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OSCILLATORY PROPERTY OF ЛГ-ТН ORDER 
FUNCTIONAL DIFFERENTIAL EQUATIONS

G e o r g e , W .  J o h n s o n * * Y a n  J u r a n g  %  i h )  **

Abstract

The authors study oscillatory property o f nonlinear functional differential equation

Lnx(f) =r(t ) ,  (1)
where Lnx(t) is an и-th  order linear differential operator defined by 

L0x( t)~x( t) ,

Ъкх(t) =  (a*_i(t)Lk_x%(t)) ,  &=1, 2, •••, n.

Sufficient conditions are obtained which guarantee that all continuable solutions of (1) are 
oscillatory or tend to zero as

§ 1. Introduction

In  this paper, we establish criteria for oscillation or nonoscillation of solutions of 
ftr-th order functional differential equations of the type

Lnx(f) + p (t ) f  (a?( t) , (t) , (1)
where is a differential operator defined recursively by

L0x(t) =a?(t),
and for k = 1, •••, n,

LkX ®  “  ~w  ®  Lk~lX ®  ̂  •
The functions p(f)> 0 , alc-.1( t)> 0 and r(t)  are assumed to be real valued and 
continuous on [0, oo). The function f(u , v) is also real valued and continuous on. 
R 2, and й0 (t) is both bounded and bounded away from 0.

The results we obtain extend and improve work of J. Bradley1-13, K. L. Ohiou1123, 
G. О. T. KungC43, W. E. MahfoudC73, S. B. Norkin1-93 and P. 'WaltmanC103 in nonforced 
second order differential equations and of G. Ladas1-53, D. L. LoveladyC63 and W. E. 
Mahfoud1-83 in  nonforced higher order differential equations and provide criteria for 
determining oscillatory properties of solutions. Thus we will only be concerned with 
the continuable solutions of equation (1). ‘
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A real valued continuous function y(t) is said to be oscillatory if it has arbitrarily 
large zeros. A solution x (t) of (1) is said to be oscillatory if for sufficiently large T , 
#()5)=fc0on [T, oo) and it has arbitrarily large zeros, otherwise, it is said to be 
nonoscillatory. Equation (1) is called oscillatory if every solution is oscillatory.

We assume throughout the paper the following properties of the coefficient 
functions a n d / (u, v),

( i ) lim P ds
t-*oo J U <**(*)

= oo £ =  1, n — Is

( i i)  lim g(t)
#->oo

= OO.

(iii) If  m > 0, then uf(u ,
(iv) lim in f / (u, v) > 0 , lim sup/(w , v) < 0 ;'

U, V~* oo u ,  V -* — oo

( v )  lim f p(s)ds=oot
>oo J

Moreover, we define recursively the functions wk(t), фк(t) , and (tf), if they exist, by

w0 00 =  ( r(s)ds, =  f ..ds;
J t  а п- ь -1  {SJ

ФоОО = f Фй+i (0  =  f —
J t J t Ctn—l5-1 VV

ftoOO - 1 ,  «fo+ifo) -  'a t \ %  ds° k==0’ n ~ 2,
and we assume that

(vi) i  (tf) is defined on [0, oo) a .

§ 2. Main Result

L em m a 1. 
/o r Ж =  0, 1,

I /  ( i)— (vi) hold cmd x(t) is a nonoscillatory solution of equation (1),V
•••, n - 1 ,

lim %(t) L kx(t) =0.
t~>00

Proof Let x(t) be a nonosoillatory solution of equation(1). Suppose that x(t) is 
eventually positive. A similar argument establishes the result that x(t) is eventually 
negative. By (ii), there is sufficiently large T  such that both x(t) > 0  and x (g ( t) )> 0 
for i> T . Integrating both sides of equation (1), we have

«п-iOO A j- i^CO —an-x(T )Ln-.ioo(T) +  f p(s)f(x(s), «(^(s))ds= f r(s)ds. (2)Jr Jt

Then by (iii) and (vi), there exists /3n_i such that lim an-t (t) L n_tx(t) =  /3n_i, where
t~±oo

fin-i is finite or -oo. Now, we claim /3„_i=0.
In  fact, suppose that fin_i<c<0, where c is a constant, then there is T±>T  such 

that an_i(t)Ln_i®(t)<.c for fr^Ti,
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I fw = l, obviously, ao(O * 0 0 ^ c<O for ^ Т ±. This is a contradiction to positi­
veness of x(t) .

If n > l, we have

an~z(f)Ln_2<c(t) — a„_2(27i)£ n-s®(27i ) ‘̂ c  [ —
Jr-i czn-i(s)

Letting oo, we find that lim an_2(t) L n̂ 2x(i) =  — oo. Repeating the Same argument,
£-*oo  .

we arrive at lim  a0(t)x(t) —  - o o .  This contradicts the fact that x(t)  is eventually
£-400

positive.
Suppose that Д,_1>0, then, there is T 2p*T such that

®«-i (i)Ln..i%(t) ^  1 , (3)

Assume that «= 1 , namely, a0(t)x(t) t> T 2. Since a0(f) > c 0> 0  for

sufiiciently large t, where c0 is a constant, there exists a constant c0 such that x(i) > c0 
and x(g(t)) > c0 for all sufiiciently large t, say, t ^ T 3̂ T 2. Hence from (iii), if x(t) 
is bounded, or from (iii) and (iv), if lim x(t) = lim  x(g(t)) =oo, we have / (x(t) ,

£-4 oo £—> oo

<e(p(t)))>c>0 for sufiiciently large t> 2 74> T 3, where c is some constant. Hence

«oC^VOO —ao(T^)x(T^) +o f p (s)f(x (s), oo(g(s)))ds<[ r(s)ds.J Г1 J r4
Letting >oo and using (v), we will get a contradiction to the condition (vi). 

Assume that n>  1, we have from (2)

>-%=!■ Г —-a Jr2 a„-i(s)
Therefore, lim «„-aCOAi-aCO = °°« Applying this argument repeatedly we finally

£-400

show that lim a0(t)x(t)  =  oo. Since <20(t) is bounded, lim x(t) =lim  x(g (t))  =oo. As
£-400 £ - 4»  £-400

the proof above for w = l, using (2) and (iii)'—(vi), we arrire at a contradiction. 
Thus the only remaining alternative is A,_i=0, as desired.

Letting t—>oo in  (2), we get

-a„_1(t)L„_ia;(t)+Jt p (s)f(x(s), x(g(s)))ds=w0(t), t> T 2a (4)

From (4), it follows that
—an-2 (f) + «п-2 (T  2) L n-2% (T  a)

+  Г ----~7 \ f P (si)/(»(si), ® (^(«i)))*i*8-=f ~ -^ ~ 7 ds-J Га a»-l (Sa) J s2
Hence, from (iii) and (vi) we have

lim o„_a(t)in-2®(0 =/3„_a,
£ -4 0 0

where /3n_2 is finite or oo. Repeated application of the similar argument above shows 
/3„_a=0. Continuing in this way, we have lim ak(t)Lkx(t) =■&=■() for k = n -3 , n - 4;
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1. And similarly, we obtain lim a0(f)L 0x(t) =  /30, where /30 is finite or infinite.
t ->  oo '

We can prove /3o=0. Otherwise, if /3o<0, it is impossible; if /30> 0 , lim * ( t)> 0 . As
i-> c o

proof for n = l,  by (iii)—(vi) and (2), we would be lead to a contradiction. This 
completes the proof of Lemma 1.

R em ark  X. We observe from the proof of Lemma 1 that if a>(t) is a bounded 
solution of equation (1), then Lemma 1 follows readily without the condition (iy) 
and (v) excepting k=0. '

T heorem  X. Assume that ( i)—(vi) hold. I f  и is even and wn.%(t) is oscillatory 
on [0, oo), then equation. (1) is oscillatory.

I f  n is odd, them either every solution of equation (1) is oscillatory or

converges to zero monotonically as t->oo, h —1, 2, •••, n. In  particular, lim x(t) =0.
t~̂ oo

Proof Assume that x(t) is a nonosoillatory solution of equation (1) and that
.flj(tf)X) and x (g (t))> 0  for fr ^ T X ) .  A similar proof will hold for the case x ( t) < 0
and % (g(t))< 0. By Lemma 1 '

lim afc(tf)Lfcaj(i)=0 (5)
t~*oo ■

for k = 0, 1, •••, n —1. Integrating (1) on (t} oo), t> T , we obtain
/* oo Гео

-ab_ i(0A .-i® (0+ J 2>(*)/(®(*), <v(g(s)))ds^\ r(s)ds=w0( t)e 

Repeated integration, together with (6), yields

(- l)% „ _ s(t)lfn_fcaj(0 +  f ----- -■ у -yf — f K O /(® («0 , ®(0(«i)))&i*3-‘'dsfc (6)
J t On-fe+l \ SK )Js>k J Si 

-« k _ i(i) , Js —1, 2, •••, л -1 .
Finally, we can obtain

( - i ) " - i [« o (i)® « - '» .(J ,> ( J ,) ] + j '’( < ) - £  ; (7)

where

By Lemma 1, aQ(t)x(t)-^0 , as t—>oo> and F (t)  > 0 . This implies from (7) that

( —l)"**,, ($)«(<) <«fc-i(<).
If  и is even, we have Q<a0(t)a>(t) <  wn-±(t) for all t> T . This shows wf>_1 (f) is 
nonosoillatory, which is a contradiction. This establishes the first statement of the 
theorem. .

The result for л to be odd is an immediate oonsequenoe of (6) and (7). This 
completes the proof of Theorem 1.

If r(t)  = 0  in  equation (1), then the conditions on «0„-i(t) are trivially satisfied. 
Thus we have from Theorem 1 the following result.

C orollary X. Assume that r(t)  = 0  m d  (i )—(v) hold. I f  n is even, then equation

«i(s,
1 Г°° 1
77T T7Z— Г ” iK O /faC O , ‘»(g(si))ds1ds2“>dsn,( s j  Js„-! a2(s„_x) Js4
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(1) is oscillatory. I f  n is odd, then either every solution of equation (1) is oscillatory or 
eic(t)Ikv(t), in particular, x(f) tends to zero, k = Q, 1, •••, n ~ l .

R em ark  2. Corollary 1 extends and improves Theorem 1 and Theorem 2 of 
Bradley™, as well as results of Nor kin [9, pp 149—150], Kung™, Mahfoud1-83, and P. 
Waltman1-103. -

As an example, consider

x"+ n
.4 ( l+ f) x= (t~astnt)", (8)

where a is a constant with 0 < « < 1 . This example is treated by A. G. Kartsatos and 
M. N. ManougianC33 who show that every solution of equation (8) is either unbounded 
or bounded and oscillatory. By our Theorem 1, in  fact, equation (8) is oscillatory.

Theorem  2. Assume that (i)—(iii), (vi) hold and that fo r some j, l < j < n - 1, 
tfrj-tit) exists, but 4>j(t) does not exist. I f  n is even and wn_i(t) is oscillatory on [0, oo), 
then every bounded solution of equation (1) is oscillatory. I f  n is odd, then either every 
bounded solution o f equation (1) is oscillatory or ( —l ) k+1an-^(t)Ln-yi>(t)+Wu-i(t) 
converges to zero monotonically as t->oo, k==l, 2, •••, n. In particular, lim x(t) =0.

f-^oo

Proof Assume that x(t)  is a bounded nonoseillatory solution of equation (1), 
then there is T  such that aj(tf)>0, x (g (t))> 0  for t ^ T .  A similar proof will hold for 
x ( t)< 0, x(g (f) ) < 0 for £> 2\ By Lemma 1 and Remark 1, as the proof of Theorem 
1, we easily obtain

, Лоо -J Лео Лоо

( - 1  ) Ba„_fc(0 L n_ftaj(i)+  --------7-— I
Jt O n-i+ lv^/ J J«s

“ Mfc-iCO, k = l ,  2, —, n - 1. (6)
Beoause the first term in  (6) tends to zero as t->oo, from (vi) Щ-i (t) is continuous, 
therefore the integral of the left side is finite.

In  (6), Let k = j+ 1, j =0, 1, •••, n —2. Since ф, (t) does not exist, it follows from 
(6) that lim in f f ( x ( f ) ,  x (g (t)))  =0,

£-»oo

Hence, from (iii), either lim in fx(t) =*0 or lim in f x(g (t))= 0 . Any one of the two
» t-±oо oo ■

oases implies that
lim in f x(t) =  0.
t-*oo

Letting k = n —1 in (6) and then integrating from T  to t, we obtain

2 > ( O / ( » ( * 0 ,  '

From (10) and boundedness of x{t), lim a0(t)L 0x(t) =lim  a0(f)x(t) =  Bo
f.-boo

exists and is finite. In  view of (9) and assumed condition about a0(t),
lim aaifyLoxif) =lim  x{t) =0,

t -Ъ  oo '

(9)

(1 0 )
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In  (10), letting t—>oo, we obtain ( — 1)Ka0(i)ж(j5) < wre_!(t), О  I7, Therefore, if n is 
even 0<a0( t)x ( i) ^ w n_1(t), P ^ T ,  which contradicts the fact that (t) is 
oscillatory.

If n is odd, it is easy from (6) to get the remains of this theorem. Proof of 
Theorem 2 is completed.

Consider the 6-th order linear equation

d ta
+18e (0 26e“a* sin t. (u)

Here f  (u, v) °= vt (ill) is satisfied. I t  is easy to see that w0(t) is osoillatory, and ф((f)

=18e v 2' , « = 1, 2, 3; does not exist. So equation. (11) is osoillatory, while the 
relative results of [3, 6, 8] fail to apply. One such solution of (11) is £»(£)— e ^ s ia t. 

We notioe that the conditions on w„_i(t) hold trivially in the case that r(^ )= 0 . 
Corollary 58. Assume that r(t)==0 and that the other conditions of Theorem 2 

hold. I f  n is even, then every bounded solution of equation (1) is oscillatory. I f  n is odd, 
then either every bounded solution o f equation (1) is oscillatory or ( —1)й+1«п_й(^)1/й_йж(^) 
tends to zero monotonically, k = 1, 2, •••, n.

Corollary 3. Assume that r(t)?= 0, (i)—(iii), (vi) hold andlim j p(s)ds<oo,
t-»“ Jto

lim f ф п - i  (s) p (s) ds= oo _ I f  n is even, then every bounded solution of equation (1) is 
i->00 J to

oscillatory. I f  n is odd, then either every bounded solution of equation (1) is oscillatory 
or ( —I ) b+1an-it(t)L n-T!l®(t') tends to zero monotonically as t—>oo) Jc=1, 2, •••, w.

Proof Since p(t) > 0  and a f t )  > 0  for each j, we may apply the Fubini Theorem 
to interchange the order of integration and obtain

j b d o f f  L  a f t f )  \t-u a ^ f t f )  )t , ' 
and in particular, for j = n  — 1, we have

p(s)dsdtj---dt

f i//„-i(s)p(s)ds<<£„_iOf0).
J tb ■

(12)
Letting t—>oo in  (12), it follows that <£n-i(^o) and Corollary 2 applies.
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