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GENERALIZED SEMIGROUP ON (V, H, a)

YAo YUNLONG (3% fc B)*

Abstract

Lot V and H be two Hilbert spaces satisfying the imbedding relation VG H. Let —s2
V>V be the linear operator determined by a(y, v) ={o#, v) for u, v€V, where a(u, v) is
a continuous sesquilinear form on V satisfying

: au, w)+A|u|E=>clul}
for u € V and some A€ R and ¢>0, '

In this paper it is proved that — . is the generator of an analytic Co~semigroup on V.
Furthermore, if b(u, v) is a continuous sesquilinear form on H XV and @ H —V, the linear
operator determined by b(u, v) ={(%u, v) for u, v€V, then —o/~& is also the generator of
¢o-semigroup on V', .

Also, similar results are proved on “inserted” spaces V(6> —1) which are determine@.

by thé spectrum system of

$1. — o is a Generator on V’

Let V" be Hilbert space, H be the pivot space and H=H’ (H' is the dual space
of H). We assume that V is dense and continuously imbedded in H, and VG H.
Hence, we have the inclusions '
_ VGH=HGV', L (1.1)
Denote by |- |y (resp. ||x) the norm in V (resp. in H) and by (.,.)y (resp.
(., .)u) the corresponding scalar product. ' '
Let ’

- a(u, v) =continuous sesquilinear from on V' xV (1.2)
and assume that for some ¢>0 '
a(u, u)=cluly, Vu€V (1.3)
and that
a(u, v) =a(v, w), Yu, vEV, (1.4)

By Lax-Milgram theorem, there exists a unique linear bounded operator
HLELV, V') with domain D{./) =V dense in V" which is an isomorphism such

that .
a(u, v)=<u, vy, Yu, vV, (1.5)
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where <., .> denotes the scalar product between V' and V.
Let linear operator A with domain D(A4) =./"*H be the restriction of .7, that

A= | pay, where D(A) =/1H (1.6)
It is well known that —A is the generator of an analytic semigroup e~4¢ on.
H. This result is very restrictive and does not allow us to consider unbounded control
problem of practical importance. We are going to show that —.o7 is a generator on
V.

Set (u, v)s=a(y, v) for v, vEV. It is obvious, by hypotheses of (1.2), (1.3)
and (1.4), that(., . ), is a scalar product of V" and it is equivalent to the original scalar
product (., .)y. Hence V, &t (V, (., .),) is also a Hilbert space and V,=V" (V—the
. is defined by

Fle= sup (If@)[/]o]a), VFEVL=T, -

which is equivalent to the original dual norm |f|y in V’. Denote by (.,.)_, the
corresponding scalar product in V. Obviously, 7'; is a semigroup with generator —.of
on V"' iff so is T; on. V7.
From {stu, v>=a(u, v)=(u,0)q, Yu, vEV, it follows that |
&7 is Riesz map from V7, to V7. (1.8)

(4, V)a=(u, ), Yu, vEV, (1.9)

Now we can show

In fact, for w, v €V :
(L, v) o= (L L, L), ( is Riesz map)

=(u, A0)o=a( 0, w)

=LA A, uy =<0, up

=(u, v)y (H isa pivot space).

Theorem 1. The linear operator —.of: V—V' is the gensrator of an enalytio

semigrowp (denote by e=**) on V' which is strongly V'—continuous in ¢t on the right half
plane Ret=0 and strongly V'-analytic on Ret>0. Moreover

o =D () = @ D(ot™), ¥ Ret>0, (1.10)

 where D(£*) is the domain of <"

Proof From (1.1), -+, (1.4), by Lax-Milgram theorem and (1.9), it follows
that .7, which is an operator from the subspace V of V', to V7, itself, is dense definite,
surjective, symmetnc :

(v, ) -o= (L0, u)-a=(v, Wn=(y, @)H—(&fu V)-a
for u, v€ D(Z)(=V"), and positive definite
(Lu, v)_g=|u|E=>01]|ul2,, YuED(L)
for some ;>0 (it follows from HGV7). Hence o7 is a positive definite self—adjomt
operator from V7, to itself.
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By the spectral resolution of a self-adjoint operator, there exists {H,} (H,=0,
for A<<3,), the resolution of the identity of .27 on V7, such that

+co ’
A= (VD) jo AQH,, (1.11)
~ where the integral is in the strongly sense and

j , Foo
Vo= D) ={7 €V |72 d By |2 < oo, (1.12)
From (1.15) below, it is easy to show that |
B V'cD(f*) for AE (—o0, +400), (1.18)

Setting : '

+oo

o= (V1) L e dH, _ (1.14)

for Re t>0, we may show that ¢~ (Re ¢>>0) is an analytic semigroup on V” by
computation. Let us prove the generator of e=* is exactly —./. First, we have for
each vE€D(F) =V, '

ESTE I,
tool gmM—1
=j 0 At
and for each f €V’ —7 and each complex sequence {t,} (#,—>0 as n—>-+oco and Ret,
=0), we have ‘

-

2
+1' Ad|Hw|2,—0 as t—0, Ret=>0 (by Lebesgue theorem)

lim-mii ?
fi=> o0 tn
+oo

- l-imj |

0

-a

o—Hn_1 |2 ) .
T Nd|B.f|2

f—>too

. +oo
>§ lim

0 s>t

g—Hn—1 |2
T‘ Ad|E,.f|%: (by Fatou theorem)

=[N Al Bf 2= oo (JED).

Hence, by the definition of a generator, the generator of e™ is — ..
Let us prove (1.10).

) )
D/ ={F €V [ a|Bflta<roo} (n=1,2, ) (L15)
and For each f €V’ and ¢:Re t>0 we have
Foo teo
[ " ama) By |2 = [ 7w e | B |2

+oo
<const L d| B,f|2.<+oo,

Hence ¢=f € D(7™) and so ¢*f € D(L) = Q D™,

Remark 1. If for some A>0and ¢>0, ,
a(u, v)+Aulk>clul?, Vucr, (1.3)
then Theorem 1 is still true. '
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§ 2. The “Inserted” Spaces Vs

For each 8> —1, let the subspace V', of 7’ be

oo
Ve={f€V,; Jo }\,e+1d]EAf[2_a<+oo} | (2.1)
with the sealar product '

(F, o= A d(B,f, Brg) @2

Then V4 are Hilbert spaces and VGV, for each pair (#, §') which satisfles §>9">
~1. Tt is olear that V_;=V"’ and (f, g)_1=(f, g)-s for f, g€V".

Without confusion,we may use the same sign K, to represent the operator H,|x
which is H, restricted on H. .

Lemma 1. {H,} is a resolution of the identity on H.

Proof We need to show the following

1° H,eZ(H); .

2° F, is an orthogonal projection on H;

3° ?\.<M=>EKE'“=E%;

4° |Bw—a|p—>0 ag A—>-1-co for s€ H. And E_.,=0;

5° ]E,Lw—E,‘w]HéO as A—>u+0 for € H and p € (—oo, +00),
First wo show that H,€ £ (H) for each € (—o0, +o0). Indeed for vV,

+°° .
IE,,@]%[=L 28| B )%

Foo
=j:?»dlel‘ia<fo Ad| B |2a=0l%,
that is
|| a<|v|gfor o€V, (2.8)

" For each &€ H, there exists a sequence {v,} in ¥ which satisfies |v,—x|z—>0 as
n—>+o00 by VGH and hence |v,—a|y, —0 by HGVY. So | Ew,—E,w|y, -0 as n—>
+oo by E,€ Z(V}). By (2.8), we have

| B 00— B 05| 5<|V4—n| i—>0 a8 n, m—>+o0,
Thus there is y € H so that |E,v,—y|z—>0 as n—>+oo. So y=FE,». Jonsequently,
| Bv.— E,@| x>0 as n—>+oco. Substituting v=v, into (2.8), we have

IEM’UHIH<|'van.
As n—+o0, it follows that

IEule<[le for {UEH.
Tnus B, € ¥ (H),

Now we show 2°, For u, €V
(B, W a= (L B, ) o= j: (T, Ban)_s (by (1.9))
= (v, LEW)-o=(, B.2)x,
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Hence, by the limiting prbcess and 1°, H, is symmetric on H. From the definition
of H,, we seo Hi=H,. From above, we have proved that K, is an orthogonal projection
on H. .

We omit the proof of 3°—5° here.

Lemma 3. Foreach §=>—1 and fEV’ we have

J‘:w?\.°+1d]Ehfl2_1=I:m 2| B, f |%. | (2.4)

Proof If f=Hyg, where g€¥’, then (2.5) can be obtained by computation.
For each f €V, (2.4) may be followed by the limiting process. :
From Lemma 2, it follows that

vo-{rev; [ 1| 1, |5 <+oo}, . (@5)

+oo
(F, o=, Md(BLS, Brg)u for f, g€V, (2.6)
‘Lemma 8. IffcV’, then fCH iff lim | B, f | n<+oo.

Note that | B, f|a<<|H,f|x for each pair (A, w) :A<p.

Proof The “only if” part is obvious. The “if” part is given as follows. From
lim | B, f|a< +oo, it follows that ' '
| Bof — B )= | o f 5= | B, |30 a8 d>p>-+00
~ and hence there exists exactly only one element # € .H such that

| Bbf —o| >0 a8 A—>+oo,

Thus | B, f—|v—>0 and so f=a€ H. ({#,} is a resolution of identity on V’, hence
| B.f —f|v—0 as A—>+o0 for f, g€V”). '

We have : ’
. V=V4and (u, v)y=(u, v), for u, vEV; 2.7
(by (1.12) and (2.1)) .
| V'=V_sand (f, 9)v="_(f, 9)-1for f, g€V, (2.8)
H=V,and (&, ¥y)a=(», y) for &, yC H, (2.9)
D(A)=V,. - (2.10)

The proof of (2.9). We have
H={fcV" ;.hln | B, fli<+o0} (by Lemma 3)
+oo
~{rer [ ams1g<+oo}

. ={f€V'; ﬁ“ MlExf|2_1<+°O}=Vo (by Lemma 2),
For o€ H, '
oo +oo
joli={,” dlBold=| " 1d| Bol2i=al3, (2.11)

and hence for », yEH, (o, y)a= (@, ¥)o.
The proof of (2.10),
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D(A)={f€V’;f€V and £ € H}
.={fev'; j:”mJEszH<+oo and ﬁ’“d;EMflgqoo}

={f€V’; j:m NG| B, f|a< +oo ‘ ~V,

+oo +oo
(oy " al mstpiz={ " wal m115),
A (H)j:” \dH,
Proof We have
(H) j:“ B, (V) ﬁ” NAH, =
and the domain of (H) “:m AME, is
D ((H)j:”mm)={ revs [ ?ﬁd]E,xfl%<_+oo}=—»V2=D(A),

Henoe (2.12) is valid. |

Remark. Similarly, we have

1. H,|v,is a resolusion of identity on Ve

2, If Mo——':%] DA D(.Q/o) =e52{-1V9, then.

+oo
A= (VG)JO AdE,
and —.o7, is a generator of the analytic semigroup e~ on ¥, and
e = (V,) j:w "M dH,;

3. ey, =™ for each pair (0, §):0=0'>—1,

§ 3. Some Properties of ¢~

(2.12)

Theorem 3. For cach §=—1, ¢~ given by (1.14) has the following properties:

1° For each t: Ret>0, the range Vo and e C LV, Vo);
2° For each fEV' and each ¢ € (0, w/2)

Lim [§C+9/2g=f |, = 0;
-0 ’

| (Ret>0, |argt| <m/2—¢)
8° For each fEV', ¢~ f is V —analytic function of t on Re t>>0.
Proof From (1.14), 1°—3° can be obtained by computation.

§ 4, Perturbation Results

Suppose

b(u, v)=continuous sesquilinear form on V,x ¥ for some §>—1,

(4.1)
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Set B: b(u, v) ={Bu, v) for u, vEV . By Lax-Milgram theorem, ZE L (V,, V'), and
we have the following pertu_rbation results:
Theorem 8. Under the assumptions of (1.1, 2, 8, 4), (4.1) and 1>6>—1,
-l — B is a generator of a O’o——semfbga*oup Ut on V' and it has the following properties
1° rang U,V for t>>0;
20 t(1+0)/2Utf E O( [0, +OO) , VO) fo’)" fe VO;
8° Uslv, is @ Op—Semigroup on Vo with generator
Ag=—(A+B) | pan, where D(Ay)=(A+B)V,,
If =0, then U,| g is a Og-semigroup on H with generator
Ao=—~(A+R) | payy, where D(Ay) = (A+%B ) H,
Proof Let us consider the integral equation on V,

O (Vg)ﬁe‘"“’““"’(-—ﬁ)m(s)ds, for >0, (4.2)

. é b4 .
where f €V’ and the integral ‘(Vo) j: is well-defined Bochner integral in V. Set

a=(1+8)/2(<1). Theorem 2 shows that |6 gy, v,y<const/#* for $€ (0, ¢), #-an
given arbitrary positive number and e=*f €0((0, +o0), ¥,). Henoe
| le7*¢2 ] avy<<consb(t—s)™"

and ¢™**"9 % iy strongly continuous on #>s>0. So there is an unique solution

_ (1) €0((0, .+°°>, Vo) N L1(0, +o0; V) (4.8)
of (4.2) which may be represented by
w(t)=e"“’“f+(Vo)K G(t—s)e™" {ds for t>0 (4.4)
and
G(t) =G () /1€ L (V) for t>0, _ (4.5)

here Gy (t) € L (V,) and it is strongly Ve—continuous on t€ [0, +o0), and G(z) is
the unique solution of
Q) = (—B) + (m)ﬁ =0 ( — )G (s)ds, for 10, (4.6)
Set
‘ , w(t)=U,f for fEV’, - (4.7
Hence from (4.3) we have

Um0 (mft G (t—5)o— ds,

where the integral is in the strong sense. |
Using Theorem 2, from (4.4, 5, 6) it follows 1°, 2° of Theorem 3.
From (4.2) and (4.7), by V.GV’ we have

o(®)=Usf =o~f+ (V") (= B)U,f ds tor £0,

8o the V' —édntinuity of Usf on the left on $€.[0, + o) follows from the strong
V’-continuity of e on ¢€ [0, +oc) and the fact that ‘
—BUf€L4(0, ¢35 V') (by 2° of Theorem 3)
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for t1>0.
For the semigroup property of U; we can easily show, similar to [1] p. 277,

Uars=TUOf = V)|, (= B) (U1s =0T &

for ¢, s>0. Henoe, by the uniqueness of the solution,

Uiss f=UU,f for ¢, s=>0 and f€V’.
Similary

G (&) =a~ (= B)f + (V)| - (—B)A(s)ds

and G(f) €L;(0, +o0; V,), and hence G (t) is stroﬁgly V'~continuous on ¢€ [0,
+o0). A
Denote the generator of U; by . From (4.4, 7) for fEV

V' — lim giéi=v'— Mo 0Lyt —H:G(t—s)e“’sfds

240 $->+0 K7 tl—>+0
=—Af+G0)f =—Lf+(—~B)f (by (4.6)),
Hence
HD—A—XB. (4.8)
Set o o
bu(u, v) =p(y, )a+a(y, 0)+b(y, v) foru, vEV.
We have ' ' -

gl =7 wdl Bk
<< j:‘” () 1/ed]Exu|%I>s U:w dlE»Au]%)i—a (by Holder inequality)
— [l [ -2 <es ] ul 3,
There is a sufficiently large we>>0 such that w=>>u, implies
cy2/2—cgy1+°;|-’,tb—7\.=g(y) >0 for y=0
and u—2¢ is one to one (by the property of generator). Hence for some ¢,>0, we
have . ' ‘
1B, 0) |3 | pluli-+aly, )|~ by, v
>plu|f+clu|t—Au|%—oconst|ul,e |u]y
, Solult/2-+ |ulbg( |ult/Julp) Selul3/2 for vV
and hence, by Lax-Milgram theorem u-+-.o/+% is surjective for u=pue>0. From
(4.8), we have

» w—= Du+ L+ B, -
where -+ .27+ % is surjective and p— ¢ is one to one, 80 y~ A =+ .57+ B, that is
H=—A—B. ‘ '
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