{A} , which is an operator from the subspace V of V'_a to V'_a itself, is dense definite, surjective, symmetric

 $(u, \mathscr{A}v)_{-a} = \overline{(\mathscr{A}v, u)_{-a}} = \overline{(v, u)_{H}} = (u, v)_{H} = (\mathscr{A}u, v)_{-a}$ for $u, v \in D(\mathscr{A})(=V)$, and positive definite

 $(\mathscr{A}u, v)_{-a} = |u|_{H}^{2} \ge \delta_{1} |u|_{-a}^{2}, \forall u \in D(\mathscr{A})$

for some $\delta_1 > 0$ (it follows from $H \subseteq V'_a$). Hence \mathscr{A} is a positive definite self-adjoint operator from V'_a to itself.

By the spectral resolution of a self-adjoint operator, there exists $\{E_{\lambda}\}$ $(E_{\lambda}=0,$ for $\lambda \leq \delta_1$), the resolution of the identity of \mathscr{A} on V'_a such that

$$\mathscr{A} = (V_a') \int_0^{+\infty} \lambda \, dE_\lambda, \qquad (1.11)$$

where the integral is in the strongly sense and

$$V_a = D(\mathscr{A}) = \left\{ f \in V'; \; \int_0^{+\infty} \lambda^2 \, d \, |E_{\lambda}f|_{-a}^2 < +\infty \right\}. \tag{1.12}$$

From (1.15) below, it is easy to show that

$$E_{\lambda}V' \subset D(\mathscr{A}^{\infty}) \text{ for } \lambda \in (-\infty, +\infty).$$
(1.13)

Setting

$$e^{-\mathscr{A}t} = (V_a') \int_0^{+\infty} e^{-\varkappa t} dE_{\lambda}$$
(1.14)

for Re $t \ge 0$, we may show that $e^{-\mathscr{A}t}$ (Re $t \ge 0$) is an analytic semigroup on V' by computation. Let us prove the generator of $e^{-\mathscr{A}t}$ is exactly $-\mathscr{A}$. First, we have for each $v \in D(\mathscr{A}) = V$,

$$\left| \frac{e^{-\mathscr{K}t}v - v}{t} - (-\mathscr{A}v) \right|_{-\mathfrak{a}}$$

$$= \int_{0}^{+\infty} \left| \frac{e^{-\lambda t} - 1}{\lambda t} + 1 \right|^{2} \lambda^{2} d |E_{\lambda}v|_{-\mathfrak{a}}^{2} \to 0 \text{ as } t \to 0, \text{ Re}t \ge 0 \text{ (by Lebesgue theorem)}$$

and for each $f \in V' - V$ and each complex sequence $\{t_n\}$ $(t_n \rightarrow 0 \text{ as } n \rightarrow +\infty \text{ and } \operatorname{Re} t_n \geq 0)$, we have

$$\frac{\lim_{n \to +\infty} \left| \frac{e^{-n \cdot dt_n} f - f}{t_n} \right|_{-a}^2}{\sum_{n \to +\infty} \int_0^{+\infty} \left| \frac{e^{-\lambda t_n} - 1}{\lambda t_n} \right|^2 \lambda^2 d |E_{\lambda} f|_{-a}^2}$$

$$\ge \int_0^{+\infty} \frac{\lim_{n \to +\infty} \left| \frac{e^{-\lambda t_n} - 1}{\lambda t_n} \right|^2 \lambda^2 d |E_{\lambda} f|_{-a}^2}{\sum_{n \to +\infty} \left| \frac{e^{-\lambda t_n} - 1}{\lambda t_n} \right|^2 \lambda^2 d |E_{\lambda} f|_{-a}^2} \quad \text{(by Fatou theorem)}$$

$$= \int_0^{+\infty} \lambda^2 d |E_{\lambda} f|_{-a}^2 = +\infty \quad (f \in V).$$

Hence, by the definition of a generator, the generator of $e^{-\alpha t}$ is $-\alpha$.

Let us prove (1.10).

$$D(\mathscr{A}^{n}) = \left\{ f \in V'; \; \int_{0}^{+\infty} \lambda^{2n} d \, | \, E_{\lambda} f \, |_{-a}^{2} < +\infty \right\} \quad (n = 1, \; 2, \; \cdots)$$
 (1.15)

and For each $f \in V'$ and t: Re t > 0 we have

$$\int_{0}^{+\infty} \lambda^{2n} d \left| E_{\lambda} e^{-\mathscr{A}t} f \right|_{-a}^{2} = \int_{0}^{+\infty} \lambda^{2n} \left| e^{-\lambda t} \right|^{2} d \left| E_{\lambda} f \right|_{-a}^{2}$$
$$\leq \operatorname{const} \int_{0}^{+\infty} d \left| E_{\lambda} f \right|_{-a}^{2} < +\infty.$$

Hence $e^{-\mathscr{A}t}f \in D(\mathscr{A}^n)$ and so $e^{-\mathscr{A}t}f \in D(\mathscr{A}^\infty) = \bigcup_{n=1}^{\infty} D(\mathscr{A}^n)$,

Remark 1. If for some $\lambda > 0$ and c > 0,

$$a(u, v) + \lambda |u|_{H}^{2} \ge c ||u||_{V}^{2}, \forall u \in V,$$

then Theorem 1 is still true.

(1.3)'

§ 2. The "Inserted" Spaces V_{θ}

For each $\theta \ge -1$, let the subspace V_{θ} of V' be

$$V_{\theta} = \left\{ f \in V'; \; \int_{0}^{+\infty} \lambda^{\theta+1} d \left| E_{\lambda} f \right|_{-a}^{2} < +\infty \right\}$$
(2.1)

with the scalar product

$$(f, g)_{\theta} = \int_{0}^{+\infty} \lambda^{\theta+1} d(E_{\lambda}f, E_{\lambda}g)_{-\alpha}.$$
(2.2)

Then V_{θ} are Hilbert spaces and $V_{\theta} \subseteq V_{\theta'}$ for each pair (θ, θ') which satisfies $\theta > \theta' \ge -1$. It is clear that $V_{-1} = V'$ and $(f, g)_{-1} = (f, g)_{-a}$ for $f, g \in V'$.

Without confusion, we may use the same sign E_{λ} to represent the operator $E_{\lambda}|_{H}$ which is E_{λ} restricted on H.

Lemma 1. $\{E_{\lambda}\}$ is a resolution of the identity on H.

Proof We need to show the following

1° $E_{\lambda} \in \mathscr{L}(H);$

2° E_{λ} is an orthogonal projection on H;

3° $\lambda \leqslant \mu \Rightarrow E_{\lambda}E_{\mu} = E_{\lambda};$

4° $|E_{\lambda}x-x|_{H} \rightarrow 0$ as $\lambda \rightarrow +\infty$ for $x \in H$. And $E_{-\infty}=0$;

5° $|E_{\lambda}x - E_{\mu}x|_{H} \rightarrow 0$ as $\lambda \rightarrow \mu + 0$ for $x \in H$ and $\mu \in (-\infty, +\infty)$.

First we show that $E_{\mu} \in \mathscr{L}(H)$ for each $\mu \in (-\infty, +\infty)$. Indeed for $v \in V$,

$$E_{\mu}v|_{H}^{2} = \int_{0}^{+\infty} \lambda d |E_{\lambda}E_{\mu}v|_{-a}^{2}$$

= $\int_{0}^{\mu} \lambda d |E_{\lambda}v|_{-a}^{2} \ll \int_{0}^{+\infty} \lambda d |E_{\lambda}v|_{-a}^{2} = |v|_{H}^{2},$

that is

 $|E_{\mu}v|_{H} \leqslant |v|_{H} \text{ for } v \in V.$ (2.3)

For each $x \in H$, there exists a sequence $\{v_n\}$ in V which satisfies $|v_n - x|_H \to 0$ as $n \to +\infty$ by $V \subseteq H$ and hence $|v_n - x|_{V'_a} \to 0$ by $H \subseteq V'_a$. So $|E_\mu v_n - E_\mu x|_{V'_a} \to 0$ as $n \to +\infty$ by $E_\mu \in \mathscr{L}(V'_a)$. By (2.3), we have

$$E_{\mu}v_n - E_{\mu}v_m |_{H} \leq |v_n - v_m|_{H} \rightarrow 0 \text{ as } n, m \rightarrow +\infty.$$

Thus there is $y \in H$ so that $||E_{\mu}v_n - y||_H \to 0$ as $n \to +\infty$. So $y = E_{\mu}x$. Consequently, $|E_{\mu}v_n - E_{\mu}x|_H \to 0$ as $n \to +\infty$. Substituting $v = v_n$ into (2.3), we have

$$|E_{\mu}v_n|_{H} \leqslant |v_n|_{H}.$$

As $n \rightarrow +\infty$, it follows that

$$|E_{\mu}x|_{H} \leq |x|_{H}$$
 for $x \in H$.

Thus
$$E_{\mu} \in \mathscr{L}(H)$$
.

Now we show 2°. For $u, v \in V$

$$(E_{\mu}u, v)_{H} = (\mathscr{A}E_{\mu}u, v)_{-a} = \int_{0}^{\mu} \lambda d(E_{\lambda}u, E_{\lambda}v)_{-a} \quad (by \ (1.9))$$
$$= (u, \ \mathscr{A}E_{\mu}v)_{-a} = (u, \ E_{\mu}v)_{H}.$$

Hence, by the limiting process and 1°, E_{μ} is symmetric on H. From the definition of E_{λ} , we see $E_{\mu}^2 = E_{\mu}$. From above, we have proved that E_{μ} is an orthogonal projection on H.

We omit the proof of 3° — 5° here.

Lemma 2. For each $\theta \ge -1$ and $f \in V'$ we have

$$\int_{0}^{+\infty} \lambda^{\theta+1} d \left| E_{\lambda} f \right|_{-1}^{2} = \int_{0}^{+\infty} \lambda^{\theta} d \left| E_{\lambda} f \right|_{H}^{2}.$$
(2.4)

Proof If $f = E_N g$, where $g \in V'$, then (2.5) can be obtained by computation. For each $f \in V'$, (2.4) may be followed by the limiting process.

From Lemma 2, it follows that

$$V_{\theta} = \left\{ f \in V'; \; \int_{0}^{+\infty} \lambda^{\theta} d \left| E_{\lambda} f \right|_{H}^{2} < +\infty \right\}, \tag{2.5}$$

$$(f, g)_{\theta} = \int_{0}^{+\infty} \lambda^{\theta} d(E_{\lambda} f, E_{\lambda} g)_{H} \text{ for } f, g \in V_{\theta}.$$
(2.6)

Lemma 3. If $f \in V'$, then $f \in H$ iff $\lim_{\lambda \to +\infty} |E_{\lambda}f|_{H} < +\infty$.

Note that $|E_{\lambda}f|_{H} \leq |E_{\mu}f|_{H}$ for each pair $(\lambda, \mu): \lambda \leq \mu$.

Proof The "only if" part is obvious. The "if" part is given as follows. From $\lim_{\lambda \to 0} |E_{\lambda}f|_{H} < +\infty$, it follows that

$$E_{\lambda}f - E_{\mu}f|_{H}^{2} = |E_{\lambda}f|_{H}^{2} - |E_{\mu}f|_{H}^{2} \rightarrow 0 \text{ as } \lambda \geqslant \mu \rightarrow +\infty$$

and hence there exists exactly only one element $x \in H$ such that

$$|E_{\lambda}f-x|_{H} \rightarrow 0 \text{ as } \lambda \rightarrow +\infty.$$

Thus $|E_{\lambda}f-x|_{V'} \to 0$ and so $f=x \in H$. $(\{E_{\lambda}\}$ is a resolution of identity on V', hence $|E_{\lambda}f-f|_{V'} \to 0$ as $\lambda \to +\infty$ for $f, g \in V'$).

We have

$$V = V_1$$
 and $(u, v)_v = (u, v)_1$ for $u, v \in V$; (2.7)

(by (1.12) and (2.1))

$$V' = V_{-1} \text{ and } (f, g)_{V'} = (f, g)_{-1} \text{ for } f, g \in V'_s$$
 (2.8)

$$H = V_0 \text{ and } (x, y)_H = (x, y)_0 \text{ for } x, y \in H,$$
 (2.9)

$$D(A) = V_2$$
 (2.10)

The proof of (2.9). We have

$$H = \{f \in V'; \lim_{\lambda \to +\infty} |E_{\lambda}f|_{H}^{2} < +\infty\} \quad \text{(by Lemma 3)}$$
$$= \left\{f \in V'; \int_{0}^{+\infty} d|E_{\lambda}f|_{H}^{2} < +\infty\right\}$$
$$= \left\{f \in V'; \int_{0}^{+\infty} \lambda d|E_{\lambda}f|_{-1}^{2} < +\infty\right\} = V_{0} \quad \text{(by Lemma 2)}.$$

For $x \in H_1$

$$|x|_{H}^{2} = \int_{0}^{+\infty} d|E_{\lambda}x|_{H}^{2} = \int_{0}^{+\infty} \lambda d|E_{\lambda}x|_{-1}^{2} = |x|_{0}^{2}, \qquad (2.11)$$

and hence for $x, y \in H$, $(x, y)_H = (x, y)_0$.

The proof of (2.10).

$$D(A) = \{f \in V'; f \in V \text{ and } f \in H\}$$

$$= \{f \in V'; \int_{0}^{+\infty} \lambda d | E_{\lambda}f|_{H} < +\infty \text{ and } \int_{0}^{+\infty} d | E_{\lambda}\mathscr{A}f|_{H}^{2} < +\infty \}$$

$$= \{f \in V'; \int_{0}^{+\infty} \lambda^{2} d | E_{\lambda}f|_{H}^{2} < +\infty | = V_{2}$$

$$(by \int_{0}^{+\infty} d | E_{\lambda}\mathscr{A}f|_{H}^{2} = \int_{0}^{+\infty} \lambda^{2} d | E_{\lambda}f|_{H}^{2}).$$

$$A = (H) \int_{0}^{+\infty} \lambda dE_{\lambda}.$$
(2.12)

Proof We have

$$(H) \int_{0}^{+\infty} \lambda dE_{\lambda} \subset (V'_{a}) \int_{0}^{+\infty} \lambda dE_{\lambda} = \mathscr{A}$$

and the domain of $(H) \int_{0}^{+\infty} \lambda dE_{\lambda}$ is

$$D\left((H)\int_{0}^{+\infty}\lambda\,dE_{\lambda}\right) = \left\{f \in V'; \int_{0}^{+\infty}\lambda^{2}d\,|E_{\lambda}f|_{H}^{2} < +\infty\right\} = V_{2} = D(A).$$

Hence (2.12) is valid.

Remark. Similarly, we have

1. $E_{\lambda}|_{V_{\theta}}$ is a resolution of identity on V_{θ} ;

2. If $\mathscr{A}_0 = \mathscr{A}|_{D(\mathscr{A}_0)}$, $D(\mathscr{A}_0) = \mathscr{A}^{-1}V_{\theta}$, then

$$\mathscr{A}_{\theta} = (V_{\theta}) \int_{0}^{+\infty} \lambda \, dE_{\lambda}$$

and $-\mathscr{A}_{\theta}$ is a generator of the analytic semigroup $e^{-\mathscr{A}_{\theta}^{t}}$ on V_{θ} and

$$e^{-\mathcal{A}_{\theta}t} = (\mathcal{V}_{\theta}) \int_{0}^{+\infty} e^{-\lambda t} dE_{\lambda};$$

3. $e^{-\mathscr{A}_{\theta'}t}|_{\mathcal{V}_{\theta}} = e^{-\mathscr{A}_{\theta}t}$ for each pair $(\theta, \theta'): \theta \ge \theta' \ge -1$.

§ 3. Some Properties of $e^{-\mathscr{A}t}$

Theorem 2. For each $\theta \ge -1$, $e^{-\mathfrak{A}t}$ given by (1.14) has the following properties: 1° For each t: $\operatorname{Ret} > 0$, the range $\mathcal{A}t \subset V_{\theta}$ and $e^{-\mathfrak{A}t} \in \mathscr{L}(V', V_{\theta})$; 2° For each $f \in V'$ and each $\varepsilon \in (0, \pi/2)$

$$\lim_{t \to 0} ||t^{(1+\theta)/2} e^{-st} f||_{V_{\theta}} = 0;$$

(Ret>0, |argt| $< \pi/2 - s$)

3° For each $f \in V'$, $e^{-st} f$ is V_0 -analytic function of t on Re t > 0. Proof From (1.14), 1°-3° can be obtained by computation.

§ 4. Perturbation Results

Suppose

b(u, v) =continuous sesquilinear form on $V_{\theta} \times V$ for some $\theta \ge -1$. (4.1)

Set \mathscr{B} : $b(u, v) = \langle \mathscr{B}u, v \rangle$ for $u, v \in V$. By Lax-Milgram theorem, $\mathscr{B} \in \mathscr{L}(V_{\theta}, V')$, and we have the following perturbation results:

Theorem 3. Under the assumptions of (1.1, 2, 3, 4), (4.1) and $1 > \theta \ge -1$, - $\mathcal{A} - \mathcal{B}$ is a generator of a C_0 -semigroup U_t on V' and it has the following properties

- 1° rang $U_t \subset V_\theta$ for t > 0;
- 2° $t^{(1+\theta)/2}U_t f \in O([0, +\infty), V_{\theta})$ for $f \in V_{\theta}$;
- 3° $U_{\theta}|_{V_{\theta}}$ is a C_0 -Semigroup on V_{θ} with generator

$$A_{\theta} = -(\mathscr{A} + \mathscr{B})|_{D(A_{\theta})}, \text{ where } D(A_{\theta}) = (\mathscr{A} + \mathscr{B})^{-1}V_{\theta}$$

If $\theta = 0$, then $U_t|_H$ is a C_0 -semigroup on H with generator

$$_0 = -(\mathscr{A} + \mathscr{B})|_{D(A_0)}$$
, where $D(A_0) = (\mathscr{A} + \mathscr{B})^{-1}H$.

Proof Let us consider the integral equation on V_{θ}

$$x(t) = e^{-\mathscr{A}t} f + (V_{\theta}) \int_0^t e^{-\mathscr{A}(t-s)} (-\mathscr{B}) x(s) ds, \text{ for } t > 0, \qquad (4.2)$$

where $f \in V'$ and the integral " $(V_{\theta}) \int_{0}^{t}$ " is well-defined Boohner integral in V_{θ} . Set $\alpha = (1+\theta)/2(<1)$. Theorem 2 shows that $\|e^{-\delta t}\|_{\mathscr{L}(V',V_{\theta})} \leq \operatorname{const}/t^{\alpha}$ for $t \in (0, t_{1}), t_{1}$ -an given arbitrary positive number and $e^{-\delta t}f \in O((0, +\infty), V_{\theta})$. Hence

$$\|e^{-\mathscr{A}(t-s)}\|_{\mathscr{Q}(V_{\theta})} \leq \operatorname{const}(t-s)^{-\alpha}$$

and $e^{-\sigma(t-s)}\mathscr{B}$ is strongly continuous on $t > s \ge 0$. So there is an unique solution $x(t) \in O((0, +\infty), V_{\theta}) \cap L_1(0, +\infty; V_{\theta})$ (4.3)

of (4.2) which may be represented by

$$x(t) = e^{-\omega t} f + (V_{\theta}) \int_{0}^{t} G(t-s) e^{-\omega s} \text{ fds for } t > 0$$

$$(4.4)$$

and

$$G(t) = G_0(t)/t^{\alpha} \in \mathscr{L}(V_{\theta}) \text{ for } t > 0, \qquad (4.5)$$

here $G_0(t) \in \mathscr{L}(V_{\theta})$ and it is strongly V_{θ} -continuous on $t \in [0, +\infty)$, and G(t) is the unique solution of

$$G(t) = e^{-\mathscr{A}t}(-\mathscr{B}) + (V_{\theta}) \int_{0}^{t} e^{-\mathscr{A}(t-s)}(-\mathscr{B})G(s)ds, \text{ for } t \ge 0.$$

$$(4.6)$$

Set

$$\boldsymbol{x}(t) = \boldsymbol{U}_t f \text{ for } f \in \boldsymbol{V}'. \tag{4.7}$$

Hence from (4.3) we have

$$U_t = e^{-\mathscr{A}t} + (V_\theta) \int_0^t G(t-s) e^{-\mathscr{A}s} \, ds$$

where the integral is in the strong sense.

Using Theorem 2, from (4.4, 5, 6) it follows 1°, 2° of Theorem 3.

From (4.2) and (4.7), by $V_{\theta} \subseteq V'$ we have

$$x(t) = U_t f = e^{-\mathscr{A}t} f + (V') \int_0^t e^{-\mathscr{A}(t-s)} (-\mathscr{B}) U_s f \, ds \text{ for } t \ge 0.$$

So the V'-continuity of $U_t f$ on the left on $t \in [0, +\infty)$ follows from the strong V'-continuity of e^{-st} on $t \in [0, +\infty)$ and the fact that

 $-\mathscr{B}U_s f \in L_1(0, t_1; V')$ (by 2° of Theorem 3)

for $t_1 > 0$.

For the semigroup property of U_t we can easily show, similar to [1] p. 277,

$$(U_{t+s}-U_tU_s)f=(V_\theta)\int_0^t e^{-\mathscr{A}(t-\tau)}(-\mathscr{B})(U_{\tau+s}-U_\tau U_s)f\,d\tau$$

for t, $s \ge 0$. Hence, by the uniqueness of the solution,

$$U_{t+s}f = U_tU_sf$$
 for $t, s \ge 0$ and $f \in V'$.

Similary

$$G(t) = e^{-\mathcal{A}t}(-\mathcal{B})f + (\mathcal{V}')\int_0^t e^{-\mathcal{A}(t-s)}(-\mathcal{B})G(s)ds$$

and $G(t) \in L_1(0, +\infty; V_{\theta})$, and hence G(t) is strongly V'-continuous on $t \in [0, +\infty)$.

Denote the generator of U_t by \mathcal{K} . From (4.4, 7) for $f \in V$

$$V' - \lim_{t \to +0} \frac{U_t f - f}{t} = V' - \lim_{t \to +0} \frac{e^{-\mathscr{A}t} - I}{t} f + V' - \lim_{t \to +0} \frac{1}{t} \int_0^t G(t - s) e^{-\mathscr{A}s} f \, ds$$
$$= -\mathscr{A}f + G(0)f = -\mathscr{A}f + (-\mathscr{B})f \quad (by \ (4.6)).$$

Hence

Set

$$\mathscr{K} \supset -\mathscr{A} - \mathscr{B}.$$

$$b_{\mu}(u, v) = \mu(u, v)_{H} + a(u, v) + b(u, v) \quad \text{for } u, v \in V.$$
(4.8)

We have

$$\begin{aligned} |u_{\theta}^{2}| &= \int_{0}^{+\infty} \lambda^{\theta} d |E_{\lambda}u|_{H}^{2} \\ &\leq \left(\int_{0}^{+\infty} (\lambda^{\theta})^{1/\theta} d |E_{\lambda}u|_{H}^{2}\right)^{\theta} \left(\int_{0}^{+\infty} d |E_{\lambda}u|_{H}^{2}\right)^{1-\theta} \quad \text{(by Hölder inequality)} \\ &= |u|_{1}^{2\theta} |u|_{H}^{2(1-\theta)} \leqslant c_{1} |u|_{V}^{2\theta} |u|_{H}^{2(1-\theta)}. \end{aligned}$$

There is a sufficiently large $\mu_0 > 0$ such that $\mu \ge \mu_0$ implies

$$cy^2/2 - c_2y^{1+\theta} + \mu - \lambda = g(y) > 0$$
 for $y \ge 0$

and $\mu - \mathscr{K}$ is one to one (by the property of generator). Hence for some $c_2 > 0$, we have

$$\begin{aligned} |b_{\mu}(u, u)| \geq |\mu| u|_{H}^{2} + a(u, u)| - |b(u, u)| \\ \geq \mu |u|_{H}^{2} + c ||u||_{V}^{2} - \lambda |u|_{H}^{2} - \text{const} |u|_{\theta} \cdot |u|_{V} \\ \geq c ||u||_{V}^{2}/2 + ||u||_{V}^{2}g(|u|_{H}^{2}/||u||_{V}^{2}) \geq c ||u||_{V}^{2}/2 \text{ for } u \in V \end{aligned}$$

and hence, by Lax-Milgram theorem $\mu + \mathscr{A} + \mathscr{B}$ is surjective for $\mu \ge \mu_0 > 0$. From (4.8), we have

$$\mu - \mathscr{K} \supset \mu + \mathscr{A} + \mathscr{B},$$

where $\mu + \mathscr{A} + \mathscr{B}$ is surjective and $\mu - \mathscr{K}$ is one to one, so $\mu - \mathscr{K} = \mu + \mathscr{A} + \mathscr{B}$, that is $\mathscr{K} = -\mathscr{A} - \mathscr{B}$.

Reference

[1] Cartain, R. F. & Pritchard, A. T., Lecture Notes in Control and Information Sciences, Vol. 8, Springer-Verlag, 1978.