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OSCILLATORY PROPERTY OF N-TH ORDER
FUNCTIONAL DIFFERENTIAL EQUATIONS

GEORGE, W, JorNson*® YAN JURANG (3 B k) **

Abstract

The authors study oscillatory property of nonlinéar functional differential equation

Lz @) +p@) f @@, #(g@))) =r @), @
where L,z (%) is an n-th order linéar differential operator defined by
Lox(#) =z (%),

L) -‘=7dt-(a7,_1(t)L,,_1w(t)), k=1, 2 -, n,

Sufficient conditions are obtained which guarantee that all continuable solutions of (1) are
oscillatory or tend to zero as t—>oco, '

§ 1. Introduction

In this paper, we establish criteria for oscillation or nonoscillation of solutions of
n~th order functional differential equations of the type

| Lo () +p()f (@), a(g@))) =r (), @
where I, is a differential operator defined recursively by ’
Low (t) =w<t):

and for k=1, -, n

2

Lo (t) =2 {ays () Lo (8)}.

The functions p(t)=0, a-1(¢)>0 and r(¢) are assumed to be real valued and
continuous on [0, o0). The function f(u, v) is also real valued and continuous on.
‘R?, and @, (¢) is both bounded and bounded away from 0, ‘

The results we obtain extend and improve work of J. Bradley™, K. L. Chiou™,
G. 0. T. Kung™, W. E. Mahfoud™, 8. B. Norkin'™ and P. Waltman™® in nonforced
second order differential equations and of G. Ladas™, D, L. Lovelady'™ and W. E.
Mahfoud® in nonforced higher order differential equations and provide criteria for
determining oscillatory properties of solutions. Thus we will only be concerned with:
the continuable solutions of eqﬁation 1),
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A real valued continuous function y(¥) is said to be oscillatory if it has arbitrarily
large zeros. A solution #(#) of (1) is said to be oscillatory if for sufficiently large 7,
z(t) =0 on [7, o) and it has arbitrarily large zeros, otherwise, it is said to be
nonoscillatory. Equation (1) is called oscillatory if every solution is oscillatory.

We assume throughout the paper the following properties of the coefficient
functions and f (u, ), '

o\ T [P ds ot s o
() Y [, Gigg=oos k=t ot

(i1) Lim g(#) = oo
f-»00
(iii) If uw>0, then wuf(u, v)>0;
(iv) liminf f(u, v)>0, lm sup f(u, ) <0y

t
(v) lim L p(s)ds=o0,
Moréover, we define recursively the functions wy (£), ¢x(t), and i, (¢), if they exist, by
wo (%) = f r(s)ds, w1 (F) ='J°° ——wl&@—ds

¢ “n—k-—l(s) ’

do® = 2Ods, @ = g

t Qu—p-1 (S) ’

ho(8) =1, ¢k+1(t)=r —l—pﬁ<—8—>)—ds, k=0, 1, +-, n—2,

to Ayl (S
and we assume that

(vi) w,—1(2) is defined on [0, <o),

§ 2. Main Result

Lemma 1. If (i)—(vi) hold and #(2) is a nonosoillatory solution of equation (1),
then for k=0, 1, <, n—1,
1t1m ay(8) Ly (£) =0,
Proof Let a(t) be a nonosoillatory solution of equation(l). Suppose that w(z) is
eventually positive. A similar argument establishes the result that «(¢) is eventually

negative. By (ii), there is sufficiently large 7' such that both () >0 and #(g(t)) >0
for t>T. Integrating both sides of equation (1), we have

@1 () Ly_s2 (t) ~a,,,_1(T) Ly 1o(T) —l—ﬁ p()f(=(s), 2(g(s) )ds=j’:1 r(s)ds, (2)
Then by (iii) and (vi), there exists B,_1 such that ﬂm U1 (8) Ly_1#(t) = B,_1, where

Bu-1 i8 finite or —co. Now, we claim B,_1 =0,
In fact, suppose that 8,.;<e<0, where ¢ is a constant, then there is 7'y=>T such
that a,_; (t) Ly_10(t) <e¢ for t=T,,
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If n=1, obviously, a,(¢)»(¢) <c¢<<0 for ¢=T;. This is a contradiction to positi-
-veness of ¢ (%),
If n>1, we have

-2 (8) Lin-50(8) ~ @n-3(T's) Lo (T'1) <o J' ; @ js(s) -,

Letting #—>o0, we find that Itim @y—2(t) Liy-ow(t) = — co, Repeating the same argument,

wo arrive at Itim o (¢)#($) = —oo. This contradicts the fact that »(Z) is eventually

positive.
Suppose that B,-1>>0, then, there is T,=>T such that
a3 () Lo () > Lot 4>, | 3y

Assume that n=1, namely, a,(¢)a(t) >—'%i>0, t>T,. Since aq(f)>>6,>0 for

sufficiently large #, where ¢, is a constant, there exists a constant ¢o such that (%) > e,

and (g (t)) >¢, for all sufficiently large £, say, =T 3>T,. Hence from (iii), if #(s)

is bounded, or from (iii) and (iv), if lim (%) =lim &(g(¢)) =00, we have f(z(t),
{-3c0 t—ooo

w(g(t))) >c>0 for sufficiently large ¢=>1",>Ts, where ¢ is some constant. Hence |

o (Do(t) ~an(TDo(TD) +o || p@F @), 2(9®))ds<, r(s)as.

Letting #—>oco and using (v), we will get a contradiction to the condition (vi).
Agsume that n>1, we have from (2)

() Lins () — “n—ﬁl(Ts:) Lya(Ts) = '851 J ;2 a,,.fs(S) .

Therefore, lim @,.5(¢) L, a(¥) =co. Applying this argument repeatedly we finally
pee T3

show that lim ao(¥)@(¢) =oo. Since ao(t) is bounded, ]tJm w(t) =1§m x(g($))=oc0. As
{00 ~>00 00

the proof above for n=1, using (2) and (iii)—(vi), we arrire at a contradiction.
Thus the only remaining alternative is B,.;=0, as desired.
Letting t—>c0 in (2), we get

~ s (D Tns0(t) + | BES @(6), 0(g(6)))ds=o(t), T, @

From (4), it follows that
— Oy (t) Ln—-2w (t> + Qp—z (Tﬁ) Ln-zw (T2)

[, [ pe0f (as), alo(e))dsdey= [, Gy

Sq 2 an...1(3 )
Hence, from (iii) and (vi) we have
1tim Q-2 (t)I’n—z’d}(t} = By-1, _
where f8,_s is finite or co. Repeated application of the similar argument above shows.
Bu-z=0. Qontinning in this way, we have ltim a3 () Lnw(t) = B, =0 for k=n—3, n—4,
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ses, 1. And similarly, we obtain ltlm ao(t) Low (%) = By, where B, is finite or infinite.

We can prove By=0. Otherwise, if ,80-<0, it i impossible; if Bo>0, lim #(¢)>0. As
t—o0

proof for n=1, by (iii)—(vi) and (2), we would he lead to a contradiction. This
completes the proof of Lemma 1,
Remark 1. Woe observe from the proof of Lemma 1 that if #(¢) is a bounded

solution of equation (1), then Lemma 1 follows readily without the condition (1v)

and (v) excepting k=0,
Theorem 1. Assume that (i)—(vi) hold. If n is even and w,-1(t) is oscillatory

on [0, o0), then equation. (1) is oscillatory.

If n is odd, then either every soluition of eq@wtion (1) ds oscillatory or
( - 1) k+1@n—k<t) Ln—kw (t) +'w70-—1(t>
conver ges to zero monotonically as t—>co0, k=1, 2, -+ n. In particular, lim ¢ () =0,
: f-»e0

Proof Assume that #(¢) is a nonoscillatory solution of equation (1) and that
#(2)>0 and #(g(¢))>0 for t=>T>0. A similar proof will hold for the case x(¢)<0
and #(g(¢))<0. By Lemma 1 ‘
ltim @, () Ly (3) =0 I 5)
for k=0, 1, -+, n—1. Integrating (1) on (¢, o), =T, we obtain

~ 1) Los0 () + [ p5)F (0(8), 0(g(6)))ds= [ r(s)ds=wo(t).

Repeated integration, together with (B), yields
(=% s () s () + [ L[ "o [ p () @(50), (g (52)) sy (©)
i Gn—u+1(8k> $a

—-’wk_.i(t)’ k= 1, 2, o, W:—l,
Fma,lly, we can obtain

(D LoD a1+ 7@ =, 22D )

where

P@ =] ] [ p)f @(e0), (g(6:))dssdsyens,

0 @1 (Sp) Jons a(Spg)
By Lemma 1, ao(t)o()—>0, as t—»co, and F(¢)>0. This implies from (7) that
(—=1)"ao($)@(d) <wa-1(7),
If n is even, we have 0<ay(¥)o(¥)<wn-1(¢) for all ¢=T. This shows w,_;(f) is
nonosoillatory, which is a contradiction. This establishes the first statement of the

theorem. ‘

The result for n to be odd is an immediate oonsequence of (6) and (7). This
completes the proof of Theorem 1, _

If r(¢)=0 in equation (1), then the conditions on w,—1 () are trivially satisfied,
Thus we have from Theorem 1 the following result.

Corollary 1. Assume that r(¢)=0 and (4)—(v) hold. If n ‘rés even, then equation
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(1) ds oscillatory. If n is odd, then either every solution of equation (1) és oscillatory or
a, (1) Lnw (%) , in particular, o(t) tends to zero, k=0, 1, +-«, n—1,

Remark 2. Corollary 1 extends and improves Theorem 1 and Theorem 2 of
Bradley™, as well as resulis of Norkin [9, pp 149—150], Kung'®, Mahfoud®, and P.
Waltmanh®

As an example, consider _
| o'+ [ 1+ Jo= osin ), ®)
where & is a constant with 0<<a<1. This example is treated by A. G. Kartsatos and
M. N. Manougian®™ who show that every solution of equation (8) is either unbounded
or bounded and oscillatory. By our Theorem 1, in fact, equation (8) is oscillatory.
Theorem 3. Assume that (i)—(iii), (vi) hold and that for some j, 1<j<n—1,
P;-1(1) ewists, dbut ¢;(%) does not ewist. I f n is even and w,_1 (%) is oscillatory on [0, oo),
then every bounded solution of equation (1) és oscillatory. If n is odd, then either every
bounded solution of equation (1) s oscillatory or (—1)¥"a, 4(%) Ly ($) +wy-1 (%)
converges to zero monotonically as t—>c0, k=1, 2, -+, n. In particular, %w(t) =0,

Proof Assume that #(¢) is a bounded nonoscillatory solution of equation (1),
then there is 7' such that () >0, a(g(¥))>0 for ¢=T. A similar proof will hold for
o(t) <0, o(g(t)) <0 for t>>T. By Lemma 1 and Remark 1, as the proof of Theorem
1, we easily obtain '

o)

(=1) ¥ (t) L (2) +f 1 j M"'L, p(s)f (@(s1), @(g(s:)))dsse+dsy

G-11(S%
=wp1(t), k=1, 2, -, n—1, (6)
Beoause the first term in (8) tends fo zero as f—>oo, from (vi) wy-1(#) is continuous,
therefore the integral of the leff side is finite.
In (6), Let k=j+1, j=0, 1, -+, n—2. Sinoe ¢;(¢) does not exist, it follows from
(6) that lim inf f(2(2), #(9(2))) =0,

Hence, from (iii), either lim infa(¢)==0 or ltlm infa(g(t))=0. Any one of the two
. {~>00 ~> 00 :

cases implies that

{~c0

lim inf o(%) =0, ©)
Letting k=n—1 in (6) and then integrating from T to ¢, we obtain |
. i 7 o0 oo
(—1)"*[ao(8) Low(t) —ao(T) Low(T)] +j ®Sa j 8,1 S o

T al(sn) Sn a2<3n——1> Sn-1

o o0 f oo, slgNan=( 2 o)

T Q4 (3)
From (10) and boundedness of @(?), %lm ao(t) Lo (%) =}im 2 (t)a(t) =Bo

exists and is finite. In view of (9) and assumed condition.about_ a(t),
Hm aq(f) Lo (#) =1im a(#) =0, '
t=doo ) ->00
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In (10), letting t—>oo, we obtain (—1)"ay(¢)w(t) <w,-y(t), =T, Therefore, if n is
oven 0<a(¥)?(¢)<w,-1(¢), ¢=>T, which contradicts the fact that w,_;(¢) is
osoillatory. :

Ifnis odd, it is easy from (6) to get the remains of this theorem. Proof of ‘
Theorem 2 is completed.

Oonsider the 6-th order linear equation

d? (e‘t do

3 > g
N gDy (- T~ _06esint, (11)
7 | 3

Here f(u, v)=w, (iii) is satisfied. It is easy to see that w; (#) 18 oscillatory, and ¢(t)

=183_<t+%>, i=1, 2, 8; $a(t) does not exist. So equation. (11) is oscillatory, while the
relative results of [3, 6, 8] fail o apply. One such solution of (11) is@(¢)=¢"*sint,
We notice that the conditions on w,_s (t) hold trivially in the case that »(¢)=0,
Corollaxry 2. . Assume that r(¢)=0 and that the other conditions of Theorem 2
-hold. If n s even, then every bounded solution of equation (1) is oscillatory. If m is odd,
then either every bounded solution of equation (1) és oscillatory or (—1)*a, 4 (8) L,y (8)
tends to zero monotonically, k=1, 2, -
Corollary 8. Assume that r()=0, (i)—(iii), (vi) hold wnd%i—)l'f J: p(s)ds< oo,

n,

¢ . _
1im§ Yn-1(8)p(s)ds=o0_ If n is even, then every bounded solution of equation (1) ds
troe Jio
oscillatory. If n is odd, then either every bounded solution of equation (1) is oscillatory
or (—1)*g, (¢)L,_x(t) tends to zero monotonically as t—>o0, k=1, 2, «--, n,

Proof Since p()=0 and a;(¢) >0 for each j, we may apply the Fubini Theorem
to interchange the order of integration and obtain

ﬁoll'i(s)’ﬂ(s)ds=r ! Y 1 -y _.__1_5t () dsdty+dits,

o ao<t1) 131 “1(t2) (=Y ai—i(h) 2]
and in particular, for j=n—1, we have

13
[} s p()ds<dnato), (12)
Letting i—>o0 in (12), it follows that ¢,.1(fp) =c0 and Corollary 2 applies,
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