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ESTIMATION OF THE ORDER OF ARMA 
MODEL BY LINEAR PROCEDURES

W ang Shottren C5L ^  * * Ohen  Zhaoguo Ш  ^  Щ) *

Abstract

G-iven an ARMA (p0, qo) sequence a?(̂ )̂  a linear procedure is used to estimate (p0) q0) 
and the strong consistency of the estimate is proved.

First fit the data of size Г by a long АВ(Р(Г)) model to obtain an estimate of s(t),

denoting it by e(t),  where P(T)  ~  (In T)1*6, d>0.  Then for each p, we minimize ^

. Let apP bpj be the minimizing coefficients which can be obtained

by Whittle's recursive procedure. As p increases to some s, consistently greater than r0=  
max(p0, qo), we take the second estimate of e(t) as

For every (p, q), put

S^=min —
av3*ь„, T t=

then the minimization of

BIC(p, 9 ) = ln a U (p + g ) InT

will offer a strongly consistent estimate of (po, qo) •

§ 1. Introduction

Let X  (f) be an ergodic stationary time series generated by an ARMA( p0, <?o) 
model

2&o3-8(i5-y), (1.1)

where ciqq — 5oo =  1; ®op0 ^ 0, ^ 0»
E 8 ( s ) s ( t ) = a % lt, Е а ( ^ < oo (1 .2 )

Put .
«0(2) =  S  aofi, bo(z) =  S  V .

We assume that «(2) and Ъ(р) are prime and
а0(ъ)фО, Ъ0(я)фО, \е\<1.  (1-3)

In order to estimate the order (p0, q0) and the coefficients a0j, b0j from an
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observations co1} x2, <cT} it is usually to fit the data by ARM A (p, q) model for 
each (p, q) and calculate the maximum likelihood estimate cr% of cra. The criteria 
used to get the best estimate of (*p0, Яо) is choosing (p, q) which minimizes

+ +  (1.4)
where A(T)-^oo> A ( T ) /T ->0 as У—>oo„ Under certain conditions, Hannan ш has 
shown that (p, q)-*(po, qo) a. s. as T-*oo, if

M T ) _ >Q} A(T)lim inf 2 In In T T -*0. (1.5)

One particular function A (T ) which deserves special attention is A (T )= ln 7 .
To compute the ML  estimate о%г for each (p, q), non-linear procedure is used. 

Recently, Hannan and Rissanen13-1 proposed a way to avoid all non-linear procedures 
in the estimation of the order. They used a long AR(P(T)) ,  with P (T )  =  ( ln T )1+a0 
to fit the data, and used this AR (P (T)') to get an estimate of s(t), denoted by s(t). 
Suppose

1 T / p g \2

then the estimate of (p0, qo) is ( p, q) which minimizes
BIO(p, q )= ln & % + (p + q )b x T /T ,

But as it was pointed out by the authors in the correction which was published in 
the same journal lately, that ЬхТ has to be altered to (ln27)1+a, S>0, if one wants 
theoretical result (p , q)->(po, qo) a. S. as in Theorem 3 in [2]. Although 8= 0  and 
8> 0 (we can take 8 as small as we like) make no difference in practice, one might 
prefer not to change it, because BIO is such a typical criterion. We are going to 
deal with this purpose.

In this paper, we suggest a procedure of two steps estimation of s(i).  First we 
fit the data with AR (P (T ) ) as it was done in [2]. The autoregressive coefficients can 
be estimated from Yule-Walker equation

~0,( 0) ....... Ох( Р ( Т ) —±У
{ttTl’"&TP(T))

P , ( P ( T ) ~  1) 0,(0).
- - ( О .( 1 ) . . .0 в(Р (Г ))) , (1.6)

= 0, otherwise. Then thewhere 0,(1)  =  ^f ^cc(t)%(t+l),  a>(t)=x(t), x(t)--

first estimate of s(t) is given by
A J x(t) +«2ч^(^“ 1) •P(T))I ,
8( t ) л , ( X . i j

10, otherwise. .
In the following of this paper, we denote QT=  (InbxT/T)^2 and 0(Qt) means a 

random sequence satisfying lini sup 0(Qt)/Qt< oo, a. s.
Г-» CO

It was shown that (c. f. [4], Theorem 6)
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sup \ocpj—<Xj\ltj*SP(T) (1 .8)

where = a0(z)b0(z) x= A:0(г)_1 == oc0(st)e 0
Secondly, we are going to estimate ro=max(p0, Qo)< For each p, we take an 

estimate of cr2 as
т / p . p \a

«  , (1-9)1 t=1 \4=o 4=1 /  ,
where the minimization is over ap} and bpj with aPi —1. The corresponding minimizing 
coefficients satisfy the following equation

where

0 ( 1 ) -

" (7(0) ....... <7( i +

• •. ■• ••e •• i
L O ( p - l )  ....... 0 ( 0 )  J

-----( 1 , 0 ) (G(- - i  ) ...a (-2> )),

o s )  - O s S )  1 | . | ]  »(<)»(«+!) 1 $
T r 1

- O t S )  'O S )  J -| T
T ?

(1 .10)

, (1-11)

(1.12)

(1.13)

о ф ' - о ( - Г ) .
Let equation (1.10) be embedded in the following matrix equation

A A a л 
where Bp= (Вр1---Йрр), each Bpj is 2 x 2  matrix with (apibpj) as its first row,

£p= * ( 0 ( - l ) - 0 ( - p ) )
and Op is the blookwise Toeplitz matrix in the left hand side of (1.10). In order to 
compute Bp for p = l ,  2, ••*, there is a recursive procedure due to Whittle1-33 (also see 

[2] )
6 „ - ~ A , ( i - i i )  

6 , - ( I , - W . ) i b  9 , - &o- 9o~0( 0) ,  (1.15)
А  А  Л  A  ,

/3ppBP_-xlP-j, j=* 1, 2, •••, p  1, (1.16)
•Spo = /Зро =  Is .

The (1, 1) th element of

$p)cp+1( i 2, BPy = o ( o ) - ± ± $ p}o ( ] ~ i ) B 'P«

p A
= o ( o ) + s V ( i )1

is a2.
Because the criterion of BIO can not furnish a consistent estimate of the true 

order, in this case, we suggest another criterion, that is monitoring det Gp. Let r  be 
the first p, such that
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det <?„< (-M L )1/2df.. (1.17)

Then we take r as the estimate of r0, where &% is the estimate of or2 by A R (P (T ))  
and we know that dy—>cra a. s. as T—>oo(gee the proof of Theorem 5 in [4 ]). We 
add the factor dy here only for a technical reason, it does not influence the mathe­
matical theory. In Section 2, we shall show that as Г—>oo, r— a. s. also arj= a0j4-■ 
0(QT), bri= b0j + 0(QT) (because for sufficiently large T, ari = aui , bri= and we 
shall show that аы = a0j+0(Q T), Ьиз =  &<w+O(Qi0).

With this r, we use an ARMA(r, r)  to estimate s(t) by

SCO'
2  «,*£(*-;) К К Г ;J'=u N=1

. 0, otherwise.
(1.18)

Put

Ou(l) =  JT S

а д - | - ф в ( 0 в ( < + * ) .

For each (p, q), consider another estimate of cra,

= min-A 2  ( 2  apja ( t - j )  - 2  b q ^ t - j ) )O/pJtbqj x t—1 \  0 1 /
min (1 dfi.’"0>pp bql"’bqq') .O-Pji bgj

0.(0) .....  0.( p )• -O rfC - i)  .... . Ox% ( - q )  ' • 1 •

\  : ••• ..... ...

0.(p) .... : 0.(0) i £ 43 1 - C a~s( p - q ) *

- O u O ) *....  -Ofc.(l~2>) 0,(0) ;.... 1•H6“

••• . •e
• %

• bql

~ 0 ~ 6X( q ) - 0 ^ { q - p ) O g ( q - l )  .... . 0«( 0) ...

e о bqq.

(1.19)

(1 .20)

The minimum is reached at (a’P, l'a) =  (apl, •••, am bql, • 6aa). Now oriterion BIO
can be used. Let (p , #) minimizes lncr̂ g +  (p+g')ln T /T  for 0<p, g^r, then (p, q) 
shall furnish a consistent estimate for ( p0) q0). We shall give the proof in Section
2.

Once ( p , 5) are obtained, we can use any available algorithms to calculate 
asymptotic efficient estimates of a0j and b0j, one of which was mentioned in [2].

When T  is very large, the method disoribed above seems to be quite safe for 
estimating r0- But it is plausible to suspect that in most cases, when T  can not be so 
large, the underestimation of rQ would often occur and hence the estimate of (p0l q0) 
are usually smaller than the true value.
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Because (<%, brj) are used only in (1.18) to giye an estimate of s(t) =  b0(z)~'1 X 
a0(z)as(t) (here, z means backward shift operator), one would prefer an overestimate 
of Го rather than this underestimate, if the new estimate of s(t) is reasonable. It was 
pointed out and has been used in many oases by Hannan (see [1, 2] ), that for fixed
P, Q with there are ways to choose aPj ( j = 1, P ) and &<w(i = 1,

Q), such that bqiz)^aP(z) ( 2 converges in a certain sense to

b0(z)~1a0(z') as T—>oo, though aP(sz) a n d  SeO2)- *^ ^ ) do not hold. In Section 
3, we shall adopt this idea to carry out Whittle’s recursion until R, which can be 
much larger than r0 such that det(?B>0 does not hold, or "all zeros of ap(z) and 
bR(z) are outside and keep away from the unit circle by a fixed distance" does not 
hold. This will be done in Section 3. Further, we shall prove that when P > s > r , all 
the coefficients of £s(s) =%(з)50(2) — Ss(z)a0( )̂ are 0(Q?), so that we can make 
6s(z)~1as(z) —b0(z)~1a0(z) small enough, which is needed in proving the main result.

There is a possibility that R  may be too large, say, R goes beyond 0(bxT),  so in 
practice, w;e combine both criteria. First by monitoring det G to get r, the consistent 
estimate of r0 =  max( y>0, <7o), then we continue the recursion further for several steps, 
say to the s th step (in eaoh step, det ($p> 0  and ap (2), bp(z) have their zeros outside 
and keep away from the unit circle by a fixed distance), s is consistently greater than 
Го and is usually greater than r0 in practice even if T  is not very large. Obviously, 
it is much more plausible than the traditional saying that “choose P, Q big enough 
such that P > p 0,

A S  A -To check as(z) = 2  has all its zeros outside |z |= l+ S , 8>0, is equivalent

to check all the zeros of 2s+asi2s-:4 ----- \-ass are inside [ s | = (Г+8)-1. Put w — (1 +
<3)2, then it is equivalent to check /M)s,+ a gi( l+ 8 )w s-;td----- f-asg( l  + 8)s has all its
zeros inside |w| = 1  and any criterion of Routh-Hurwitz type can be used. Similarly

for 4(Ю = 2

2. Monitoring Criterion

Instead of (1.13), we consider of the same type equation, but with Op, being 
substituted by Г Р, y p respectively (they are estimated by 0 P, £p) and the unknown 
matrix being Bp= (Bvi, BPP), that is '

where w m7t> (2 .1)

y(O)

_ 7 (p - l) 7(0) .



CHIN. ANN. OF MATH. Vol. 6 Ser. В

" Ex(t)x(t+l) - E x ( t ) 8( t+ iy * 7,(0 7, s (0
_~Es(t)x{t+V) Es(t)s(t + l)  _ . — 7s , (0 7.(0  -

7 CO- 

By condition (1.3)

® (0  “  S  *je (<- j ) , e (0  -  (* - j ) ,о 0
where the coefficients ^  and ct} are determined by

CO ' oo

«0(2) =Oo(2)&o(2)_1= ]S  h(z)  =  «0(2) “^O(2)0 0
with a0 =  #0= l  and |c^|, |^  | deorease to zero exponentially. Thus we have

00

&>0;

(2 .2)

r*,(0 =  <r2k = 2  «*7 , O’+ 0 = 7,«( -  0 , г> °; 0
7,a(0 = <Л *“ 0;y«(?)-0 , ?>0;

7e(0 “ О̂ Зг.о,
and

7(0 = ' 7,(0
. - o - 2̂

, 7 ( - 0 = 7 (0 ' ,  * > 0. (2.3)

For any p, in order to obtain BP by solving (2 .1), which is similar to (1.13), 
the recursive formula (1.14)—(1.16) are applicable if O(j) are replaced by y ( j )  
and all the hats therein are erased. But it requires some discussion.

Lemma 2.1. Г р is of  full rank for p<*r0 and not for p > r 0.
Proof For any p > r 0} we can take a non-zero 2p-vector A/=(l 1 a± bp~f)

with as= a 0j for &j =  60j for j^qo  and zero otherwise, then X'Г Р= 0 by (1.1).
Thus Г р is degenerate. Now suppose p < r 0 and there is a non-zero 2p-vector X' =  
(Яо ijjq Хф^-Хр-! /лp_f) such that Х'ГР= 0, then X'FpX = 0, hence it must be

. p-i p-i ■
S № e (^ - i)= 0 . (2.4)о 0

We can assume that one of X0 and fi0 is not zero, otherwise replacing p  by p ~  1 in 
(2.4). Multiply both side of (2.4) by s(t) and take their expectations we obtain
^o7ss(0) =/ao7s(0) or X0 = fA0. Thus we can put X' in the form (11  A* fAr--Xp-i fiP-i) 
and (2.4) implies that x(f) is generated by an A R M A (p —1, p —1) withp0> p —l  or 
Qo>p—1, this oontradiots (1.2). The lemma is proven.

Corollary. Gp> 0 for p < r 0- 1.
Proof Since (2.3), the second row of y p is zero, hence by the lemma and 

from (2..1), the second row of Bp must be zero. For any (Xt Xf) Ф 0, it must be 
(Aa Xf) • (12 B„) Ф 0, so

(X± Xf)Gp(Xi Xf) ' —  ( A i  Xf) ( I 2 Bf)Г ( J a  Bp)1 (Xi Xf)'>0
p p

by the lemma and 2  BPjy ( i—T)Bpi. Hence Gp> 0.
о 0
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It is easy to show that the eigenvalues of 13—/вррВРР and 13 — Bppfipp are the same, 
from (1.15) and by induction one sees that det дРФ 0 for p < r0—1.

How about Gfrfi Since the second row of y p is always zero for any p, thus for 
To, the solution Bp of (2.1) must have its second row being zero by Lemma 2.1. But 
for p > r 0, though Г Р is degenerate, we can also choose the second row of BP to be 
zero. For p —To, the first row of Bu must be (aQ1bQ1---a0rJ)wf), а>оз =  0, j > p 0; boj = 0, j >  
q0. Hence

^ 0=  2  Brcjy ( j )
" У at (0) ~Ухв (0)" " cr2 — cr2'
. — 7«»(0) y,(0) . .-cr2 cr2.

(2.5)

which is degenerate, so does gro. It seems that the reourssive formula (1.14)— (1.16) 
can not be carried on beyond the r0 th step. Nevertheless, we oan do a little more.

Го . ■ .
Consider =  2  r0—1), its second row is zero since the second row of у  ( —2)

is zero for Z>0. The first row of ATa is .

(З ^ Г а О '-Г о - ! ) ,  - 2  «0i7s*( 0̂ +  l - j )  ) =  (P, 0), 

because, from (1.1), we always have

2  OofYm(j-Z) =0, ^3 a0i7®s( j - l )  =0, l> q 0. (2.6)

If for p = r 0+ 1, we put (1.14) in the form
Br0+l,r(,+ldn =  Ло =  0, ftro+l,ro-i.i&r0=  -Л о= 0 ,

then, since and gu are degenerate, the solution Bro+llU+1 and /3Го+1>п+1 are quite 
arbitrary, but we can choose them to be zero. If we take this particular solution and 
do the same hereafter, then the same argument as above shows the recursion oan be 
carried on for p = r 0+ l ,  -Го + 2.-- and give the solution apj= aui, bpj =  buj and <% = bpS 
=0, j>To, because of (1.16) and Bpp=/3PP=0.

It is this property that makes the solution Bpj and /3W- unstable for p > r 0 in
(1.14)— (1.16), because a very small deviation of J p from zero would make the 
elements of (Bp+1,p+1 and ftp+i,p+i very large, since det$p and det^, are near zero. This 
discussion suggests us by monitoring detCrp to estimate r0, we denote this estimate by 
r as in Section 1.

Because of (2.3) and the following lemma, we oan also put zeros on the second 
column of 0(1) -for Z>0, instead of — 0^(1) and 0^(1), it gives the same asymptotic 
result.

Lemma 2.2. Let x(t) satisfy (1 .1), (1.2) and (1.3), then for a fixed l, we
have

Ca( l ) - y „ ( l ) = 0  (Q*); (2.7a)

о ь ( Т ) - у „ ( } ) - о ш , (2.7b)
0 , t ( l )= 0 (Q P), l > 0; (2.7c)
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^ ( 0 - r s(0 = O № ). (2.7d)
Proof (2.9a) was proved in [4] (Theorem 2). It was also proved in Theorem 6 

•of the same paper that
sup \ocTj—aj \=0(Qf)  a. s.„

Put Аат$ =  aVj —<Xj, AGX (l) =  Gx (l) — y x (l) and so on, we have

OUT) = | ф с 0 ^ + 0

— 2  («j+ AaTf) (yx (l + j )  + AGX (l + j)  )

•= 2  + i)  +  sup I I 2 17® G + j ) !j=0 \ j =0

+  sup \AOx(l+j)  I S  Iо,.I + P (T )  sup \AG,(l+j)\ sup \AaTj\ ).0«̂ <P(T) j=0 0<j<P(T) 1<3<P(T) /
Since |cqj, |7<c(i) | converge to zero exponentially as let T->oo, the first

oo

term on the right side converges to 2% 7*(^+i) =  У ex (f) ] while the second and third0
terms are 0(QT) and the fourth term is P ( T ) 0 (Q|) =  0 (Qv) . Thus (2.7b) is proved. 
Similarly we can prove (2.7c) and (2.7d).

Now we are going to prove the strong consistency of r.
Theorem 2.1. Let cc(t) satisfy (1.1), (1.2) and (1.3), and r  is decided by 

(1.17), then r—>r0 a. s. as T—»oo.

—cr

cr — <7
2 _2

, we need onlyProof Since Gp> 0  for p= 0, 1, •••, r0—1 and Qu 

to prove that
|det $ 5-d et Gp\ =0(Q T), p=0, 1, r0. (2.8)

Prom Lemma 2.2, the elements of Ор—Г р and t P — y v are 0(QV) and Г р> 0 for 
p = 0 ,  1, r0, then by the similar technique as in [4] (Theorem 4), we oan deduce
that the elements of Bp — Bp are 0(QT) (Because now there are only fixed number of 
p, we need not use the maximum therein).

Now

0 , - ± ± 6  „ о и - 1 ) Р „ - ± ± ( . в а + а 6 „ ) ( у и - 1 ) + Х ! и - 1 ) ) ( в в + А ё 1Яу .
и 0 0 0

The elements in й р differ from the corresponding elements in

< ? r S S  ВрэУ U ~  0  $  &

by O(Qy), hence (2.8) follows. But we know that &%-x r2 a. s.; thus for large T, we 
have

det (xp = detGi{)+0(Q !p)>(hi77/37) 1/2d'r, 0, 1, •••, r0-J ;
det Gy0 =  0  (QT) <  (In Т / T ) 1/2d-|,
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whioh establishes the theorem.
Because T u is of full rank and G(j)  —y ( j ) =  0(Qr) for j =0, ±1, •<v±«*o, then 

as it was proved in Therorem 2.1, ABfo= Bu~ B r„ =  0 (Q?). Noticing (1.3) we know 
that for sufficiently large T, bu (2) has all its zeros outside and keep away from the 
unit oircle by a fixed distance. Put «0(2) — ao0<0/&o(z), (2) =au( z ) i f  „(f), then

Aan (2) =  au (2) -  «о (2) =  («го (f) b0 (2) — S,0 (2) a0 (2) ) /&o (2) К  (2)
=  (doro (2) bo (2) -  dSro (2) «о (2) ) /60 (2) (2). (2.9)

Then one oan see that the coefficient of 25 in the expansion of Aau(f), that is Aaj; is 
dominated by jôo CQiOj where 0 < р < 1 , p depends on the looation of zeros of 50 (2) .

We may write (1.18) in the form
e(t) =  dro(2)oc(t) — (4 0(2) —l)e(tf), e (tf) =  0 otherwise, (2.10)

here 2 is the backward shift operator. We can also write
8(f) ^ a r„(f)cG(f), s(t) =  0, otherwise. (2.11)

Denote dro (2) =  2  and consider
0

1

00

= 2  «jC®O’+ 0  (notice that 0^(2) =0 for 11 j > Г )
jf=0

, ©о о©

2 a/ '« ( j  + 0  + '2iAas0 lc( j+l)3=0 j =0
00 00 00

B= 2  ai7« ( j  + 0  +  2  «jhC'<c( +  2  AasG f  j + l ) .3 = 0 3=0 1=0

In the following, m2 and so on denote some constants which depend on 
«о (2), bo (2), then we have щ = т хе~т%3. Take J  =  [In T/m^], since

max AOx (V) =  0  (In T /T )1/2 
о<г<г-1

(see [4], Theorem 3), then

2  №)AO'«( j  +  ?)
i=j+i

On the other hand, we have

2  asAOz^j + l)
j+i

+ 2 « / у * (  j + 0
2 ’ - (

<  0 (In У Д 7) m3e~ln т+тф-т̂ О{Т~1),

2  «ih6h( y + 0  =o(Qr),
2=0

00

because 2 1 % I <  00 an(l0
max AGX ( j)  =0(Q?) (also see [4], Theorem 2). Thus

0<j <\nT/m2

2̂=0

Because Ащ̂ = рЮ{Qf), O f f )  = y f j )  +A O f f  is obviously bounded a. s., thus 
C^(Z) = yef l )  +0(QT)' Similarly we can prove Ga%Q,)-=ytt%(l)+0{QT) and 0%(l) =■ 
7 S(Z) +  0  (Qr). Thus we have the following lemma:
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Lemma ^.2/ Under the same conditions as in Lemma 2.2, s(t) is defined by
(2.10) or (2.11), then (2.7b)—(2.7d) still hold i f  G^(l), Оя$(1) and G$(l) are 
substituted by 0^(1), Ox%(l) and Gfil) respectively.

Theorem 2.2. Suppose x(t) satisfy (1.1), (1.2) and (1.3), s(t) is obtained by
(2.10) or (2.11) and form a2pq as (3.17), i f  (p, q) minimize (3.19) for 0

/■ч/ _

0< g < r , then p-^po, q-*qо «• s. as T->oo.

Because this theorem is the special ease of Theorem 3.1 in the next seotion, we 
omit the simpler proof (it is similar to Theorem 3.1, using Lemma 2.2', fomula 
(2.9) and so on).

§ 3. The Main Theorem

As mentioned just before Lemma 2.2, the seoond row of 0 (  —Z), Z>0, can be
replaced by zeros without effecting the asymptotio results. From now on we denote

( (7.(0) -O ^ (0 )\ v ( O f i - l )  -0 .e ( -Z ) \
0 (0)== 4 \  >0, o(-z) =  4 '  4 '  , z>o,

\ - a f.(o) (7j(o) * K ' \  0 0 ’ ’
and

0 (0) 0 ( - Z + l) '

Gv
[0 (1- 1) .....  0(0)

, In order to prove the main result we require the following lemmas. 
Lemma .3.1 Suppose that Op+1>  0 and

(Ди, a(-j>))(o.f. (1.13)).
For t Fp, Ш ш  define

■ « ( - » ) - o o  = e ( - t y .

Then {C(t) , t = 0, ± 1 , •••} is a positive definite sequence of matrices.
Proof Construct Ci from О (t) as Ot from О (t) .
First we prove that CP+a>0.  We need only toprove that det Cp+a> 0.

■ By the definition of 0 ( — p —1) we have
ф .г - 6т0)Cftl-  -  ( 0 ( - l ) - 0 ( - j > - l ) ) ,  

thus .
■ /  е д а
0(о)-(б(-1)"-0(-г-1))0й. •
. \ 0 ( j > + l ) i

/  6 ( 1 )

C (0 )+ (A i •4 ,0 ) •
\ 6 ( г + 1 ) / .

det ^p+2==det Cp+1 det

=det Cp+1 det-

(3.1)
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=det Cp+1 det-

= det Cp+1 det

A  A

0 (1)

c ( p ) /

C ( 0 ) - ( C ( - l ) - G ( - p ) ) G f
f C (  l )

\ 0 ( p ) l
-(detC7p+1)VdetCp)> 0 .

Again, obviously,

. № (0)_ 0
det ! \  )>0, so <?p+3>0.

. \  o 'o9+1;
Using the same procedure we can prove that С),+з>0, ---and the lemma follows.

A  P  * Д  Д  .

Lemma 3.2. Let Bp(z) = 2  Bpjzj, Bp0 = I2. Then under the conditions of Lemma
■ 0

3.1, det Bp(ea) Ф0, — jf<X^?f.
Proof By the definition of Bp} and

for t>p,  we have
1

i t £ Pl C ( j - l ) =  0 for l >  1.

Now, we treat C (t), Bp} as constants, because {C(i)}  is positive definite, so there 
exists a vector stationary series y(t)  with G(f) as its covariance and

_ Гм
<7(0 = e~iudF{%), (3.2)J — ft .

for
j , ( ( ) -  e - ^ d m ,  (3.3)

J —ft

where E dt, (X) (/F) dF (X).

Put i ( t )  = S  Bpjy ( t - j  ) = f e“ttA S  d£(X), f = 0, +1, £(t) is station-0 ■ J—m о
ary, so it may be written as

fft
£(*) =  < r ^ ( X )  (3.4)

J - f t  -

and by the uniqueness of spectral representation we have
BPm d m ~ d u x ) ,  (3.5)

and
^ ) d F ( l ) B P( e ^ y ^ E d U X ) d U l ) \  . (3.6)

But

W ( t  + l ) y ( t y - ' Z B pjC ( j - l )  = 0  for l > 0,
0







CHIN. ANN. OF MATH. Yol. 6 Ser. В

' 7.(1) 7e(0) ••• 
• 0

7 .(l-2>) ~7*s(0) — - 7 « ( 1 - 9 P)

7 .Ы

• •

7 .W -7 « (3 » - l) — 7 « (P -? )

~7«.(1) -7«*(°) "• -7e*(l-2>) 7»(0) ••• 7 .(1 -? )
о

- 7 . . ( ? - i )  ••• -у**{я -р ) 7 e (? - l)

0

7.(0) . лх(л+1)
pq is obtained by erasing the first column of Г*т. Let

-p + 1 )  - s ( 0 " ' - s ( t ~ q + l ) ) h s, Y = ( y b 2/J', P y= P F T ',
where h3- is the jth column of Н±. Then from (3.10), we have

Ж/Г г)8Я = Ж Я 1 Я я)'(®(0-®(*-5>+1) - 8 ( i )  —  6 ( t - q + l ) ) ( a > ®  

- x ( t - p + 1) e(0-e(< -gr+ 1))/(Я 1 Я*)}

ГРу

1--О

о

о (3.11)

Р,, is non-degenerate, because (yt, •••, ?/„) is linearly independent. Otherwise there 
isaX =(X i, ■••An„)/ such that

0=F'A= (x(t)” -!v(t~p+1) — e(£) *—  s ( t —q+l))H%X,
From (3.10), JTiA,G{Pa}, but {U 2}J_{Ui}, thus, there must be Hj_X= 0 or X=0, 
since rank Н г=п0.

.Now we denote the quadratic form of RHS  in (1.20) by <x2m {а, Ъ )= а \х ,  ф). 
Its minimum is reached at

’ а ’
or

Г <*•' нX«V =<?
а, - а 0 ‘

Ъ _ 1ф\ .5 -Ь о.
then we have

a _ д о * ( х ,  Ф) _ дога ( 0, ф )  , 0 V (* #, ф )  ~  , 0 1nv
0 — m ------------~ x — + ш  z’ (8 -12)

where is between 0 and % and the first derivative is an n-vector evaluated at 

^  j^or  ̂~ j j , the second derivative is an nXn matrix evaluated at^L j , but actually

it does not depend on  ̂ ~ j, since cr2(x, i/0 is a quadratic form.

Denote by 0*m the matrix which is obtained by erasing the first row of the
matrix of RH S  in (1.20), denote by Om the matrix which is obtained by erasing the
first column of 0*m. From (3.8) we have :

■ C*m = r*m+ (0 (Q T) ) n><(n- 1)t Ом= Г т+  (0(Qy))nxfls (3.13)

f a \  / 0 \  ... /  a —a0 \
Suppose I g. j is the veotor such that  ̂~ j =Cr  ̂  ̂  ̂ j , then
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dor2(0, ф) _ д(а',Ъ')д(х2т(а,Ъ) 0) h 'q
d% d% ‘ / a V  V

(3.14)

From. (1.1), ®(t) +  ---+a0px ( t—p) —s ( t ) -----— b0Qs ( t —q) = 0 (noticing that «%=0, j
>Po', boj^Q, j > q o). Multiply both sides of the equation by x ( t—j) ,  j ~ l ,  •••, p  and

. . ; r \j = 1, •••, q, then take expectations, we obtain Г*т I a0 1=0, and from

, /Д \ ■ . U I
(3.13), 2(1Па 0) H'Ogpj a0 |=  (0(Qr))neXl. Combining this with (3.14), we obtain

' _ W  _ ;

Л - 2 ( I „  0 ) H V „ B  iO iQ r m , ,

- 2 ( i , .  о д а о ^ я ^ - к о д а , ) ) ^

. - 2 0 . .  о) F r ® | и ) + ( 0 (<2, ) ) . .л - ( 0 ( а д ) „ и1. (зл е )

Here the third equality is assured by (3.13) and “a, b are a priori bounded”(so does
ф ) .  .

Again - 2 (J , 0)Я 'аил Р л - 2 Г г+(О(<2,))..хи, then from(3.12),

(3.15) we have
. x ^  ~J^Y1(0(Qp))ncyi=  (0(Qp))nc><i t

This establishes the lemma.
Lemma 3.#.' Let ff-JPjOWCi), Gu(j) ,  Ot(j) in (1.20) are replaced by OxS(j), 

CizQ), Og( j) respectively, the minimising values api, bpS are a priori bounded and 
correspondingly put %p(z) =  ap(z)b0(z) — t>p(z)a0(2). Then the coefficients of jcP(z) are 
0(QT). ■

The proof is the same as above.
Lemma 3.5. Suppose R>p^ro ,  <%, 6W- are a priori bounded and T sufficiently

large. Then ap(z) has all its zeros outside and keeping away from the unit circle by a
fixed distance i f  and only i f  t P(z) has the same properties.

Proof Since л
i  л л _  д»(*)Ьо..ОО &(g)
W  eo(e) ; <*>(*)'

where the coefficients of %9(z) are 0(Qf),  and by assumption that a0(z) and &0(z) 
have their zeros outside unit circle, so if the zeros of aP(z) has the properties 
mentioned in the lemma, then t p(z) has the same properties. The converse is true by
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considering йр(2)=£5(2)/&о(2)+4(!г)бо(2)/&о(2)-
: Now we carry on Whittle’s recursion (1.14)—(1.16) when &P> 0  remains true. 

From Lemmas 3.1—3.3, we know that aP(z) have all their zeros outside the unit 
circle, they are, say, zt, •••, zp. Then ap(z) =  (1— — But |sj1 [ <  1, thus

all the coefficients of aP(z) are a priori bounded, say, by max ( ^ ). In addition to

that, we also check the zeros of ap(z) to assure that they keep away from the unit 
circle by a fixed distance. As it was mentioned in the end of Section 1, we carry the 
recursion to s-th step, for every p, 0<£><$. By Lemmas 3.4', 3.6, bp(z) has all its 
zeros outside and keep away from the unit cirole by a fixed distance and all its

coefficients are bounded by max ( S.o<j<$ у j
In the following, put e(t) as in (1.18) with r  replaced by s, then

s(t) =as(z)cc(t)} К К Г ;8 (1 )  =0, otherwise. 6ts(z) —as(z)/ba(%). (3.16)
Again, as (2.9), we have

Aols(z) = as( a )- a 0(%) =  (й8(з)60(г) ~ t s(z)a0(z)) /Ъ0(ъ)Ь&) *= xP(.%)/b0(z)ta(z ) .
By Lemma 3 .4' and the properties of zeros of b0(z) and bs(z), one can see that the 
coefficients Aa} of g3 in the expansion of Aas(z) are dominated by p’0(Qi<). Then the 
same proof as in Lemma 2.2' leads to (3.8).

As mentioned in Section 1, we use e(t) defined in (3.16) to estimate <r2, that is, 
for each (p, q), 0<p, g<s, we calculate

(3,17)apj,bqj JL 1 \;=o j=l /
under the bounded condition

max{\apj\, |&3i|}< m ax( . (3.18)
p,q,j \  $ J

This restriction is reasonable because, first, we require that
лР{%)ф0, ЬР{г)фО, \ z \ < l ,

where aP(z) = ]>] арр}, ^ (з) = 2  W* ап<1 «U hj  minimize (3.17); secondly, fromо 0
(3.8) and the discussion in Section 2, one can see that аРХ^)-^а0(г), £3о(з)•“*&<)(Ю, 
a. s., so (3.18) always holds for p= p0, 7=7o (for large T ), thus (3.18) do not rule 
out the true order. We can abandon those (p, q), 0<p,  for which some ap} or 
bqj do not satisfy (3.18). Thus Lemma 3.4 holds. If (p, q) minimizes

BIO(p, q)=1na% +  ( p + q ) h iT /T ,  (3.19)
then (p, q) is our estimate of (p0, q0). We are now going to prove the main theorem 
in the following.

Theorem 3.1. Let co(t) satisfy (1.1), (1.2) and (1.3), and we derive ( p, q ) 
as above, then p-^po, q-*qo «■ s- as I7—>°°.
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Proof As in the proof of Theorem 3 in [2], for p < p0 or q < q0,

^T~~ ~  ~  ( ^ +■ ^ T ~ \  > 0 >
so we must have p>po, q > q o- Now for p > p 0, q>qo

i)s(oia

- 5 r i i [ « 2) ~ ( t o - i ) ^ ( g) } ^ ( 0 3 a

7n 2  C{(«p(«) — ̂ а(Ю«о(«)) 4-«o(«) — (^в(з) —1) («s(^) —«o(«))}^(5f)]ST

~  2  Г «о(*)«(<) + ^  ^  ~ 1̂ ŝ  »(ol*
1 1 L . &o(«)6s(«) J

(3.20)

From Lemmas 3.4, 3.4' and bs(z), bq(z) has a priori bound, one can see that the 
numerator of the second term ( polymomial) above has all its coefficients equaling 
to 0(QT), and the coefficient of 2° is zero by the definition of %M(z) and %&(z) or 
bq(z). Again because of (1.3) and all zeros of &s(z) are outside and keep away from 
the unit circle by fixed distance, the second term can be written as {O(Qf) x 
00 л

2 (tf—1 —j)}, where <f>j (random sequence) satisfies |ф}| < p y uniformly in T, 0<p

’ < 1 . Denote ax(z)x(t) = s ( t ), then for a fixed constant m >0, we have
O(Qt) uniformly in l, 0<Z<to InT,

/Ь х Т  N1/2 - _ _ (3.21)( a x T  \V 20 (—Tj\— ) uniformly in, 0 <1,

In fact, the left hand side of (3.21) is

4  2  2 « i i 2 * ( f - j ) * ( < - i )  - 2  « А О - 01 t=l j= о j-o 1 t=l j=o
CO CO CO

= 2  щ у ^ - l )  + ' £ щ А С хи - 1 )
CO

Here we notice that = 7*б(0 =0. Using the same technique as in Lemma

2.2', (3.21) follows. The uniformity can be seen from the proof of that lemma.
Thus

- 4 s s « * + 0 № 0  2 А ж 2 5 (* )£ (* -1 -Лi  1 3=0 1 1
oo oo 1 -A

Because | ф} | < p s, by a suitable choice of m, we can make

(3.22)

S3=m In i’
thus from (3.21), one can see that
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m i T , m In T—.1
2  2  * ( * > ( < - i - i ) =  2  •3=0 1 1 j = o ■+ 2  — o (q t ) ,

m In V
and the second term of BHS  in (3.21) is 0 (Q |). The third term of RHS  in (3.22) 
is also 0(Qt) by noticing that \Ox(l) | < O x(0)-^ya.(0) a. s. and | |  decreases expo- 
nencially. Thus we have, at last,

B I 0 ( P, q ) = i p (ty + o ( b ^ ) + ( v +

which is minimized at p=po, Я^Яо for sufficient large T. That establishes the 
theorem.
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