LINEAR GROUP OVER A CLASS OF RING R

YUAN BINGCHENG (袁秉成)*

Abstract

Let *R* be a commutative ring^[1] with identical element 1 and maximal ideal M_i where $i \in N$ and *N* is an ordered indicatrix set. Let the mapping

$$f: R \to \prod_{i \in N} R/M_i$$

be a ring homomorphism from R onto $\prod_{i \in N} R/M_i$, where $\prod_{i \in N} R/M_i$ is the direct product of residual fields R/M_i . In this paper, it is proved that if $A \in GL_n(R)$, then $A = BH_1 \cdots H_{k-1}$, where res B = 1 and H_1, \cdots, H_{k-1} are the symmetries. Furthermore, the bound of the positive integer number K is investigated. In particular, the author gives the smallest number l(A)of symmetric factors in the products which expresses the elements of $G_n = \{A \in GL_n(R) \mid \det A = \pm 1\}$. Consequently, the l(A) problems discussed in [2, 3, 4] are special cases of this paper.

§ 1. Introduction

In 1975, H. Radjavi^[2] showed that $l(A) \leq 2n-1$, if R = F is a field and $A \in G_{n}$. He also conjectured that $l(A) \geq 2n-2$. In 1978, F. S. Cater^[3] showed that this conjecture is false and proved that $l(A) \leq n+2$. He conjectured furthermore that $l(A) \geq n+1$. However in 1979, D. Ž. Djoković and J. Malzan^[4], negatived the above conjecture again and solved the problem on the field F thoroughly.

In this paper, we extend the results in [4] to a class of ring R, give the symmetry generation theorem for $GL_n(R)$ and the method of constructing symmetric factors. The method of this paper also can be applied to the discussion for the length of generation of $GL_n(R)$ by transvections. In particular, the Theorem 1 and Theorem 2 in our paper still hold if symmetries are replaced by transvections. Since local ring is included in ring R in our paper, as a matter of fact, this paper has given the lower bound of the length of generation by transvections. This question has never been solved over local ring before now.

§2. Main results

Let $A \in GL_n(R)$ and F_A be the set of all submodules in R^n that contain the

Manuscript received July 31, 1982. Revised December 31, 1982.

^{*} Department of Mathematics, Northeast Normal University, Changchun, China.

Vol. 6 Ser. B

columns of I-A. S_A is the submodule of F_A , containing the least number of generators. $m(S_A)$ denotes the least number of the vectors of S_A which generate S_A . $m_T(A)$ denotes the least number of the column vectors of $I-TAT^{-1}$ which generate $I-TAT^{-1}$ (where $T \in GL_n(R)$). We define the residual number of A as follows

 $\operatorname{res} A = \min\{m_T(A) | T \in GL_n(R)\}.$

If R is a field, we have

 $m(S_A) = \operatorname{res} A = \operatorname{rank}(I - A)$.

We know that the homomorphism of group $f_i: GL_n(R) \rightarrow GL_n(R/M_i)$ will be induced by homomorphism $f_i: R \rightarrow R/M_i$.

An element $A \in GL_n(R)$ is called a symmetry if res A=1 with detA = -1. Assume that $A \in GL_n(R)$ can be expressed as $A = BH_1 \cdots H_{k-1}$, where $H'_i s$ are symmetries and res B=1. Then we write the least number K of the factors in the preceding expression as $K = \delta(A) \cdot E_{ij}(b)$ denotes the $n \times n$ matrix with b in the (i, j) position and o's everywhere else.

If $A \in GL_n(R)$ and resA = r, there exists $T \in GL_n(R)$ such that

$$TAT^{-1} = \left(\frac{D^{(r)}}{* *} |_{T^{(n-r)}} \right).$$
(1)

(1) is called the normalization of A.

Obviously, if A is similar to matrix B i. e. $A \otimes B$, then we have $\delta(A) = \delta(B)$. Therefore, we will use the same notation for both similarity and equality.

Lemma 1. For any $m \in N$, there exists an element $K \in \bigcap_{j < m} M_j$ but $K \notin \bigcup_{j > m} M_j$.

Proof It is sufficient that take

 $K=f^{-1}(0, 0, \dots, 0, 1+M_m, \dots).$

Lemma 2. Let $D^{(r)} \in GL_r(R)$, and let $f_i D^{(r)} \neq aI$, $\forall a \in R/M_i$ and $\forall i \in N$. Then, there exists an element $T \in GL_r(R)$ such that the element at the position (r', r-1) of $TD^{(r)}T^{-1}$ is 1.

Proof Let $D^{(r)} = (a_{ij}), i, j = 1, 2, \dots, r$.

1) If $a_{r,r-1}$ is a unit, we take $T = I + E_{r-1,r-1}(a_{r,r-1}-1)$.

2) Now let us assume that $a_{r,r-1}$ is not a unit. Then, for any $t \in N$, from $f_t D^{(r)} \neq aI \ \forall a \in R/M_t$, there exists $T_t \in GL_r(R/M_t)$ over field R/M_t , such that the element of $T_t(f_t D^{(r)})T_t^{-1}$ at the position (r, r-1) is 1. Since the mapping f is a surjection from R onto $\prod_{i \in N} R/M_i$, there exists $T \in GL_r(R)$ such that $f_t T = T_t$, $\forall t \in N$. Therefore, the element of $TD^{(r)}T^{-1}$ at the position (r, r-1) is a unit. This amount to the case of 1).

Lemma 3. Let $A \in GL_n(R)$, and let $A = B_1 \cdots B_k$, where res $B_i = 1$. $i = 1, 2, \dots, k$. Then $m(S_A) \leq k$. *Proof* 1) Let us first prove that $m(S_A) = m(S_{TAT^{-1}})$ for any $A, T \in GL_n(R)$. Let d_1, d_2, \dots, d_t be the least group of generators of S_A . Then

$$I - A = (d_1, d_2, \dots, d_t) \begin{pmatrix} r_{11} \cdots r_{1n} \\ \cdots \\ r_{t1} \cdots r_{tn} \end{pmatrix},$$

where

$$\begin{aligned} d_{i} = \begin{pmatrix} d_{1i} \\ d_{2i} \\ \vdots \\ d_{ni} \end{pmatrix}, \ i = 1, \ 2, \ \cdots, \ t. \\ \\ I - TAT^{i-1} = T(I - A)T^{i-1} = T(d_{1}, \ d_{2}, \ \cdots, \ d_{t}) \begin{pmatrix} r_{11} \cdots r_{1n} \\ \cdots \cdots \\ r_{t1} \cdots r_{tn} \end{pmatrix} T^{i-1} \\ \\ = (r_{1}, \ r_{2}, \ \cdots, \ r_{t}) \begin{pmatrix} r'_{11} \cdots r'_{1n} \\ \cdots \cdots \\ r'_{t1} \cdots r'_{tn} \end{pmatrix}. \end{aligned}$$

Formula (*) implies that r_1, r_2, \dots, r_t can generate the column vectors of $I-TAT^{-1}$. Hereby $m(S_{TAT^{-1}}) \leq t = m(S_A)$.

Similarly, we can prove $m(S_A) \leq m(S_{TAT^{-1}})$. So $m(S_A) = m(S_{TAT^{-1}})$. 2) We prove Lemma by induction on k. The result is obvious for k=1. Suppose the result hold for k-1. Clearly

$$B_k \sim B'_k = \begin{pmatrix} * & & \\ * & 1 & \\ \vdots & \ddots & \\ * & & 1 \end{pmatrix},$$

 $B = B'_1 B'_2 \cdots B'_{k-1} = \begin{pmatrix} b_{11} \cdots b_{1n} \\ \cdots \\ b_{n1} \cdots b_{nn} \end{pmatrix}.$

i. e. there exists $T \in GL_n(R)$ such that $TB_kT^{-1} = B'_k$. So $TAT^{-1} = TB_1T^{-1}TB_2T^{-1}\cdots TB_kT^{-1} = B'_1B'_2\cdots B'_k$,

where res $B'_{i} = 1, i = 1, 2, \dots, k$. Set

Then

$$TAT^{-1} = BB'_{k} = \begin{pmatrix} * & b_{12} \cdots b_{1n} \\ \cdots & \cdots & \vdots \\ * & b_{n2} \cdots b_{nn} \end{pmatrix}.$$
 (**)

By the assumption of induction, it follows that $m(S_B) \leq k-1$. By formula (**), it is easy to have $m(S_{TAT-1}) \leq k$. From 1), we obtain $m(S_A) \leq k$.

Lemma 4. Let A be an element of $GL_n(R)$ with $\operatorname{res} A = r$. If A satisfies any one of the following conditions:

1) In the normalization of A, $f_j D^{(r)} = aI$ for some $j \in N$, where $a \neq \pm 1$.

2) Assume that in the normalization of A, $f_j D^{(r)} = I$, $\operatorname{res}(f_j A) = r$ and $2 \notin M_j$ for some $j \in N$. Then $\delta(A) \neq r$.

(*)

Proof There is no loss of generality in assuming

$$A = \left(\frac{D^{(r)}}{*} \middle|_{I^{(n-r)}} \right).$$

Suppose $A = BH_1 \cdots H_{r-1}$, where res B = 1 and H_i $(i=1, 2, \dots, r-1)$ is a symmetry. Then in field R/M_j ,

$$f_j A = (f_j B) (f_j H_1), \dots, (f_j H_{r-1}) = \overline{B} \overline{H}_1 \cdots \overline{H}_{r-1},$$

where $\overline{H}_i = f_j H_i$ is a symmetry and res $\overline{B} = \text{res } (f_j B) \leq 1$. From assumption we have $m(S_{f,A}) = r$. According to Lemma 3 we have res $\overline{B} = 1$.

In field R/M_{j} , we consider $I - \overline{H}_{r-1}$. Since res $\overline{H}_{r-1} = 1$, we can set

$$I - \overline{H}_{r-1} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} (b_1, \dots, b_{r+1}, \dots, b_n)$$
(*)

where $c_i, b_j \in R/M_j$.

(1) If the elements of the last n-r columns of $I-\overline{H}_{r-1}$ are not all equal to zero. There is no loss of generality in assuming that the elements of the r+1 column are not all equal to zero. So $b_{r+1} \neq 0$. Set

$$T^{r-1} = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ \hline \frac{-b_1}{b_{r+1}} \cdots \frac{-b_r}{b_{r+1}} & 1 & \frac{-b_{r+2}}{b_{r+1}} \cdots \frac{-b_n}{b_{r+1}} \\ & 1 & & \ddots \\ & & & \ddots \\ & & & 1 \end{pmatrix}.$$

Then

$$T(I-\overline{H}_{r-1})T^{-1}=I-T\overline{H}_{r-1}T^{-1}=\begin{pmatrix} 0 \cdots 0 & * & 0 \cdots 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 \cdots 0 & * & 0 \cdots 0 \end{pmatrix}.$$

Therefore, we have

Since

$$f_{j}A = \begin{pmatrix} a \\ \ddots \\ a \\ \hline & \\ \hline & \\ \hline & \\ I^{(n-r)} \end{pmatrix},$$

We have

$$T(f_{j}A)T^{-1} = \begin{pmatrix} a & & \\ & \ddots & \\ & a \\ \hline & C & I^{(n-r)} \end{pmatrix} = A_{1}.$$

But,

$$A_1 = T\overline{B}T^{-1}T\overline{H}_1T^{-1}\cdots T\overline{H}_{r-1}T^{-1} = \overline{B}'\overline{H}'_1\cdots\overline{H}'_{r-1},$$
$$A_1\overline{H}'_{r-1} = \overline{B}\overline{H}'_1\cdots\overline{H}'_{r-2}.$$

From Lemma 3 we know $m(S_{A_1\overline{H}^{r-1}}) \leq r-1$. But,

$$\mathcal{A}_{1}\overline{H}'_{r-1} = \begin{pmatrix} a & & & \\ & \ddots & & \\ & a & & \\ & & &$$

Then, if $a \neq 1$, it is obvious that $m(S_{A_1H_{r-1}}) \ge r$; if a=1 from the hypothesis that $\operatorname{res}(f_jA) = r$, we have $\operatorname{res}(A_1) = r$. Furthermore, the *r* column vectors of *C* are linear independent. Hereby $m(S_{A_1H_{r-1}}) \ge r$. This contradicts $m(S_{A_1H_{r-1}}) \le r-1$.

(2) If all elements of the last n-r columns of $I-\overline{H}_{r-1}$ are equal to zero. There is no loss of generality in assuming that the elements of the first column of $I-\overline{H}_{r-1}$ are not all equal to zero. Then we have $b_1 \neq 0$, $b_{r+1} = \cdots = b_n = 0$ in the formula (*). Put

The**n**

$$T(I-\overline{H}_{r-1})T^{-1}=I-T\overline{H}_{r-1}T^{-1}=\begin{pmatrix} * & 0\cdots \\ \vdots & \vdots & \vdots \\ * & 0\cdots & 0 \end{pmatrix}.$$

i = 1

So we can let

$$T\overline{H}_{r-1}T^{-1} = \begin{pmatrix} & & & \\ * & 1 & & \\ \vdots & \ddots & & \\ * & & 1 & \\ & & & \\ \hline & * & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$T(f_{i}A)T^{-1} = \begin{pmatrix} a \\ \ddots \\ a \\ \hline C' & I^{(n-r)} \end{pmatrix} = A_{1},$$

(**)

$$A_{1} = TBT^{-1}T\overline{H}_{1}T^{-1}\cdots T\overline{H}_{r-1}T^{-1} = \overline{B}'\overline{H}'_{1}\cdots\overline{H}'_{r-1},$$
$$A_{1}\overline{H}'_{r-1} = \overline{B}'\overline{H}'_{1}\cdots\overline{H}'_{r-2}.$$

According to Lemma 3 we have $m(S_{A_1 \overline{H} \neq -1}) \leq r-1$. But

$$A_{1}\overline{H}'_{r-1} = \begin{pmatrix} -a & & \\ * & a & \\ \vdots & \ddots & \\ \vdots & a & \\ \hline & & \\ * & \\ & \vdots & C_{1} & I^{(n-r)} \end{pmatrix}.$$

i) If $a \neq \pm 1$, $m(S_{A_1 \overline{B} \neq -1}) = r$. This contradicts $m(S_{A_1 \overline{B} \neq -1}) \leq r-1$. ii) If a=1 and $2 \notin M_j$, then

$$I - A_1 \overline{H}'_{r-1} = egin{pmatrix} 2 & & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & & \ -* & \ -* & & \ -* & \ -* & & \ -*$$

From the hypothesis of Lemma i. e. $m(S_{f_jA}) = r$ and from 1) of Lemma 3, we obtain $m(S_{f_jA}) = m(S_{A_1}) = r$. Then we know that r column vectors in C' are linear independent. Since $C' = \begin{pmatrix} *' \\ \vdots \\ *' \end{pmatrix}$, r-1 column vectors in C_1 are linear independent.

Hence $m(S_{A_1H \not \to 1}) = r$ by formula (**). This contradicts $m(S_{A_1H \not \to 1}) \leq r-1$. So $\delta(A) \neq r$.

Theorem 1. Let A be an element of $GL_n(R)$ with $\operatorname{res} A = r$ and $m(S_A) = t$. In the normalization of A, if $f_j D^{(r)} \neq aI \quad \forall a \in R/M_j$ and $\forall j \in N$, then

$$A = BH_1 \cdots H_{q-1},$$

where $q \leq r$, $\operatorname{res} B = 1$, $H_i(i = 1, \dots, q-1)$ is a symmetry and $t \leq \delta(A) \leq r$. In particular, we have $\delta(A) = t$, if there exists some $i \in N$ such that $\operatorname{res}(f_i A) = r$.

Proof We use induction on $r = \operatorname{res} A$. If r = 1, there is nothing to prove. So we assume that the results hold for all A with res $A \leq r-1$.

Since res A = r, there is no loss of generality in assuming that

$$A = \left(\frac{D^{(r)}}{*} \middle|_{I^{(n-r)}} \right).$$

By Lemma 2, there exists $T^{(r)} \in GL_r(R)$ such that 1 lies at the position (r, r-1) of $T^{(r)}D^{(r)}T^{(r)-1} = D_1^{(r)}$. Set

$$T = \left(\frac{T^{(r)}}{I}\right).$$

Then

$$TAT^{-1} = \left(\begin{array}{c} D_{1}^{(r)} \\ * \\ \end{array} \right) = \left(\begin{array}{c} * & \cdots & a_{1,r-1} & * \\ \vdots & \vdots & \vdots \\ * & \cdots & a_{r-1,r-1} & * \\ * & \cdots & 1 & * \\ \hline * & \cdots & a_{r+1,r-1} & * \\ \vdots & \vdots & \vdots \\ * & \cdots & a_{n,r-1} & * \end{array} \right) = A_{1_{0}}$$

$$T_{1} = \begin{pmatrix} 1 & -a'_{1,r-1} \\ \vdots \\ 1 & -a'_{r-1,r-1} \\ 1 \\ -a'_{r+1,r-1} \\ \vdots \\ -a'_{n,r-1} \\ I^{(n-r)} \end{pmatrix}.$$

Then

 $T_{1}A_{1}T_{1}^{-1} = \begin{pmatrix} \begin{array}{cccc} a_{11}\cdots a_{1,r-2} & 0 & a_{1r} \\ \vdots & \vdots & \vdots & \vdots \\ a_{r1}\cdots a_{r,r-2} & 1 & a_{rr} \\ \hline \\ & & & \\ \vdots & & \vdots & \vdots & \\ & & &$

Set

$$H'_{q-1} = \begin{pmatrix} 1 & & & & \\ & 1 & 0 & 0 & \\ & 0 & 0 & 1 & \\ & 0 & 1 & 0 & \\ & & & & I^{(n-r)} \end{pmatrix}.$$

We have

$$A_{2}H'_{q-1} = \begin{pmatrix} * \cdots * \\ \vdots & \vdots \\ * \cdots * & 1 \\ \hline \\ & \ddots & * \\ \vdots & \vdots \\ & & \ddots & * \\ \vdots & \vdots \\ & & & I^{(n-r)} \end{pmatrix} = \begin{pmatrix} D_{1}^{(r-1)} \\ \hline \\ & & & \\ \vdots & \vdots \\ & & & & I^{(n-r+1)} \end{pmatrix},$$

where

$$D_1^{(r-1)} = \begin{pmatrix} a_{11} \cdots a_{1,r-2} & a_{1r} \\ \vdots & \vdots & \vdots \\ a_{r-1,1} \cdots a_{r-1,r-2} & a_{r-1,r} \end{pmatrix}.$$

i) If $f_j D_1^{(r-1)} \neq aI$, $\forall j \in N$ and $\forall a \in R/M_j$ by the assumption of induction, it follows that

where

 $A_{2}H'_{q-1} = B'H'_{1}\cdots H'_{q-2},$ $q-1 \leq \operatorname{res}(A_{2}H'_{q-1}) \leq r-1.$

So

$$A_2 = B'H'_1 \cdots H'_{q-2}H'_{q-1}.$$

Since $A_2 = T_1 \text{TAT}^{-1}T_1^{-1}$, putting $T_2^{-1} = T_1 T$, we have

$$A = T_2 B' T_2^{-1} T_2 H_1' T_2^{-1} \cdots T_2 H_{q-1}' T_2^{-1} = B H_1 \cdots H_{q-1}$$

where resB=1, H, is a symmetry, $q \leqslant r$. So $t \leqslant \delta(A) \leqslant r$ by Lemma 3.

ii) Assume that $f_j D_1^{(r-1)} = b_j I$ $b_j \in R/M_j$, $\forall j \in N_1$ and $f_i D_1^{(r-1)} \neq b_i I$ $\forall b_i \in R/M_i$, $\forall i \in N_2$, where $N_1 \cup N_2 = N$, $N_1 \cap N_2 = \emptyset$. Then, we replace H'_{q-1} by

$$H_{q-1}'' = \begin{pmatrix} & 1 & & \\ & 1 & & \\ & -k & 0 & 1 \\ & & k & 1 & 0 \\ & & & & I^{(n-r)} \end{pmatrix},$$

where $k \in \bigcap_{i \in N_2} M_i$, $k \notin \bigcup_{i \in N_1} M_i$. It follows that

If $i \in N_2$, we have

$$f_i(H''_{q-1}) = f_i(H'_{q-1}) = H'_{q-1}$$

Hereby, we may deduce

$$f_i(A_2H''_{q-1}) = f_i(A_2H'_{q-1})_{o}$$

Therefore

$$f_i D_2^{(r-1)} = f_i D_1^{(r-1)} \neq b_i I, \ \forall b_i \in R/M_i.$$

Assume that $i \in N_1$. Since $a_{r-1,r-2} + ka_{r-1,r}$ lies at the position (r-1, r-2) of $\mathcal{D}_2^{(r-1)}$, and $a_{r-1,r}$ lies at the diagonal of $\mathcal{D}_1^{(r-1)}$, we have

$$f_i(a_{r-1,r-2}+ka_{r-1,r})=f_i(ka_{r-1,r})\neq 0$$

Hence

$$f_i D_2^{(r-1)} \neq b_i I$$
, $\forall i \in N$, $\forall b_i \in R/M_i$.

This amount to the case of i).

If $res(f_iA) = r$, obviously, we have t = r. Hence $\delta(A) = t$.

Theorem 2. Assume that $A \in GL_n(R)$, $m(S_A) = t$ and $\operatorname{res} A = r$. We have $A = BH_1$ $\cdots H_q$ in the normalization of A, if $f_j D^{(r)} = b_j I$ for some $j \in N$, where $\operatorname{res} B = 1$, H_i is a symmetry, $q \leq r$ and $t \leq \delta(A) \leq r+1$. In particular, if $b_j \neq \pm 1$ or $b_j = 1$ but $\operatorname{res}(f_j A)$ = r and $2 \notin M_j$, we have $\delta(A) = r+1$.

Proof There is no loss of generality in assuming that

 $A = \left(\frac{D^{(r)}}{*} \middle|_{I^{(n-r)}} \right),$ $D^{(r)} = \left(\begin{array}{c} a_{11} \cdots a_{1r} \\ \vdots & \vdots \\ a_{r1} \cdots a_{rr} \end{array} \right).$

where

42

Set

Then

$$AH_q = \left(\frac{|D_1|}{*} | \frac{1}{I^{(n-r)}}\right).$$

(1) If $f_j D_1^{(r)} \neq b_j I$, $\forall j \in N$, $\forall b_j \in R/M_j$, then $AH_q = BH_1 \cdots H_{q-1}$ by Theorem 1, where res B=1, H_i is a symmetry, $q \leq res(AH_q) \leq r$. So $A = BH_1 \cdots H_q$ and $t \leq \delta(A) \leq r+1$ by Lemma 3.

(2) Assume that $f_j D_1^{(r)} = b_j I$, $\forall j \in N_1$, where $b_j \in R/M_j$ and $f_j D_1^{(r)} \neq b_j I$, $\forall b_j \in R/M_j$ and $\forall j \in N_2$, where $N_1 \cup N_2 = N$, $N_1 \cap N_2 = \phi$. We replace H_q by

•	/ ¹ ···		•		١	١
	1				- 	
$H'_q =$		k	0	1		,
		k	1	0		
		•			I ^(n-r)	I

where $k \in \bigcap_{i \in N_1} M_i$, $k \notin \bigcup_{i \in N_1} M_i$. It follows that

$$AH'_{q} = \left(\frac{D_{2}^{(r)}}{*} \middle|_{I^{(n-r)}}\right)$$

and $a_{r,r-2} - ka_{r,r-1} + ka_{rr}$ lies at the position (r, r-2) of $D_2^{(r)}$. From $f_j(a_{r,r-2} - ka_{r,r-1} + ka_{rr}) = f_j(-ka_{r,r-1}) \neq 0, \ \forall j \in N_1$

and

$$f_j D_2^{(r)} = f_j D_1^{(r)} \neq b_j I$$
, $\forall j \in N_2$ and $\forall b_j \in R/M_j$,

we deduce that

 $f_i D_2 \neq b_i I$, $\forall i \in N$ and $\forall b_i \in R/M_i$.

This amount to the case of (1).

If $b_j \neq \pm 1$ or $b_j = 1$, res $(f_j A) = r$ and $2 \notin M_j$, it may be seen that r = t and $\delta(A) = r+1$ by Lemma 4.

Now, assume that G_n denotes the subgroup generated by all the symmetries of $GL_n(R)$, i. e.,

$$\mathcal{F}_n = \{A \in GL_n(R) \mid \det A = \pm 1\}.$$

If $1 \neq -1$ in R, we define g(A) for $A \in G_n$ by

 $g(A) = \begin{cases} 0 & \text{when det } A = (-1)^{\text{res}A}, \\ 1 & \text{otherwise.} \end{cases}$

Theorem 3. Let A be an element of G_n with res A = r and $m(S_A) = t$.

(1) If $1 \neq -1$, we have $t \leq l(A) \leq r+2$; if 1 = -1, we have $t \leq l(A) \leq r+1$.

(2) Let r=t. In the normalization of A, if $f_i D \neq b_i I$, $\forall i \in N$ and $\forall b_i \in R/M_i$, we have

$$l(A) = \begin{cases} r+g(A) & \text{if } 1 \neq -1, \\ r & \text{if } 1 = -1. \end{cases}$$

Proof (1) If $1 \neq -1$, we first point out that if detB=1 and resB=1, then B can be expressed as the product of two symmetries. Since there exists $T \in GL_n(R)$ such that

$$TBT^{-1} = \begin{pmatrix} 1 \\ * \\ \vdots \\ * \\ I^{(n-1)} \end{pmatrix} = \begin{pmatrix} -1 \\ -* \\ \vdots \\ -* \\ I^{(n-1)} \end{pmatrix} \begin{pmatrix} -1 \\ - \\ I^{(n-1)} \end{pmatrix} = H'_{1}H'_{2},$$

we have $B = T^{-1}H_1'TT^{-1}H_2'T = H_1H_2$. Let 1 = -1. If res B = 1 and det B = 1, then B is a symmetry. Therefore the result of (1) can be proved by Theorems 1, 2, and Lemma 3 immediately.

(2) From Theorem 1 we have

$$A = BH_1 \cdots H_{r-1}, \tag{(*)}$$

where $H_i(i=1, \dots, r-1)$ is a symmetry, res B=1.

If 1 = -1, B is a symmetry. Then, from Lemma 3 we deduce l(A) = r.

Now, let us assume $1 \neq -1$. We proceed in two steps.

1) $\det A = 1$.

If r is even, then det $A = (-1)^r$, g(A) = 0. According to formula (*), we have det B = -1. So B is a symmetry. By Lemma 3, we have l(A) = r + g(A).

If r is odd, then det $A \neq (-1)^r$, g(A) = 1. According to formula (*), we obtain det B=1. But then B can be represented as a product of two symmetries. Therefore, from Lemma 3 and det A=1 we deduce l(A)=r+g(A).

2) det A = -1.

If r is even, then det $A \neq (-1)^r$ and g(A) = 1. From formula (*) we obtain det B=1. Then B can be expressed as a product of two symmetries. Therefore, according to Lemma 3 and det A = -1, we deduce that l(A) = r + g(A).

If r is ond, then, from formula (*) we have det B = -1. B is a symmetry. By Lemma 3, l(A) = r. Hence, from det $A = (-1)^r$ and g(A) = 0, we have l(A) = r + g(A).

Theorem 4. Let A be an element of G_n with $\operatorname{res} A = r$ and $m(S_A) = t$. Then

(1) Let $1 \neq -1$. We have l(A) = r+2-g(A) in the normalization of A, if A satisfies any one of the following conditions:

(a) There exists a $j \in N$ such that

 $f_j D^{(r)} = aI$ where $a \neq \pm 1$;

(b) There exists a $j \in N$ such that

 $f_j D^{(r)} = I$ and $\operatorname{res}(f_j A) = r$ where $2 \notin M_j$.

(2) Let $1 \neq -1$. We have l(A) = r, if $D^{(r)} = -I$.

(3) Let 1 = -1. We have l(A) = r+1, if there exists a $j \in N$ such that $f_j D^{(r)} = b_j I$ where $b_j \neq 1$.

(4) Let 1 = -1. We have l(A) = r, if $D^{(r)} = I$ and t = r.

Proof It is easy to verify that t = r.

(1) By Theorem 2, we have

$$A = BH_1 \cdots H_r (**),$$

where resB=1 and $H_i(i=1, \dots, r)$ is a symmetry.

There are two cases:

i) det A = 1.

If r is odd, then $\det A \neq (-1)^r$ and g(A) = 1. By formula (**), we have $\det B = -1$, i. e., B is a symmetry. Therefore, from Lemma 4, we deduce l(A) = r+2 -g(A).

If r is even, then det $A = (-1)^r$ and g(A) = 0. Thus, det B = 1 and B can be represented as a product of two symmetries. According to Lemma 4 and det A = 1 we have l(A) = r+2-g(A).

ii) det A = -1.

If r is odd, then det $A = (-1)^r$ and g(A) = 0. By formula (**) we have det B =1. So B can be represented as a product of two symmetries. Then according to Lemma 4 we have l(A) = r+2-g(A).

If r is even, then det $A \neq (-1)^r$, g(A) = 1 and det B = -1 (i. e., B is a symmetry). By Lemma 4, we obtain l(A) = r+2-g(A).

(2) If $D^{(r)} = -I$, then, we have

i. e., l(A) = r.

(3) According to Theorem 2 we have $A = B H_1 \cdots H_r$. Because of 1 = -1, B is a symmetry. Then l(A) = r+1 by Lemma 4.

(4) The proof of (4) is similar to the proof of (2).

References

- [1] Wang Luqun & Zhang Yongzheng, A Monthly Journal of Science, 27:12(1982), 764, (in chinese).
- [2] Radjavi, H., Decomposition of matrices into simple involutions Linear Algebra and Appl., 12 (1975), 247-255.
- [3] Cater, F. S., Products of central collineations, Linear Algebra and Appl., 19 (1978), 251-274.
- [4] Djokovic, D. Ž. and Malzan, J., Products of Reflections in the General Linear Group over a Division Ring, *Linear Algebra and Appl.*, 28 (1979), 53-62.
- [5] Zhou Fang & Li Li, A Monthly Journal of Science, 26:14(1981), 893-894, (in chinese).