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LINEAR GROUP OVER A CLASS OF RING R

Yuax BINGOHENG (% £ )?x) *

| Abstract

Let B be a commutative ring™! with identical element 1 and maximal ideal M; where

1€ N and N is an ordered indicatrix set. Let the mapping ‘

fiR->T] B/M,
€N

be a ring homomorphism from R onto IIR/M‘, where H R/M . is the direct product of
residual fields RB/3;. In this paper, it is proved thatif A€ GL,,(R) ;then A==BHyq «e--. Hy 1,
where res B=1 and Hy, -+, H;_y are the symmetries. Furthermore, the bound of the positive:
 integer number K is invest1gated. In particular, the author gives the smallest number 1(4)

of symmetric factors in the producets which expresses the elements of G,={4 € GL,(R)| det:
A= +1}. Consequently, the 1(4) problems discussed in [2, 3, 4] are special cases of this:

: - paper.
§ 1. Introduction

In 1975, H. Radjavi™ showed that I(4)<2n—1, if R=F is a field and A€G,.
He also conjectured that 1(4)=>2n—2. In 1978, F. 8. Cater™ showed that this
conjecture is false and proved that 7(4)<<n+-2. He conjectured furthermore that?(4)
>n+1. However in 1979, D. 7. Djokovié and J. Malzan™, negatived the above
conjecture again and solved the problem on the field F thoroughly.

In this paper, we extend the results in [4] %o a class of ring R, give the
symmetry generation theorem for G'L,(R) and the method of constructing symmetric
factors. The method of this paper also can be applied to the discussion for the length
of generation of G.L,(R) by transvections. In particular, the Theorem 1 and Theorem
2 in our paper still hold if symmetries aTo replaced by transvections. Since local ring
is included in ring R in our pa,pér, as a matter of fact, this pa.per has given the lower
bound of the length of generation by iransvections. This question has never been.

solved over local ring before now.

§ 2. Main results

Let A€GL,(R) and F, be the set of all submodules in R" that contain the

Manuseript received July 31, 1982 Revised December 31, 1982.
% Department of Mathematics, Northeast Normal University, Ohangchun, China.



36 CHIN. ANN. OF MATH. Vol. 6 Ser. B

columns of I—A. 8, is the submodule of F,, containing the least mumber of
generators. m (S,) denotes the least number of the vectors of S, which generate §,.
myp(4) denotes the least number of the column vectors of I-T'AT~' which generate
I-TAT-* (where T €GL,(R)). We define the residual number of A as follows
res A=min{m;(4) |T €QL,(R)}.
If R is a field, we have
m(Sy) =res A=rank(I—A4),

We know that the homomorphism of group fi: GL,(R)—~>GL,(R/M;) will be
induced by homomorphism fi: R—>R/M,.

An element AEGL,(R) is called a symmetry if res A=1 with detd = —1.
Assume that A €GL,(R) can bhe expressed as A=BH;-Hy_;, where Hjs are
symmetries and res B=1, Then we write the least number K of the factors in the
preceding exprossion as K =8(4). Hy(b) denotes the nXn matrix with b in the (4, 5)
position and o’s everywhere else. '

If A€GL,(R) and resd=r, thare exists 7' € GL,(R) such that

D(r)
TAT- = o s 1@n | @
» % *

(1) is called the normalization of A.

Obviously, if 4 is similar to matrix B i. e. A«»B, then we have ‘o‘(A) 5(B).
Therefore, we will use the same notation for both similarity and equality.

Lemma 1. For any mE N, there exists an element K € DmM ; but K QE,‘Q" M.

Proof It is sufficient that take
E=f%(0, 0, -, 0, 1-+ My, -+).

Lemma 2. Let D” €GL.(R), and let f;D"+al, VaER/M; and YiEN. Then,
there exists an dlement T €GL.(R) such that the element at the position (r’, r—1) of
TD®T-1 gs 1.

Proof Let D= (ay), 4, j=1,2, -, r

1) If @, ,—1 is a unit, wo take T'=1I-+ H,_1,,_1(@pr-1—1).

2) Now let us assﬁme that @,,,_y is not a unit, Then, for any tEN, from f,D®
+al VYo & R/M;, there exists T, € G.L,(R/M;) over field R/M,, such that the element
of Ty( f:D")T7* at the position (r, r—1) is 1. Since the mapping f is a surjection
from R onto EVR/M ;, there exists T € GL,(R) such that f;T'=T,, VtC N. Therefore,

the element of 7"D™7T'~* at the position (r, r—1) i8 a unit. This amount o the case

of 1). _
Lemma 8. Let ACGL,(R), and let A =By By, where res By=1. ¢=1, 2, - k.
Then ’m(SA> <k.
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Proof 1) Let us first prove that m(Ss) =m(Spsr-) for any 4, T €GL, (R). Let
dy, ds. ---, d; be the least group of generators of §4. Then

T11°*T 1 ‘
I'—A= (dll dg’ oy, dt) ......... R
T Tin
whore E
dy;
d=| % | 5=1, 2, -, 8
Ot 11" Tin ,
I-TAT =T (I —AYT =T (dy, ds, ++, d)| +++-r+++" -1
Tert T
0”'11" T1n
— (7-1’ rg, **, ’r't> ......... ) (*)
Te e T ‘

Formula (%) implies that oy, fg, -, 73 can generate the column veotors of
I-T AT, Hereby m (Spar-) <t=m(8y4). |

Similarly, wo can prove m(8,) <m(Srar-). So m(8,) =m(Spar).

2) We prove Lemma by induction on k. The result is obvious for k=1,

Suppose the result hold for £—1. Clearly

*
BkNB;c': 9; 1 . . P
* 1
1. o. there exists '€ G-L,(R) such that T B,T~*=B;. So
| T AT~ —T ByT~T B,T~*-T BT~ = B B;--B,,

where res Bi =1, ¢=1, 2, «--, k. Set

bygee by,
B=B\B}-Bl_g=] erecere
. bnl" ‘ 'bnn
Then [
' % byareobyy
TAT1=BB={ «weeeeereees . (**)
% Dyge by

By the assumption of mduotlon it follows that m(Sp)<<k—~1. By formula (x*)
is easy to have m(Spar)<k. From 1), we obtain m(S,)<k.

Lemma 4. Let A be an element of GL,(R) with resA=r. If A satisfies any one
of the following conditions:

1) In the normalization of A, f;D®=al for some jE N, where a+ +1.

2) Assume that in the normalizaiion of A, f;D =1, res(f;A) =r and 26 M; for
some §EN. Then d(4) #r.
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Proof There is no loss of generality in assuming

D(r)
A - < >.
I(n—r)

%
Suppose A=BH;--+H,.,, whereres B=1and H;(¢=1, 2, -+, r—1) is a symmetry.
Then in field R/M;, |
_ Jid=(f:B) (fiHy), -, (fiHx) =BHyH,,
where H;=f;H; is a symmetry and res B=res (f;B)<<1. From assumption we have

m (8} 4) =r. According to Lemma 3 we have res B=1.
In field R/M;, we consider I—H,_ ;. Since res H,_;~1, we can set

C1

I_Er—-1=< 5 >(bl’ wery bpyy, *+v, by) (=)

Cn
where ¢;, b,;ER/M;.
(1) If the elements of the last n—r columns of I—H,_, are not all equal to
zoro. There is no loss of generality in agsuming that the elements of the r+1 column
are not all equal to zero. S0 by41#0. Sob

1
1
T-1=| —b1 =D 1 _fbrl-z'__*bn_ .
br+1 br+1 br+1 br+1
1
. "1
Then |
- . 0:0|=% 0-+0
T(I~H, )T*=I-TH,T*={: i i 1)
| 0--0]x 0.0
Therefore, we have :
) o |7
TH,T™= * =H, 4,
i1
. % ) 1
Since
a
fid= ‘a ,
3% I(ﬂ‘r)

""We have
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But,

T(f,AT*=| a — Ay,
O I(n-—r) .

-A1 = TET—iTﬁlT_i. . 'Tﬁr~1T_1= Elﬁg. . —;'-lg
AH _ =BH,H_,

From Lemma 8 we know m (84,g,.,) <r—1. But,

a %

al %

Al T,

O . .
* "q

Then, if a+1, it iy obvious that m(Ssg.)=>r; if e=1 from the hypothesis that
res(f;A) =r, we have res(4;)=r. Furthermore, the  column vestors of U are linear

independent. Hereby m (84,7,,) =>r. This contradicts m(S4z,.,) <r—1.

(2) If all elements of the last n—r columns of I — H,_; are equal t0 zero. There

is no loss of generality in assuming that the elements of the first column of I —H, 4

are not all equal to zero. Then we have b;%0, byy=-=0,=0 in the formula (x).
Put ‘
‘ —bs . =0
Sl T
1
T~=
1
I(n—r)

Then

So we can let

Then

# 0.0
TI-H,_)T*=I-TH, T7={1 { ]
% 00

o | 1o

a
paT= o )=A1,
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.A1 = TBT—lTE;LT—l' ¢ ‘Tﬁr_lT—l = E,Eg_ ¢ '.Z_:,Z:Ir_la
A H, =B HyH
According to Lemma 8 we have m (84,5,,)<r—1. But
—a

* a

A1E:»—1= ' a

*

0y |I0-»

*
D) If e £1, m(Sug.,) =r. This contradiots m(Ssgze) <r ~1.
ii) If ¢=1 and 2¢ M,, then

I - Al-ﬁi—l = _ * R (*-M-)

-0,

— %

TFrom the hypothesis of Lemma i. e. m(8;,4) =r and from 1) of Lemma 3, we obtain
m (8;,0) = m (84) =r. Then we know that r column vectors in O’ are linear

%

’
independent. Since 0’ =<'§ 01>, r—1 column vectors in O, are linear independent.
=

Henoce m (S 4,;7,.,) =r by formula (). This contradiots m (S 4,z.,) <r—1. 80 §(4) #nr.
Theorem 1. Let A be an element of GL,(R) with resA=r and m(8,) =2. In
the normalization of A, if fiD®W+al Ya&R/M; and VjEN, then
A=BH;---H, 3,

where q<r, resB=1, H,(¢=1, -, ¢—1) is a symmetry and t<S(4)<Sr. In

particular, we have 8(A) =4, if there exists some ¢ € N such that res(fid) =r.

Proof We use induction on r=res A. If r=1, there is nothing to prove. So we
assume that the results hold for all A with res A<<r—1.

Since res A=r, there is no logs of generalify in assuming that

) _D'(r)
I(n—r)

"By Lemma, 2, there exists 77 € GL,(R) such that 1 lies at the position (r, r—1) of

ﬂ'(r)_D(r)T(r)‘1 — _Dg.r). Set A
UG
(L)
: I(n—r)

Then
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No. 1
K erenns a, %
1,r=-1
Dgr) e esnass ar—l,r—-l *
T AT = s 1 — 4y, |
* I(n~r)
!
% @ri1 r—1 *
: I(n*i‘)
aeeenn Gy ®
Set
!
1 —a1,r-1
. ,:
. 1 ~&p—1,r—1
T1= 1
!
—Qpy1,r-1
H [0
- Q'.it,r—-l
Then .
@11 @12 0 @y ;
. . . : |
Q1" Ay, y-3 1 Ay .
T, 4,77 = = Ay,
K oeerens * O %
M I(n-—-r)
36 sevens % 0 % !
Set ;
1
1 00
b= 0 0 1
010
I(n—r)
We have
K oeer %
K D:(lr—l)
. Woees K 1 ———
! s
A_QHQ__l:: =1 % - % 1
K oeee % LoD
: : ) I(n"r) ¥ oo B
% e N
where

@1y Bap-n
DD :

a’?‘—-l, 1 'ar—-l» r—2

AT )
Qy_1,r

i) If £;,D¢P+#al, YJEN and Vo€ R/M; by the assumption of induction, it

follows that

where -

So

AgH! =B HiH_y,

g—1<res(dHy 4)<r-1,

.Ag =B,H'1 ¢ 'H’q_gﬂa_l.
Since A,=T,TAT-T:*, putting T5*=T,T, we have
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A=TzB’T2“1T2H'1T§1---T2H£~1T2‘1=B_Hl---Hq_1,
where resB=1, H; is a symmetry, ¢<<r. So {<3(4)<<r by Lemma 3.
i1) Assume that f,D{' P =b,I b;€R/M, VjEN, and f,D{V+bI Vb& R/ M,
Vi€ Ny, where NyUNy=N, Ny Ny={. Then, we replace H{,.@ by

)1 ,
1

g-1= . —k 0 1 . >

E 1 0
I(n-—r)
where k€ [\ M, ket | M,. It follows that
A A

Dér—l) '

AHy =] %o % . !

: . [@=r+D) '

TS

1f ¢EN,, we have |
| fi(Hg-1) = fe(Hg-1) = Hya,
Hoereby, we may deduce
Ji(deHg 1) =fi(A2Hy o),
Therefore .
FiD§P =fDirP£b, Vb, € R/M,,
Assume that ¢€ Ny 8ince @,_s,e-a-+ ke, lies at the position (r—1, r—2) of
DE, and ay_y,, lies at the diagonal of D{~>, we have
_ Sil@r_1,p-atkar_s,,) = fi(k@py,y) %0,
- Hence '
fi DS P+bI, Vi€EN, Vo, ER/M,,
This amount to the case of i). _

If res(f;4) =, obviously, we have ¢=r. Hence §(4) =¢.

Theorem 2. Assumethat A< GL,(R), m(S4) =t and resA=r. Ws have A=BH,
oo« H 4 4n the normalization of A, ¢f fiD®=0;I for some jE N, where resB=1, H; is a
symmetry, ¢<r and t§6(A)<r+1: In particular, if bj# £1 or bj=1 but res(f;A) |
=1 and 2 M,, we have 8(4) =r-+1.

Proof There is no loss of generalﬂ;y in assuming that

v 'D(r)
A=i— R
_ s I(n-—r>
ali e a.ir
‘Whers D"={ : Po)
7 . Q1 Oy

Set




No. 1 Yuan, B. C. LINEAR GROUP OVER A CLASS OF RING B 43

Jn—n

=" >

@) If £;,D{P 5,1, Vj €N, Vb,€R/M,, then AH,=BH;--H, s by Theorem 1,
where res B=1, H, is a symmetry, q<res(AHq) <r. So A=BH,---H, and $<<56(4)
<r+1 by Lemma, 3.

(2) Assume that f;D{°=b,I, Vj € Ny, where b,€ B/M; and D +b,1, Vb, E R/ M,
and Vj € Ny, where NyUNy=N, Ny Na=¢. We replace H, by

1

Then

%

e
AH =

H=| -k o 1 1
E 10

I(n—r)

I(n-—r) >

and ay,y_g~ kay,,_1+ka,, lies at the position (r, r—2) of DJ’. From
fj (ar,r—z - k“ruf—l"‘“kan’) =f5< - kahr—-i) +0, V_? EN,

‘where £C [V M,, k¢ | ] M, It follows thab
4EN, $€N:

Dy
A —

*

and $:D5 = f,DY’ #b,I, VjE€ Ny and Vb,C R/ M,,
We' deduce that
fiDa%bI, ViEN and Vb;ER/ M,

This amount to the case of (1).

If by 41 or b;=1, res(f;A) ~r and 26EMj, it may be seen that r=¢ and 5(4)
=g¢-+1 by Lemma, 4.

Now, assume that G, denotes the subgroup generated by all the symmetries of
GL.(R), i. e., . A

G.={AEGL,(R) |det A= %1},
If 1% —1 in R, we define g(4) for ACG, by

ol A {0 when dé’r-_A= ‘—q)resd,
oa)= 1 otherwise, ’

Theorem 8. Lot A be an element of G, with res A=r and m(8,) =¢.
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(D) If 1+ —1, we have t<U(A)<r+2; if 1= —1, we have 1<I(4)<r+1.
(2) Let v=t. In the normalization of A, if fiD+b,I, Vi€EN and Y0, ER/M; we
have

Z(A>={fr+g(A) if 15 ~1,

if 1=—1,

Proof (1) If1+-— 1 we first point out that if detB=1 and resB=1, then B can
be expressed as the product of two symmetries. Since there exists 7' € GL,(R) such
that ‘

1 —1 | —1 ‘

TBT'=| « =f — =H)
I(n—l) : I(n—i) I(n-—i) )
* —_—%

we have B=T‘1H TT-*H\T = H,H,. Lot 1= —1. If resB=1 and det B=1, then B
is a symmetry. Therefore the result of (1) can be proved by Theorems i, 2, and
Lemma 3 immediately.

(2) From Theorem 1 we have

A=BH;y-H,_y, (%)
where Hi(4=1, -+, r—1) is a symmetry, res B=1.

If 1= —1, B is a symmetry. Then, from Lemma 3 we deduce I(4)=r.

Now, let us assume 1+ —1. We proceed in two steps.

1) detA=1. o

If r is even, then det A= (—1)", g(A4)=0. According to formula (¥), we have
det B=—1. So B is a symmetry. By Lemma 3, we have I(4)=r+g(4).

If r is odd, then det A+ (—1)", ¢(4)=1. According to formula (), we obtain
det B—1. But then B can be represented as a product of two symmetries. Therefore,
from Lemma 3 and det A=1 we deduce Z(A) =r4+g(4).

2) detd=—1.

If r is even, then det A+ (—1)" and ¢(4)=1. From formula (+) we obtain
det B=1. Then B can be expressed as a product of two symmefries. Therefore,.
according to Lemma 8 and det A= —1, we deduce that I(4) =r+g(4).

If r is ond, then, from formula (x) we have det B=—1. B is a symmetry. By
Lemma 3, 1(A4)=1r. Hence, from det A=(—1) and g(4)=0, we have I(4)=r+g(4).

Theorem &. Let A be an element of G, with resA=r and m(84)=t. Then

(1) Let 1% —1. We have I(4) =r+2— g(A) in the normalization of A, if 4
satisfies any one of the following conditions:

(a) There exists @ §jE N such that

fiD" =al where a+ +1;
(b) There ewists a j €N such that
fiD®W'=1I and res(f;A4) =r where 2¢ M,
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(2) Let 1+ —1. We have 1(4) =r, if DW= —

(8) Let 1=—1. We have I(A) =r+1, if there exists @ jEN such that f;D®=b;I
where b;#1.

(4) Let 1=—1. We have Z(A) =r, fbe(’”)——I and t=1g,

Proof It is easy to verify that ¢=r.

(1) By Theorem 2, we have

A=BH;--H, (s),

where resB=1 and H,;(¢=1, -+, r) is a symmetry.
There are two cases:
i) detd=1.
If r is odd, then detd s (—1)" and g(4)=1. By formula (#x), we have det B

=~ —1, i. 6., B is a symmetry. Therefore, from Lemma 4, we deduce I(4)=r+2

—g(4).

If 7 is even, then det A=(—1)" and g(4)=0. Thus, det B=1 and B can bo
represented as a product of two symmetries. Aoccording to Lemma 4 and det A=1 we
have I (4) =r+2—g(4).

ii) detd=—1.

If r is odd, then det A= (~1)* and ¢g(4)=0. By formula (*+) we have det B
=1. So B can be represented as a product of two symmetries. Then aocordmg o

Lemma 4 we have 1(4) =r+2— g(A)

If ¢ is even, then det A+ (—1)", ¢g(4)=1 and det B=—1 (1 e., B isa
symmetry). By Lemma 4, we obtain I(4) =r+2—g(4).

(2) If D= —1I, then, we have

-1 -1

-1 1 . -1
p - ' " —1
* * Ttn=r) * In=r) * ) x In=n)
#* % # * #
—HyHyH,y

i.e., 1(4)=r.

(8) According to Theorem 2 we have A=B Hy---H,.

symmetry. Then 7(4) =r+1 by Lemma 4.

(4) The proof of (4) is similar to the proof of (2).

Because of 1=—1, B is a
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