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ESTIMATION OF THE ORDER OF ARMA
MODEL BY LINEAR PROCEDURES

WaNG SHOUREN (E % 4=)* CHEN ZHAOGUO (I% 3k E) *

Abstract

Given an ARMA. (p,, go) sequence @ (t), a linear procedure is used to estimate oy Qo)
and the strong consistency of the estimate is prowved. ‘
First it the data of size T' by a long AR(P(T)) model to obtain an estimate of &(¥),

T

denoting it by £(¢), where P(T) = (In 7')**°, §>0. Then for each p, we minimize .117 >

t=1 =0

2 -~ . . . . . .
a8 —9) —f}bmé - j)) . Let @y, b, be the minimizing coefficionts which can be obtained
J=1 5 .

by Whittle’s recursive procedure. As p increases to some s, consistently greater than ro=

max (v, ¢o), we take the second estimate of ¢(¢) as

0 =§&s,w<t-—j> — 31 88— 4).

For every (v, q), put
T

&2, ~min iz(ﬁa ()~ Vb B (i — '>)”
P appbgy T 1\ T s J o Vas J)) s
then the minimization of
BIC(r, g) =18+ (o + )5

will offer a strongly consistent estimate of (o, go)-

§ 1. Introduction

Let X (£) be an ergodic stationary time series generated by an ARMA( »,, ¢o)

model
Do Jo
E}aoa’w(t—j)= %bOjS(t—j), 1.1)
where a(]o:boo-'—"l, Qop, #O, boqﬂ #O,
Es(t) =0, He(s)e(®)=0%,:, Be(t)*<oo, 1.2)
Put '

) o 70
ao(2) = E) a0, bo(z) = g%) boi,

We assume that a(z) and b (2) are prime and
@o(2) #0, bo(2) #0, |2|<1, 1.8)
In order to estimate the order (o, ¢o) and the coefficients ay;, bo; from an
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observations @y, #s, *+, @r, it is usually to fit the data by ARMA (p, ¢) model for
each (p, ¢) and calculate the maximum likelihood estimate ¢2, of ¢2. The criteria
used to get the best estimate of (%, ¢o) is choosing (p, ¢) Which minimizes

Inol+(p+AM)/T, 1.4)
where A(T)~—>co0, A(T)/T—0 as T—>c0. Under certain conditions, Hannan™ has
shown that (p, 4)—>( o, go) a. 8. as HT—->oo, if

A(T)

e A(T)
minf 53 om0 =0, (1.5)

One particular function A(T") which deserves special attention is A(T)=InT.

To compute the ML estimate 62, for each (p, ¢), non-linear procedure is used.
Receﬁtly, Hannan and Rissanen™ proposed a way to avoid all non-linear procedures
in the estimation of the order. They used a long AR(P(T)), with P(T)= (InT)348
to fit the data, and used this AR(P(T")) to get an estimate of s(¢), denoted by &(¢).
Suppose

T

? d v
6§q=min% » (;4-_20 @y (E—F) — 121 bei (1—4) )

2
Cppbgs L =1 ’
then the estimate of (po, ¢o) is (P, ¢) which minimizes
BIO(p, ¢)=In 63+ (p+)InT/T, _
But as it was pointed out by the authors in the correction which was published in
the same journal lately, that InT" has to be altered to (In7')*, §>0, if one wants
theoretical result (9, ¢)~>(po, ¢o) a.s. as in Theorem 8 in[2]. Although 5=0 and
3>0 (we can take & as small as we like) make no difference in practice, one might
prefer not to change it, because BIC is such a typical criterion. We are going to
deal with this purpose. ‘ , |
In this paper, we suggest a procedure of two steps estimation of &(¢). First we
fit the data with AR (P (T)) as it was done in[2]. The autoregressive coefficients can
be estimated from Yule-Walker equation
0(0) e Ou(P(T)~1)
rebmea)| T e == (0D0PT),  (1.6)
Co(P(T)—1)  ceeee " 0,(0) |
where C,(1) =—%-$ s @) z(E+1), 2(t) =o(8), 1<t<T; ©(t)=0, otherwise. Then the
first estimate of &(¢) is given by
a0t = {é(t)+&T152(t-—1)+---+&TP(T)£(t—-P(T)), 1<i<T,
0, otherwise. : ,
In the following of this paper, we denote @r= (Inln T'/T")¥? and O(Qr) means a
random sequence satisfying %ljf sup O(Qr)/Qr< oo, a. 8.

@)

It was shown that (o. f. [4], Theorem 6)
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sup |dn—os|=0(Qr), ‘ (1.8)

1<j<P(T)
where % oa,z’ =ay (Z) bo (z) 1 ]G() (Z) “l= (27)) (Z) .

Secondly, we are going to estimate r_ro=ma,x(' o, Qo). For each p, we take an
estimate of ¢? as

#}—min 2 ( 3 4y (t=5) = 26 (6—1) ) " (1.9)
where the minimization is over @, and b,; with @,,=1. The corresponding minimizing
coeflicients satisfy the following equation

O(0)  coonee C(—p+1)
(aplgpl" v ‘/‘\ppgpﬁ RS .. S
O(p—1) -eeces 0(0)
=—(1, 0)(0(~1)--C(=p)), (1.10)
where : . .
Ol —0uy | T IEOEEHD)  — 5 DEBEH)
o =[ ' :'= : , . , (1.11)
G B FOC DN S EOLCR)
o' =0(-b), _ (1.12) -
Lot equation (1.10) be embedded in the following matrix equation
B,0,=—{,, (1.13)

where B,= (B,,-- ﬁm,) each B,; is 2% 2 mairix with (Ggby) a8 it first row,
Zy=(O(—1)--0(=p))

and O, is the blockwise Toeplitz matrix in the left hand side of (1.10). In order to

compute B, for p=1, 2, -+, there is a recursive procedure due to Whittle™ (also see

r21)

p

.ﬁm’: Ap—igp—l; Bpp—_dp—lép—b Ep%.;ﬁpid@—?_l): (1'14>
ép:( I,— pp18m>é’p—1, gpz(Iz'_Bpp pp).ap—lz @r0=§0_=0'(0), (1-15)
Bm Bp—i,i’l‘Bme-—l,p—i; j=1) 2; ) P—lx
Bm Bp—l.a’l‘lezw p—-1,0~5, j=1; 2; °*ty P"l: _ (1°16)
BpO Bpo*Iz
The (1, 1) th element of _ v S «
pPooa A AN\ D B A R A
=22 By (=) By=(Is, By)Cyia(Is, B,)' =0(0)— 21 2 By0(j—1) By

-, .
—=0(0) + 3 B0()
is 63,
Because the criterion of BIC can not furnish a consistent estimate of the true

order, in this case, we suggest another criterion, that is monitoring det @,. Let r be
the first p, such that
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det ép<<—1-n_,p£>ilza§., 1.17)

Then we take s as the estimate of 7o, where 6% is the estimate of ¢* by AR(P(T))
and we know that 67—>0® a.s. asT—>co(see the proof of Theorem 5 in [4]). We
add the factor 67 here only for a technical reason, it does not influence the mathe-
matical theory. In Section 2, we shall show that as T—>00, =51 & 8. 8IS0 Gpy=ag;+-
0(Qr), b= bo;+0(Qr) (because for sufficiently large T, Gr=0y; , b,;=b,,; and we
shall show that Gy,;=ae+0(Qr), byy="bo;+0(Qr)). |

With this 7, we use an ARMA(r, r) to estimate s(¢) by

Sty {]E Gri (1—5) *;% bz (t—3), 1<t<T; L.18)
0, otherwise.
Put ,
1T & appn
Ous() =7 DEWDE(E+D),
C'zw(l)=%$§(t)§(t+l), - (1.19)
1 Sywpne
Os(D) = 2 DEDEE+D),
For each (p, ¢), consider another estimate of a2,
A2 1 & A . 2 ~ W\
Ow=Ii0 77 2 (2(;4 @y (¢ =) — 2 bqﬁ@‘ﬂ))
=‘I£j’i£j(1 Tpr Gy b +Dyg).
0u(0) o Ou(—p)  —Oa(—1) o O(—q) [ 17
: : v eeeees g1
Ou(p) vt Op(0)  =Og(p—1) woree —Ou(p—0) ||
— O3 (L) oeeeee — Oz, (1—p) C;(0) seenes O;(1—¢q) app 1. (1.20)
oo aeeens : . : ] be
—0w(g) +  —0Oulg—p) Os(g—1) oo Cx(0)
: o o | bgq |

., byy). Now oriterion BIC
can be used. Let (p, ¢) minimizes Ino2,+{ p+¢)In T/T for 0<p, ¢<r, then (p, 7)
shall furnish a consistent estimate for ( py, ¢o). We shall give the proof in Section
2. |

The minimum is reached at (@), b)) = (ap, -+, dgp, bg, **

Once (p, ) are obtained, we can use any available algorithms to caloulate
asymptotic efficient estimates of ay; and be;, one of which was mentioned in [2].

When T is very large, the method disoribad above seems to be quite safe for
estimating ro. But it is plausible to suspect that in most cases, when 7" can not be so
large, the underestimation of 7, would often ocour and hence the estimate of (py, 9o)
are usually smaller than the true value.
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Because (dy;, by) are used only in (1.18) to give an estimate of 8(£)=be(z) 1x
ao(2)2 () (here, 2 means backward shift operator), one would prefer an overestimate
of 7o rather than this underestimate, if the new estimate of ¢(t) is reasonable. It was -
pointed out and has been used in many cases by Hannan (see [1, 21), that for fixed
P, Q with P=p,, Q=>¢,, there are ways o choose ap;(j=1, -, P) and 3Qj(j=1, oy

Py A QA -1 /P A
Q), such that bo(2) *ap(?) =<2 bejzf> <2 apjzj> converges in a ocertain sense to
. 0 0

bo(2) “Yae(2) as T—>oo, though Gp(2)—>ae(2) and Bg(2)—>by(2) do not hold. In Section
3, we shall adopt this idea to carry out Whittle’s recursion unitil R, which can be
muoch larger than ry such that detG's>>0 does not hold, or "all zeros of QR(Z) and
br(2) are outside and keep away from the unit circle by a fixed distance” does not
hold. This will be done in Section 8. Further, we shall prove that when R>s>r, all
the coefficients of Zg(2) =as(2)bo(2) —bs(2)ao(2) are O(Qr), so that we can make
bs(2) ~109(2) —bo (2) ~tae (2) small enough, which is needed in proving the main resuls.
There is a possibility that 2 may be too large, say, R goes beyond O(InT), so in
practlce we combine both criteria. First by mon1tor1ng det G to get 7, the consistent
estimate of ro=max( Py, ¢o), then we continue the recursion further for several steps, -
say to the s th step (in each step, det G,>0 and a,(2), b »(2) have their zeros outside
and keep away from the unit cirele by a fixed distance), s is consistently greater than
ro and is usually greater than ry in practice even if 7' is not very large. Obviously,
it is much more plausible than the traditional saying that “choose P, @ big enough
such that P>p,, @=>9,".
Mo check dg(2) =§z] Gy’ has all its zeros outside |2] =143, 3>0, is equivalent
to check all the zeros of 2° +851z5“1+ coo+agg are inside [z]|=(148)"*. Put w=(1+

)z, then it is equivalent to check wS-ag (1+8)wS ™+ +agg(1+8) has all its
zoros inside |w| =1 and any criterion of Routh-Hurwitz type can be used. Similarly

A 8 4 ,
for bg(z)= };5] bgi’ .

§ 2. Moni‘toring Criterion

Instead of (1.18), we consider of the same fype equation, but with O, {, being
substituted by I',, 7, respectively (they are est1mated by C,, {,) and the unknown
matrix being By=(By, **, By), that is _

Byl'y= 7@: - (2.1

7(0) e - y(—p+1)
Iy=| P = (=D ey (—p)),
y(p—1) «eeee 7(0)

where
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(D_[Ew(t)w(t+l) —Em(t)s(t—l—l)}_[%(l) —7“(1)}
T e (el Be@®e@+h) | L—re® @ I
By condition (1.8)

o(8) =2 kis(t—]), s(t)=2aw(@~1), | (2.2)
where the coefficients %; and o; are determined by

to(#) = a0 (2) bo (2) = 5:3 o, To(2) = a(2) ~*ho(2) = 2

with og=/ke=1 and |a;|, |k;] deorease to zero exponentially. Thus we have

7o(0) =0* S lshya=7a( 1), 10;

VoD = 0%h= D aiya (1) = Feo ~D), 1205
Yes(1) =0%, 1=0;74,(8) =0, 1>0;
Ys(8) =023,
and :
W= 70 e e

For any p, in order to obtain B, by solving (2.1), which is similar to (1.18),
the recursive formula (1.14)—(1.16) are applicable if O(4) are replaced by y(4)
and all the hats therein are erased. But it requires some discussion.

Lemma 2.1. I',isof full rank for p<fro' and not for p>ro.

Proof TFor any p>re, we can take a non-zero 2p-vector N =(1 Laybyeeayg byy)
with a;=ao; for j<<po, b;=bo; for j<\go and zero otherwise, then A’ Iy=0 by (1.1).
Thus I', is degenerate. Now suppose p<X7y and there is a non-zero 2p-vector A’ =
(Mo o Aqpa*Ap—1 Wy_1) Such that NI',=0, then A'I'yA=0, hence it must be .

St Suwe—i)=o, 2.9)
We can assume that one of Ay and o is not zero, otherwise replacing p ]oy p—1 in
(2.4). Multiply both side of (2.4) by &(¢) and take their expectations we obtain
MoY4s(0) = to7:(0) or Ag=pio. Thus we can put A" in the form (L 1 Ay pwye+-Ap_y tip—1)
and (2.4) implies that #(¢) is generated by an ARMA( p—1, p 1) with py>p—1 or

go>p—1, this contradicts (1.2). The lemma is proven.
Corollary. G,>0 jor p<<ro—1.

Proof Since (2.8), the second row of <, is zero, hence by the lemma and

from (2.1), the second row of B, must be zero. For any (A -Ag) %0, it must be
(7\;1 }\42) . (Ig Bp) #O, 80
(A1 A2) Gp(As A2)" = (A Aa) (T2 By) L'pya (12 By)' (A1 Aa) >0

by the lemma and G,,==$ ﬁ By (j—1) By Hence G,>0.
0
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It is easy to show that the eigenvalues of Iy—8,,B,, and Is— B,,B,, are the same,
from (1.15) and by induction one sees that det g,+0 for p<ro—1.

How about G,,? Since the second row of 7, is always zero for any p, thus for p<<
7o, the solution B, of (2.1) must have its second row being zero by Lemma 2.1. But
for p>r,, though I', is degenerate, we can also choose the second row of B, to be
zero. For p=r,, the first row of B,, must be (ag1bes:**Gor,Dor,), %0i=0, §=>1o; be;=0, 5>
¢o. Hence

- S N 74 (0) ~ Vs (O)] _ [ o2 _0.2]
o EO B () [_ 7e2(0)  7.(0) - ol (2.5)

which is degenerate, so does ¢,,. It seems that the recurssive formula (1.14)—(1.16)
can not be carried on beyond the 7y th step. Nevertheless, we can do a little more.

Consider 4,,= 1;0 B,y (j—re—1), its second row is zero since the second row of y(—1)
is zero for 1>>0. The first row of 4,, is _
7o 0 .A
(%] GosVa(f—ro—1), —g ogYse(To+1—7) )= (0, 0),

because, from (1.1), we always have

X aor7(i=1) =0, N aoryes(§—1) =0, I>a, 2.6)
If for p=ro+1, we put (1.14) in the form |
Bro+1, rot1Gre = 0 Bro+1,ro+1Gro ro _O:

then, since G, and g,, are degenerate, the solution By, 1,41 30d Brpp1,mp1 8re quite
arbitrary, but we can choose them to be zero. If we take this partioular solution and
do the same hereafter, then the same argument as above shows the Tecursion can be
carried on for p=ro+1, ro+2:.-- and give the solution @y=a,;, by=>0,,; and a@y,=>0by
=0, >0, because of (1.16) and By,=B,,=0.

It is this property that makes the solution B,; and ,8,,, unstable for p>r, in
(1.14)—(1.16), because a very small deviation of J, from zero would make the
olements of B,,1,,,1 and By,1,p,1 very large, since det@, and detd, are near zero. This
discussion suggests us by monitoring det@, to estimate o, we denote this estimate by
r as in Section 1.

Because of (2.8) and the following lemma, we can also put zeros on the second
eolumn of O'(?) for I>>0, instead of —CO(?) and 0;(I), it gives the same asymptotic
result. 4

Lemma 2.2. Let »(t) satisfy 1.1), (1.2) and (1.8), then for a fiwed I, we
have . |

0u(®) —7(®) =0(Qw); (2.72)
Oie(D) =7 (D) =0(€r), 1>0; - (2.70)
O (D) =0(Qr), 1>0; (2.7¢)
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Os(D) —7:(1) =0(@). (2.7d)
Proof (2.9a) was proved in [4] (Theorem 2). It was also proved in Theorem 6
of the same paper that '

sup |&rj—oy| =0(Qr) &. 8.,

1<j<P(T)

Put dag;=8tp—a;, 40,(1) =0x(1) =7, (1) and so on, we have

1 Tiam A 1 Z/Bm 4 N\a, - Py )
Osu()) = SDB+D) =7 2 2 e (=) )3 (-+D) = 3 800 (-+)
P

= 2 (ay-+ ) (7o (+j) +40,G+5))

B(T) . . B .
= Bapa () +0( sup | ddn) 2 7.0+

1< <P

o PO . '
+ sup 400+ | 2 les| +P(T) sup [40:(+5) | sup | dor| ).

0<f<P(T
Since |as], |7:(4) | converge to zero exponentially as j-»oo, let T'—>co, the first
term on the right side converges to ﬁ 07Ys(U+§) =7sx(1); while the second and. third
0
terms are O(Qr) and the Tourth term is P(T)0(Q%) =0(Qz). Thus (2.7b) is proved.
Similarly we can prove (2.70) and (2.7d). : ;
Now we are going to prove the strong consistency of r. j‘

Theorem 2.1. Let x(¢) satisfy (1.1), (1.2) and (1.8), and r is decided by
1.17), then r—>ry a. s. as T->c0,

2 . 2
Proof Since G4>0 for p=0, 1, -+, ro—1 and Gro=[ 02 62], we need only
-0? o
to prove that
|det G, —det G| =0(Qr), p=0, 1, «, 70, (2.8)

From Lemma 2.2, the elements of 0,— 1", and {,—~, are O(Qy) and I',>0 for
p=0, 1, «--, 79, then by the similar technique as in [4] (Theorem 4), we can deduce
that the elements of B,— B, are O(Qr) (Because now there are only fixed number of
@, we need not uge the maximum therein). '

Now

R I TN . A p D N ] ) A
=22 By~ By=23 2 (Bu+4By) (7 (=D +40(j =) (Bu+-4By)",
The elements in @, differ from the corresponding elements in
) )
Gy =22 25 Byyy (§—1) By

by O(Qr), hence (2 .8) follows. But we know that 67—>0? a. s.; thus for large T, we
have |
det @,=det G+ 0(Qr) > (InT/T) 1264, p=0, 1, -, ro—1;
det G, =0(Qn) < (InT/T)*6%,
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which establishes the theorem,

Because Iy, is of full rank and O(§) —v(j) =0(Qyr) for j=0, £1, -, o, then
as it was proved in Therorem 2.1, A§¢o=§ro—’B,°=O(QT), Noticing (1.3) we know
that for sufficiently large 7', b,,(2) has all its zeros outside and keep away from the
unit oircle by a fixed distance. Put ay(2) =ao(2)/bo(2), &, (2) =0y, (2)/b,,(2), then

A8, (2) =8y, (2) —0t0 (2) = (Br, (2) b0 () —br, (2) @0 (2)) /Do @) by, 2)
= (4, (2) bo (2) — by, (2)80(2)) /Do ()., (2). 2.9)
Then one can see that the coefficient of 2’ in the expansion of 4&,,(z), that is 4&;, is
dominated by p'0(Qr), where 0<<p<<1, p depends on the location of zeros of by (z).
We may write (1.18) in the form |
e(t) =8, @)% 1) — (6,,(2) —1)e(8), 1<t<T; 2(t) =0 otherwise, (2.10)
here 2 is the backward shift operator. We can also write
8(t) =&, ()2 (), 1<t<T; &(2) =0, otherwise, (2.11)

Denote &,,(z) =3 &7’ and consider
[\]

o0

Ou() = TEOEE+D = 3 B ad - ¢+

8

= O&O_',,(j—l—l) (notice that O, () =0 for [I|=T)
=
= R0y0u(§+1) + T 48,0.G+D)
= Rara(j+1) + Dapd0u(§+1) + 3 48040,

In the following, ms, me and so on denote some constants which depend on
ao(2), be(z), then we have a;=mye™™, Take J = [InT/m,], sinoce
max 40,() =0(nT/T)*/?

O<i<r—1

(see [4], Theorem 3), then

oo T—1—1
3 0,0 | <| S 00D |+ S5 4+D
<O(nT/T)?mze™ T +mue T=0(T"1).

On the other hand, we have

! id0,(j+D) (—0<QT>,

J_.

because E]a,] <ocoand max A0,( y) 0(Qr) (also see[4], Theorem 2). Thus

0<i<InT/ma

gajzlo,,(jﬂ) ~0(Qn).

Because 48;=p'0(@Qr), Ou(§) =7.(J)+4 Ou 4) is obviously bounded a. s., thus
Oz(1) =7e (D) +0(Qp) . Similarly we can prove Ou(l) =v.;(l) +0(Qr) and O;(1) =
7:(8) +0(Qr) . Thus we have the following lemma:
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Lemma 2.2 Under the same conditions as in Lemma 2.2, £(8) is defined by
(2.10)or (2.11), then (2.7b)—(2.7d) sl hold if Ou(), Ox(l) and O:(1) are
substituted by Oz (1), Oi(l) and O;(1) respectively.

Theorem 2.2. Suppose a;(t) satisfy (1.1), (1.2) and (1. 3) e(t) is obtcmned by
(2.10) or (2.11) and form o2, as (8.17), if (p, ) minimize (3.19) for O<p<r,

0<g<<r, then p—>po, §~>qo @. . as T—>oo,
Because this theorem is the special case of Theorem 3.1 in the next section, we
omit the simpler proof (it is similar t0 Theorem 3.1, using Lemma 2.2, fomula

(2.9) and soon).

§ 8. The Main Theorem

As mentioned just before Lemma 2.2, the second row of 0(—1), >0, can be
replaced by zeros without effecting the asymptotio results. From now on we denote

| [ 0u(0)  —0Cwx(0) _(Ou(=1) —0u(~1)
90w aw )7 %07 o)
and
C(0) oo O(—1+1)
o=l A (3.1)
O(I—1) eeeeer C(0)

In order to prove the main result we require the following lemmas.
Lemma 3.1 Suppose that Cp,1>0 and
By, +, Bp)Oy=—(0(=1), -, O(—=p)) (0. . (1.13)).
For t>p, let us define

O (1) = =B, 0(j~1), C®) =C(~1)".

Then {C(t), t=0, x1, .-} is a positive definite sequence of matrices.
Proof COonstruct €, from C(8) as O, from O(3). '
First we prove that 0p,2>0. We need only toprove that det 0,,q>0.
. By the definition of O(—p—1) we have
(ﬁpl"'ész) ap+1= - (6(—1) "'6("27‘1) ),
thus
o)
det O, o=det O,y det {C(0) — (C(~1) ---C(—p—1))C;iy
C(p+1)
o)
=det 0, det{ G (0) + (By -+ By,0)
C(p+1)
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o (1)
=det Tp,1 dot{C (0) + (Bpu+-Byp)
| C(p)
" | o)
=det Op,q dety C(0) — (C(~1)-O(~=p))0;" |
~ | C(p)
= (det C,,1)?/det C,) >0,
Again, obviously,
c;,(0) 0 :
det. >0, 50 Cp,5>0,
0 . .Op+1

Using the same procedure wo can prove that C,.3>0, ---and the lemma follows.
Lemma 8.2. Let B,(2) =ﬁ By, Bpo—I,. Then under the conditions of Lemma
v VRN

8.1, det B,(6*) #0, —w<A<uw.
Proof By the definition of B,; and

C®)'=G(~8)=~3 B,C(~1)
for t>p, we have
318,0(j—1) =0 for I>1.
Now, we treat C(z), B, as oonsta,nf;s, because {0(£)} is positive definite, so thore

exists a vector stationary series y(¢) with C(¢) as its covariance and

¢ () -—:j’_” AT (N, (3.2)
y@=|" maay, 3.3
whoro B d{ (\)dZ ()" =35, dF (1), | |

Put £(0) =3 By (1—j) = | o7 S Bl (1), #=0, 1, -, £(8) s station-
. i v

(U

ary, so it may be written as

¢ =" emagm (3.4)
and by the uniQuehesé of spectral representation we have |
| B, (6")dl (1) =L (M), (3.5)
and o
B, (e dF (W) By(e®) =EdL. (WAL (M. . (3.6)
But o

TE 4Dy @) =2 B,0(j—1) =0 for 1>0,
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$hus BEG+DE®) = BE 4D (2 Byy ) ) =0, 1>0
EE(t—DE@) = (BEDEE-D)) =0, 1>0,
From the above we see that £(¢) has spectral density —2—1;5— BE@)E®) and from (3.6)

we have

B9 0 By L BE@EW) = o (DBt (Bt )

0

n.o.n A
— o NN B,0( -1 Bu—==G,

27 0 :
Now @ is of full rank, so 1?,, (¢*) must be of full rank for every A€ [—w, w]. This
proves the lemma.
From the above proof we see that the spectral densﬁ;y of y(t) is

SO = By(e") Gy By(e) )", @D

And by Lemma 3.2, c'z‘,,(e"“) #0, for A€ [—m, «], we have
ﬁp(ei;g — [&p<3i7'> 5D<6M> _1], ﬁﬂ () 1= [&P@M)—l 1 _gp<eil? )/ ay(e™) ] '
0 1 0 1
Lemma 8.8. Under the same conditions as above, all zeros of a,(2) are oulside
the unit circle (or, all 26708 0 f detB,(2) are outside the unit circle).
Proof From Lemma 3.2 and (3.5) we have
1 1-by(e®)

o [£20)

v =] e B tan = ey |

For >0,

- @™ i 1 b iA
0=Ey(t)E@+1) = 2;]_ ¢ Gy () 1 [ o 2 (;:; >]G dn.
: 'p

Since @,>0, thus we can blotout@,, considering the (1, 1) th element of the above

equality, we obtain
j’w o c?,,(e”) “1dr=0,.1>0.
-

From this, we immediately infer that a,(2) ™ is analytic in [2{<<L and hence ﬁp(z)
has all its zeros outside the unit cirole. ’

Lemma 3.3, for the scalar case, is weoll-known, but in the case of two dimensions,
we have no available 1esu]t and it seerns to us that putting Gz (—1) ——O s(£0) =0, 1>
0, makes the proof easy.

Lemma 3.4. Suppose that

Cu® =) +0(@), 0D =7 +0(@), i) =) +0 @,
[} <max(p, 9) (3.8)
hold and suppose that ay;, bq, are the coefficients which are a priors bounded and at
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which the minimum én (1.20). is reached and p=p,, ¢=>qo. Put

Toa(2) =y (2)b0(2) =g (2) a0 (2)
this s a polynomial of order no——max(p +qo, q -+ po) with constant term 0. Then the

coefficients of Fp(2) are O(Qr).
Proof Put.

ay(2) = 21 pie!, be(2) = 2 bo?’, %pg(2) =0y (2)be(®) —b (2 ao () = Z Xﬂj
Q== (a‘pl: s %p) ; Go= (a01: . aop) b) (aOI—O: .7>p0)7
b= (bql: EP) Z;qq)’, b0= (-601; Tty qu)l, (bo,i=0, j>QO);
x=(%1) H) xﬂo)/; "p::(lpl) ) \bn—no>; |

where n=p+¢. We use Hannan’s transformation (see [1])

m“—"a{‘;ing]h:H - 3.9)

G, is of rank ny, G is of rank n—mny, since

2 2
r 1 - O _1 O A
bo1 1 —ay —1
. bot e, —aoy .'__1
G.= b 1 — @
0o bos — Qop,
boqul Ll ‘—aopot...
L O ' bOIIo O ) "aoz)o; Tho X
Y q

N, r ™

Tam Q) 10 e e o

=+
I
[=3
=

G2= ‘. ‘. . ‘e ° . . .
- O 1 .“01 .".. .%po 0 1 . .b01 'qu., (”—ﬂ;)x”o
One can see that every row of @ is orthogonal to any row of Gy, hence the linear
space {G4} spanned by the rows of G4 is orthogonal to the linear space {G} spanned
by the rows of (.

Put G*=H = (H.H,), where Hj is nxno matrix and Hs is nX (n—mnp) matrix.,
From GH =1I, one can see that {H:}={G:}, {Ha}={G:} and hence {H,} | {Hs},
where {H} is the linear space spanned by the columns of H i, 0=1, 2. » |

From the assumption of the model, it is obvious that A€ {H,} ={Gs} iff

(w(t); ) m(t'—p'i_l): 8@); ) 6(t—q+i>)h=0. o (3'10\

Denote
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[ 7.(D) 7:(0) e ye(l—p) ~72(0) o —ye(l—g))

2B Fe@=1) < 70 —ym(p=1) o velp—0)
'—7%(1) —-76{0(0) e _")’sm(l_p) 'Ys(o) b 76<1'—Q>

(e (@) —7a(@=1) 0 =ve(@=p)  ve(@=D) o 70 axensy
and Iy is obtained by erasing the first column of I"y,. Let
yi= (@) o —p+1) —e(®)—e(@E—g+IDhy, Y=(y1, -, ¥a))’, [y=HYY",
where A; is the jth eolumn of Hy. Then from (8.10), we have
H'I'yH=FE{Hy Hy) (w(t) -w(t—p+1) —e()—e(t—q+1)) @)
o(t—p+1) &(®)--e(t—g+1)) (Hs Ha)}
I'y 0 ‘ .
___[ k 0]° - | (3.11)
I’y is non-degenerate, because (y1, **+, 9,) is linearly inde;ﬁendent. Otherwise there
isa A= (Ay, *++Ay,)” such that
0=Y"A= (&) --2(—p+1) —e(@) —e(@E—g+1))HA,
From (8.10), HiA€ {Hs}, but {Hs} | {H4}, thus, there must be H;A=0 or A=0,
since rank H=mn,. '
Now we denote the quadratic form of RHS in (1.20) by ¢ (a, b) =0?(x, ¥).

Its minimum is reached at _
- | o ~ =G . ,
HESHEIEe

_ ' (E D) _ 80, P) , 2, D) »
0 o1 .o + oy oy % (3.12)

where x* is b%twe_e‘n 0 and %, and the first der_iv’a,tivé is an n—vector evaluated at

then we have

~ *

0\ ‘ '
(g) <or ( ~> ), the second derivative is an n X n matrix evaluated at <’:Z), but actually

it does not depend on ( i% |, since o2(x, ) is a quadratic form.

Denote by O}, the matrix which is obtained by erasing the first Tow of the
matrix of RHS in (1.20), denote by O,, the matrix which is obtained by erasing the

first column of O},. From (3.8) we have
. O;Q':F;q + (O(QT’)>nx(n—1), Opq=-rpq+ (O<QT))nxn. (3.13)

Su ) is the veotor s htht(o)'a(&—d”)’th
S ig or suc a ~ = , then
uppose 5 i © Voo _ J 5,
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1

30‘2(0, lZ) 6('1 5,) 30'm(0? 5) 2(-["0)H,0;q a ) » (3.14)

ox oy .
. (2 s

From (1.1), @()+ -+ 4o (t—p) — 8(£) — -+ = boge (b—g) =0 (nobicing that ae;=0, j
>o; boj=0, j>¢,). Multiply both sides of the equation by #(t—§), j=1, ---, p and

s(t—j), j=1, -+, ¢, then take expectationé,n we .'obta,in I'y | @ |=0 and from
. 1 . » ' S ., bo |
;(_3.13), 2(1,, 0) H'Ojp{ a0 |=(0(Qr))nxs- Combining this with (3.14), we obtain

bo
05 (0, & ,
.(3}6 H_sa, 0mo, (

5 bo )+ (O<QT)>7E0X1

"=2(I,,0 0)H'C,H (,J;).y(O(Qa’[,).)'n-o e '
(I, OVHT'gH (‘g>+'<o<czm>>m

0.0
Here the th1rd equahty is assured by (3. 13) and “%, b are a priori bounded”(so does

&

'—2<Ino O)( ¥ 0)( )"I'(O(QT))noxi (0<QT))nox1 (315)

2 Ino . | . - 3 . ’
" Again _3_28%66_,9_6_/& =2(1,, 0)H'O, H ( 0 ) =2I"y+ (O(Qr) ) poxns, then from (3.12),

(3.15) we have :
i= _111,—’1(0<QT>)11°X1= (O(Q1) Inexa.
This establishes the lemma.

Lemma 8.4 ILet ¢=p;0,( ]) Ow(f), O ( _7) in (1 20) are replaced by Ou(4),
Cu(9), C:(§) respectively, the mwmmwmg values Gy, by are a priori bounded and
correspondingly put x,,(z) a,,(z)bo(z) —b,(2)a0(2). Tken the coeﬁ‘iczents of 2o(2) are
0@Qr).

- The proof is the same as above.

Lemma 8.5. Suppose BR>p=>ry; a,,j, b,,; are @ priori bounded and T suﬁcfwntly
 large. Then a,(2) has all ils zeros outside and keeping away from the unit circle by a
fiwed distance if and only if 6 p(2) has the same properiies.

Proof Since

e ap(Z)bo(z) Fa(2)

&= 0@ )

where the coefficients of 2p(2)- are O(Qr), and by assumption that ao(z) and by(2)
. have their zer¢s outside unit circle, so if the zeros of a,(z) has the properties

mentioned in the lemma, then 3,,(z) has the same properties. The converse is true by
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considering a,(2) =£,(2) /bo(2) +8,(2)a0(2) /bo ().

. Now we carry on Whittle’s recursion (1.14)—(1.16) when G,>0 remains true.
From Lemmas 8.1—38.8, wo know that ,(z) have all their zeros outside the unit
circle, they are, say, 21, -+, 2. Then ,(z) = (L—2;%) -+ (1—2;%). But |z;%| <1, thus

all the coefficients of 4,(z) are a priori bounded, say, by max <P) In addition to
J

1<j<yp
that, we also check the zeros of @,(2) to assure that they keep away from the unit

circle by a fixed distance. As it was mentioned in the end of Section 1, we carry the
reoursion to s-th step, for every p, 0<p<(s. By Lemmas 3.4, 3.5, by(2) has all its
zeros outside and keep away from the unit cirole by a fixed distance and all its

coeflicients are bounded by max ( s)
_ i)

0<j<s
In the following, put &(¢) as in (1.18) with r replaced by s, then
5(1) =8.(2)8(2), 1<U<T;3(5) =0, otherwise. 8,(2) =as(2) /Be(z),  (3.16)
Agam as (2.9), we have
485(2) =84(2) — a0 () = (@e(2) bo(2) — bu(2)20(2) ) /Bo(2) B (2) ===x,,(z)/ Bo(2)ba(2).
By Lemma 3.4’ and the properties of zeros of by(z) and bs(z), one can see that the
- coefficients do; of 2/ in the expansion of da,(2) are dominated by p’O(Qr). Then the
same proof as in Lemma 2.2’ leads to (8.8).
As mentioned in Section.l, wo use &(t) defined in (8.18) to estimate o2, that is,
for each (p, ¢), 0<<p, ¢<s, we calculate |

&3, ~min -—2( S b= -2 bui-D), (3.17)
A3 w
under the bounded condition ‘
; |
max {|ay], Ibqj|}<max< ) (3.18)
p_:q,d ) . O0<j<s .7 ] .

This restriction is reasonable because, first, we require that
ay(2) %0, by(2) #0, |2[<1,

where 5p(z)=ﬁ Ay, Z,,(z)=é be#’ and @y, bg; minimize (8.1.7); secondly, from

(3.8) and the discussion in Section 2, one can see that a,,o(z)amo(z), be,(2)—>bo(2),
a. §., so (8.18) always holds for p=mpo,- 4=9o (for large T'), thus (3.18) do not rule
~ out the true order. We can abandon those (p, ¢), 0<<p, ¢<<s, for which some &,; or
ba; do not satisfy (8.18). Thus Lemma 8.4 holds. If (p, ¢) minimizes | }
BIO(p, 9)= ]nom+(p+q)1n1’/fl’ (3.19)

then (p, q) is our estimate of (po, go). We are now going to prove the main theorem
in the following.

~ Theorem 3.1. Let o(8) satisfy (1.1), (1. 2) and (1.3), and we derive (p, )
as above, then P—>po, §->Go a. 5. as T—>co.
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Proof As in the proof-of Theorem 8 in [2], for p<p, or ¢<qo,

hm 1nf{°'m+ <p+q> 1n T gpoqu (.p0+qo> In T }>O,

S0 we mus} have P=po, §=00. Now for D=0, 490

! [a()(8) — (Bo(e) ~F()I?

ll

-T— T

711_’— % [{%(Z> - (Eq(z) —1) &s(z>}w<t)]2 ‘

7}" é [{(@5(2) —Ba(2)a0(2)) +aio(2) — (By(2) —1) (Be(2) —aro(2))}5 (1)1
=L 3 [a@as) + Ba@b@ =) DR 5 ]! (8.20)

- bo(2)bs(2)

From Lemmas 3.4, 3.4 and b,(z), b,(2) has a priori bound, one can see that the
numerator of the second term (poljmomial) above has all its coefficients equaling
10 O(Qr), and the coefficient of 2° is zero by the definition of Z,,(z) and £:(z) or
b4(2). Again because of (1.3) and all zeros of b.(2) are outside and keep away from
the unit oircle by fixed distance, the second term can be written as {O(Qr) X

2 ¢ (t—1—3)}, where ¢; (random sequence) satisfies || <o uniformly in 7, 0< P

* <1. Denote oal(z)a;(t) =5(4), then for a fixed constant m>0, we have

{ 0(Qr) uniformly in f, 0<i<m InT, .
= Ne®a(t—1) = v : o (3.21)
T4 0(—1%7-11 ’ uniformly in, 0<7, -

In fact, the left hand side of (3.21) is _
A ] oo T A '. A o . )
73 Bad-Nati-1)= Se 1 [aG—-NEt-1) =3 0.1

t=1j
= %w')’«:(j —1) +§) o3 ANOy(§—1) =’,§)“540w(j—z> .
Here we notice that i 0;775(§—1) =75 (1) =0. Using the same technique as in Lemma,
i=o _

2.2, (8.21) follows. The uniformity can be seen from the proof of that lemma.
Thus

M= ~M=
N
® 1
~
N2
+
o
N
g
M
o
8>
VY
|..:.

1
3.
~

\/

+0(Q) ;§¢j¢z—ft=21m(t~l.—~j)é(t——1—l)c (3.22)

Beocause |¢;| <p?, by a suitable choice of m, we can make

>t |l <T,

j=m InT
thus from (8.21), one can see that
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and the second term of RHS in (3. 21) is O(Q7). The third term of RHS in (8.22)

g@%—, $ sEG—1-P="3 '"4’";% Y

is also O(Q2) by noticing that |[0,(0) | <C,(0)—>y,(0) a. s. and fgb,] decreases expo- -

nenocially. Thus we have, at last,

lnlnT> (ZH'Q)]-T-‘T s>p>p0, §=q¢ =>4,

BIO(p, ) =7 B30 +0(25
which is minimized at p Po, 9= qo for sufﬁolent large T'. Tha.t establishes the

theorem.
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