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THE TRANSFORMATION OPERATOR I OF
NONLINEAR EVOLUTION EQUATIONS

OnHEN DENGYUAN (Jk Bi)* ZENG YUNBO (¥ i)™

Abstract -

In this paper, the equivalence of two classes of nonlinear evolution equations is proved

by introducing the transformation operator § and its inverse operator 8- By.the trans-

| formation operator §, some properties of one class of these equations, such as the infinite

; number of conserved quaﬁtities, Bicklund transformations, ete, are deduced from the
| corresponding known properties of its equivalent class. |

§ 1. Introduction

Associated with the eigenvalue problem

s ’ ! »
Po=M'y, M’=< @5, ! > ¢'=(¢,1 ) 1.1)
| 4 2 -
one can get a class of nonlinear evolution equations™ _
A n ’ nei / '
(%) -2:{ Bz (1)+ Srwwe (7)), 1.2
T 7=0 v, ST :

where

: ’ : _D';é /I ’ 2 /I ’
t-ge{po-a(! )16, ~0)= (7T 0 M ) s

2¢ T ~2¢'Iy"  D+2¢'1q
~1 0\ - |
o] 1.4
7 ( 01 ) S -4
D is differential operator and I is integral operator, i. e.
I= ru-dm, and DI=ID= 1, (1.5)
o ;
Associated with the eigenvalue problem
- [~ &g (9
oomttp, =T ) (M), e
v r Po ,

one can get a olass of nonlinear evolution equations™ -
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T t
where
1 (4 { [~D—iglrD  —iglgD
L=—~{Do— I D)=— 1.8
2@( ’ ”<¢> (r, 0) ) 2@( —ireD  D—irigp) ¥
Inf2], it is proved that the transformation
A K2 gA s ~ ‘
o=Tp, T=| 2 A=eg2 ¥ (1.9)
| 0 At
maps the eigenvalue problem (1.6) into the eigenvalue prbblem (1.1), and the
potentials satisfy the following relations |

g = (% %0+ % q“"r>, v =A"r, (1.10)

It i8 natural to ask whether the solutions of two classes of nonlinear evolution
oquation (1.2), (1.7) associated with the eigenvalue problems (1.1) and (1.6)
satisfy the transformation (1.10), and can some properties of the eqﬁation a.m,
such as the infinite number of conserved quantities, Biocklund transformation ete be
derived from the corresponding properties of the equation (1.2)? The first problem
has been considered in [1]. In this paper we give an exact answer by introducing ‘the
transformation operator S of the operators I/ and L. |

§ 2. The Transformation Operator

Unless otherwise specified, it is always assumed in the following that functions
(¢/, ") and (g, r) have continuous derivatives of any possible order which ocour in
equation (1.2) and equation (1.7) respectively and they have all asymptotic
behavior O(|x|™2™®) (&>0) when z—>co. For convenience we simply say that
(¢, ') and (g, r) satisfy the fundamental condition &

Now we define the transformation operator of the operators L and L/, rewrite
transformation (1.10) in matrix form

’ _@f_ 2 __1_ 2.9 . _
(q,>= 2+ P T <q) - 2.1)
Ar \ o 9,-2 T .

—~?\,2D el A«Q 2] )
. 0 }\'—2
then the expression (2.1) can be written Simply

Set
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(g:>=3 (q>. - (2.8)
r T

One can easily prove that if (¢, ») satisfies the fundamental condition &, then
(¢/, »") defined by transformation (2.8) will satisfy the fundamental condition &
00, and the following equalities will hold

sE-Ce-EE e

g <wq+19)=(w9'>. o (2.5)

@r oy’
Moreover, we have also the equality

2¢38LI<9t >=< q;>. (2.6)

Ty — 1}

2SLI ( Z: )= S(-aw(g) I(r,“q).)( z: ) |

using formula (2.4), we have

i 1 , o
Saep —L e
%SLI (g">= 2 e )(gt)+q:<q,>I(qr),-l——x-z—z—(q)(qw):.
Tt . 0 S Ty, T . 0

Paying attention to the transformation (1.10), one gets the formula (2.6)

immediatly _
}‘2 ?\'-—-2/ +' /I !

%SLI(%):( (A7) ig ,<qr>t>=< qf)-
U —T: 1

In fact

At last, we prove the fundamental relation between the operators L and L'
Theorem 1. Let the operators L and I/ be ewpressed by (1.8) and (1.8)

respectively, and let the potentials (¢, v") and (g, r) satisfy the transformation
(1.10), then :

I'S=8L, : 2.7)
FProof |
K 1
. ! 22D — A\2g?
- gefpo-af e, o377 1)
v r 0 A2
% ppep — L pasge /
=’i' 2 o 4 ! —-’I;<g/>1</)‘D’ _qw> ’

20 0 Di-* r

using the relations

DD =A2D*~ikigrD, - Dig= — L12¢D+igg,

DA?=A"2D+iqr’, q,=Dg—gD,
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weo have

% |

0 aqr’

(1) 1 00-1(7)c0
r . r

=L )ope—2L sl ¢ i ¢ |
. 5 {SDG 5 M (0><"" ¢)D '&(T,)I(r, Q)D}.,
Paying attention to formula (2.4), we get the relation (2.7)
L’S=_L{Spo——fzs(q> I(r, q)D}=SL,
2% : r

Hereafter, the operator § is called the transformation operator from I/ to L.
From the formula (2.7), it is easily seen that for any positive integer n and
polynomial P(z) there are - ‘ ' ' _
| 1/"S =8I, - (2.8)
PIHN8=8SP(L), S (2.9)

§ 3. Inverse Transformation Operator

It is easy to verify that

| 2% IN-2 ____’{3_ 2,9 '
S‘1=< 5 I\ 5 I?»q) (3.1)

R o
is a right inverse operator of 8, i. e. . _ ‘
o o STS=e, (32)
where ¢ is the 2% 2 unit matrix. Moreover if ID=—1, then 8- is a loft inverse
operator of S, 1. e. _ v . '
. 88t=e, (3.3)

Now, we prove that this inverse operator S~' is defined uniquely by the
potentials (¢, 7’), if given functions (¢’, #) satisfy the conditions

j:l (1+y) ¢ (y, 3) |dy<oo,

[T1a+rer@, o lay<e. (3.4)
z
By the method of successive approximations one can prove that there is only one
solution (ps, @2) of the equation (1.1) with £=0 and the boundary condition
(¢1; 9”9)'_)(0; 1); (m——>oo).
Set : : S
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= — gy, r=r'p7?, | ' (8.5)
we can verify easily that the given funotions (¢/, ) and the functions (g, ) defined
by (3.5) satisfy the equation (1.10) and (g, r) tend to (0, 0) as a—>co.

If there is another set of functions (¢, ) which sa,tlsfy the equatlon (1.10). and
tend to (0, 0) When a#—>co, then we set ' :

¢1=—;—exp<2 Iqr)q, Pa= exp( _EIW) (3 6)
thus get easily that (@i, @a) satisfied the eigenvalue problem (1.1) Wlth §=0 and
tend to (0, 1) when a—>c0, According to the uniqueness, we have ¢1——¢1, ¢2—¢2, ‘thus
g g, 7=r. So we have proved following theorem. . : .

- Theorem 2. If poteniials (¢, ') which swmsfy the conditions (3 4) wre gwen
and (p1, @) 8 @ set of solutions of the eigenvalue problem (1.1) with £=0 under
boundary condition (p1, p2)—>(0, 1) as w—>o0., . then unique soZu’tion (g, v) of the
equation (1.10) can be expressed by (3.5) and the inverse opemtor 8~ of the tmnsfoa"—
mation operator S can be empressed by implicit form o f the functwns (g’ ") :

By inverse operator formulae (2.8), (2.5) and (2 6) can be written ag follows

(q>=8"1( ) e
r r : . ’ .

<{I}g + Q> —g-1 ( mq,>, | (3 . 8)
q: i ey —qt .
: =-_—- DI~*8-1 , , 3.9
( Tt > 2 < r Q) ®-9)
where L~ ig the inverse operator which reads o
. q AI—dlqly ilqlq
Lt=2i|—ol+3l I(— =2 : 3.10°
%( i <—q~> (=, q>> '&( iIrlr  —I—ilrlq)’ (8.10)
i. e. LL*=L"*L=e, (3.11)
It is easily proved that S~ is the transformation operator from L to I/, i. e.
LS-1=8"L/, : - (3.12)

In faot multiplying the operator S~ from the left and from. the right, respec-
fively, in the transformation relation (2.9), we get this formula immediately.

Thus we also have _ A '
' LrS—*=8-L", : (3.13)

P(L)S-1=8-P(L), | (3.14)
where n is arbitrary positive integer. P (z) is a polynomial of 2

§ 4. The Equivalence of the Equation (1.2) and
the Equation (1.7)

Aftor the properties of the trantformation operator and its inverse transforma-
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. tion operator have been explained we begin to discuss the relations of the solution
of nonlinear evolution equations (1.2) and (1.7).

Theorem 8. The nonlinear evolution equations (1.2) and (1.7) are equivalence
under the transformation (1. 10), . 6. of (q, v) 4s a set of solutions of the equation
(1.7), then a set of fwncmons (¢, r') defined by (1 10) 4s solution of the equation
1.2). :
Conversely, zf (g, ) is & solumon of the equamon (1.2), then a set of functwns
(q, r) solved from (1.10) is @ solution of the equation (1. 7.

Proof Suppose (g, r) belongs to & and is a solution of the equation (1.7 ).
Then (¢', r') defined by (2.8) belong to & too. Multiplying the operator —258LI in
both sides of (1.7), using the formula (2.8) the right hand side of (1.7) turn into

rignt sido=3: { Sy 545 € ) +au 05 ! )+ S 2 (“q;“’)}.

Paymg atbention - to the formulae (2. 3), (2.5) and (2.6), it is just the equa.tmn
(1.2). So we “have proved that the set of functions (¢, ') defined by (. 10) is a

solution of equation (1.2). ,
Conversely, if (¢, ") belongs to & and is a solution of the equation (1.2), then
the function expressed by (3.5) belongs to & too™'. From Theorem 2 we know that

inverse operators 8~ and L~ exist. By multiplying the operator -2%~ DL %8t in hoth
sides of the equation (1.2) and using the formula (3.13), the right side turns into
f—1 !
right side=D >} a;(¢) L8~ ( 1 >
. =0 r’
I

i (8) DL-iS~1<
w’l’

/
>+D zkj@)L"—J—is- ( " )
Paying attention to the formulae (3.7), (3.8), and .(3.9), it is just the equation
(1.'7). So we have proved that the functions (¢, r) which defined by (8.5) is the set
of equations (1.7). :

§ 5. Conserved Quantities

When &;(£) =0, =0, the equations (1.2) and (1.7) reduce to that

('*g'f')=2¢ 3% ay (1) L/ ( ? ) (.1)
'rt i=0 : .7' .
. 9q -, —q
( ) =D Ea () L ( )+2wn(t)( ) (5.2)
T r

1% is known that the (5.1) has an infinite number of conserved qudntities
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oo (({) (2o wrn o
—co r ar

where

0 ~1\ /[fw\ [u |
0‘2'—“(1 0)’ <( ®1>, <'v2 >)=u1us+w1vg. (5'4>,

In order to derive an infinite number of conserved quantities of evolution

equation (5.2) by transformation operator S from formulae (5.3) we mention the

following definition.
If functions (¢/, »") and (g, r) have continuous derivatives of any possible order
which ocour in equation (5.1) and equation (5.2) respectively, and if they have all

asymptotic behavior O(|#|™**) when lwlﬁw, then (¢’, 7) and (g, r) are considered

satisfying the fundamental condition %,

Since (5.1) and (5.2) are equivalent equations under the transformation
(1.10),' we see that when (¢/, ) is a sebt of the solutions of equation (5.1) and
satisfy condition .#, the functions (¢, r) defined by transformation (2.3) must be
the solution of equation (5.2) and satisfy condition #, and vice versa.

Tt is easily seon from (2.8), (2.5) and (2.8) that the quantities

w , +]
o= (8(7) st 7)o
—c0 ' xr

(D) iotrn (2 Y)ta 1,2, 5.5
—oo\\ ar :

are independent of ¢. It means that Op(m=1, 2, +--) are the conserved quantities of
(6.2).
By considering the formula,

r=—s Jde (5.
j‘°°<8(’vi>’ O-QS(%))@ 2j‘°°(<0 _1><’01>) =D 0/\ v a;» 6.6
and the condition lim(g, ) =0, (5.5) can be rewritten as follows

l@]—ee

—00

Qm._:_l_r ((”'),.DLm(wq“q))dw (m=1, 2, ). BT

24 q ar
By the way, (5.2) has still a conserved quantity besides (B.7), that ig

Co=|” r@a(@)da,

§ 6. Backlund Trahsformation's.

The Bicklund transformations™ which connect two setes of potentials (¢, +')
and (g, r) that satisfy the same equation (5.1) are
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NEi N
lixAJ<¢,>+11&A><;,>=Q ' 6.1)
with
H.@ =9() Ff @0,
g(z) and f(2) are two arbitrary entire functions and
A=t ~D—~¢'Ir'—¢'Ir'"  §I¢+q'17 )
2,2, —’?IT’—O"’I;, v D+?II§I+¢IIQI
\ 0 Al I r
=1L,+_1_L, 1( . . (¢—4"I(q q))
N 2 = I@ =) 0
1 - 1 -9
L +—2-L +—2; n <,r,_;,),

The operator 7 deﬁned as follows

(9)-(5, "9

Substituting the following equations

. ’. a ~ ~ _ .
(2)-5(2) (%)-s(%) | (6.9
r ) r r Y :
into (6.1), we get the Bicklund transformations of (5.2). By the transformation

operator, they can be written in explicit form. Actually, 4’ may be expressed in
terms of (g, ) and (g, 7), by means of (6.3) and (2.7), as follows

L ora, 1graa, 1 7\ q(4 »

A—2SL;§' +7§LS +—2—,5—n<5’<¢>' S’(r>> | (6.4)

- Heré we use the notation 4 instead A’. It is then clear that the equations
H+(/1)S(j_)+ﬂ_(/1)§<q;>=0 6.5)

are the Bécklund transformations of (5.2). In fact, if two pairs of potentials (g, r)
“and (g, 7) are related by (6.5), and (g, r) satisfies the (5.2) , then (¢/, ') and
(¢, ™) obtained from (6.3) satisfy the eq uation (6.1), and (¢, ') is a solution of
' (5.1). This implies that (¢, 7') is also a solution of (5.1). We may therefore
~ conclude that (g, ) satisfies the equation. (5.2).

| § 7. An Important Property of L

‘When (¢, 7') satisfies the fundamental condition #, the opera,-tor I/ satisfies™

f" (( q ) 'iagL'm( q:,>>dw=o (m=0, 1, -+, (7.1)
o0 r r i .

From (7.1), (2.3) and (2.8), it yields
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j:(s (:’) '50281}’"<i))dw=0 (m=0,1, ), (7.2)
Using (6.6), (7.2) and lliﬂaw(q; r) =0, we have‘ A
r <(“’> DLm(q>>dw=O (m=0, 1, -). @3
J-=\\ ¢ r _

§ 8. Equation (5.2) is NLPDE

()25 )

It is known that™ the @, R, do not contain any integral expression of ¢’ and

We put

¢’, instead, being expressed only in terms of products r and ¢ and of their
derivatives. By virtue of the definition of L/ and (1.10), one concludes(by recursion)

that | A | _ o
n q/ — Q1 —_ 7“2Q2 | . '
(0 )-bee) &

where Q. and R, are polynomials of r, ¢ and their sucoessive derivatives. Using
(2.8), (2.8) and (8.1), we have

AN AQs | : -
ST (T>..<K_2Rz>, BENCYS

From (8.2) and (8.1), it yields

e i g
R r A .R2 | .DRg

This shows that @ and R are polynomials of ¢, r and their successive derivatives i. e.,
the eq. (5.2) is a NLPDE.

§ 9. Hamiltonian Structure

For every real &, we define the following matrix solutions @', ¥” and @, ¥ for
(1.1) and (1.6), respectively, with the boundary conditions |

. - : o :
o (Pr Pr e 0
7= (?’2 ?9?'2) z—>— ¢°>< 0 - eifx)’ 9.1)

W,=<¢f @’1) <0_ em) |
Ph Ph) e\ 0 )
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o (" @1 N A ©.2)
\pa @ajo>—\ 0 —¢fo) : .
7 (4‘.1 $1) 0 i .
‘ Pa o) @\ 0 )
_ 1 :
P\ gl o1 @1 0
¢ B)eafr 2 )
APz P2/ P2 Pa 0 A
Do 2f q(w)r(a:)dm . (93)

P l/11>=T <¢'1 '#'1) ' 9.4
<¢"2 —’l;lz 2 @2 ’ ( )

From (1.9), we have

o~

This yields eagily™
dE, ) =0, D),
. 0

€, 0= b, 0. @)
From (9.8), (9.4), (9.5), -(176) and (2.2), we get
_ ¢’ﬂff’1 [ by .
a o a :
'3 =8 . - (9.6)

90’2 ‘Hz 9024'2

Using (9.6), (3.2), (3.7) and the following expa,nsmn[‘”

‘Pi\h
. a’ 1 . 1 . q/‘
pabs AT <¢> .7
a .
we obtain
_ by
¢ 131 ,.(9 _
o[ w2 (]) @9
£ |

Moreover, we have™ .
dInd _ gy dInd <P’1¢’1

dq’ a & a
By virtue of the difference between (1.1) and (1.6), it is easﬂy seen that
dInag Q’z‘pz dIna _ pufy
5 q ‘ g 2 8 r a L] (9 . 9)
But™® ' f
]na ~ = E .fm“ bl | (9.10)

from (9.5) and (9.10) ,' we have
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Ina~— 3 (9.11)

=N
where the sequence {Cp}m-o are conserved quantities of (5.2),
Using (9.8), (9.9) and (9.11), we get _
30

q : | or
L . %2zgrad,,q0m=2z 50, R

dq

()-oguom()
Tt ‘ r

n—~1 .
( 2 )=2’I/D 2 o; (t> radr,qlon—i--l)
r: | i=0 . )

Therefore, if
then

and the Hamiltonian is
" op~1
H=24 jEO (27} (t) C, —f=1,

The authors are grateful to Professor Li Yishen for useful instructions.
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