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COMPARISON OF INHOMOGENEQUS POISSON
PROCESSES
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Abstract

This note illustrates the use of various partial orderings for point processes by
comparing inhomogeneous Poisson processes, and studies the relationships among these
orderings mainly in the case of inhomogeneous Poisson processes. Whitt has detailed several
definitions of partial orderings which have been applied mainly to renewal processes (see, 6.
g., Whitt [14] and Miller[4]) and semi-Markov processs ’(see, 8. g., Sonderman [10]).

§ 1. Introduction

Oomiparisons of random pro'cesses are useful in applied probability théor‘y. Twe
particular, these comparisons are often useful in.providing bounds and approxima-
tions for intractable systems. So far, most work on comparing point processes. e. g.
[4, 10, 147, have been devoted to comparing renewal processes and semi-Markov

processes. Stoyan®%12 gimply gave definition and a few examples on comparison of

point processes. Miller™ and Sonderman™® focused on renewal processes and semi-
Markov processes respectlvely In [14] Whitt introduced several partial orderings.
for point processes, and then studied the comparison mainly of renewal processes.

It seems desirable to study the comparison of inhoﬁaogeneous Poisson processes in
detail because such a process is not in general a renewal process and because this
kind of point pi*ocess is important in both theory and practice. In this paper we first
illustrate various partial orderings of point processes which have been applied mainly.
to renewal processes [4], [14] and semi-Markov processes [10], and discuss their
relationship in the case of inhomogeneous Poisson processes. Then some questions.

concerning both limit operation and ordei'ing are studied briefly. Finally, on the
basis of results for inhomogeneous Poisson processes, we obtain two results concermng- '

the comparison of compound Poisson processes.

 Woe introduce the following notation.
Lot N={N(¢), =0} be a coun’mng process on [0 00) where N (t) denotes the.
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number of points occuring in the interval (0, ¢] for this process (assume that Pr
{N(0) =0} =1, i. e., the probability that no point occurs at =0 is equal t0 1). And
let T={T(n), n=>0} be the sequence of occurrence times associated with N, where

T (n) =inf {s>0: N (s)>n}, n>1 (1.1)
with 7(0) =0 and 7'(n) =oo if N(t)<n for all 0. Obviously
0=T(0)<T (1) <T(2) <---, | o @e).

Let L(N) denote the probability law of the random process N on the space of its
- sample paths. ' 4
In this paper, a counting process N={N (%), O<t<00} is called a (1nh0moge~
neous) Poisson process if
(i) N has independent inci'ements and
(ii) for any ¢>s>0, the 1ncrement N(s, ]=N(t)—N (s) is Poisson distributed
with parameter A(t) A(s), i. e.,
Pr{N (s, t]=n}=(n!) 1[/1(t) — A(s)]"exp{—[A(#)—A(s)]} for n=>0,
where A (%) is a nonnegative nondecreasing right—continuous function of ¢. If A(%)
is confinuous, the process N is said t0 be simple or orderly. We call A(¢) the
- accumulative mean or expectation function of the process N because
EN (s, t]=A4(8)—A(s).
- If A@t) is.differentiable and its derivaiive is A(¢), then A(#) can be expressed as

A(#) = ﬁh(u)du,

and A={A(¢); t=0} is called the intensity of the process N.

It is known, see, o. g., Snyder™ or Miller™, that if N is an inhomogeneous
Poisson process with intensity A, then for any #>5>0 the conditional joint distrib
ution of occurence times 7' (N'(s)+1), T(N(s)+2), -+, T(N (s) +£k), given N (s,6] = |
k, is the same as the distribution of the order statistics of n independent identically
distributed random variables with the common distribution function (A4 (w) —A(s))/
(A()—A(s)) on (s; £], s<u<t, and the density of this conditional joint distribution
is

Fet(tsy b, ~~~,-tklk>=k!ﬁg M) / (A~ A, s<ty <o <t<t,  (1.3)

§ 2 Monotonicity of inhomogeneous Poisson processes

At first, following Whitt B4 ‘we introduce five different partml ordermgs for
counting processes as follows.

Definition 1. For two counting processes Ny cmdiNg,

(1) Ni<;Ny means that the conditional distribution Pr{T (N (¢)+1)~t<w|N(s),
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0<Cs<<t}, which is the distribution fmtion of the forward recurrence time at condi—
ttonal on the entire h/iétory_ of N; up to t, have failure rate y;,(w, t) for each t and ¢=1, 2
(almost surely with respect to N.), and for some A(%) the fuilure rate ;(w, t) for 4=1
(4=2) ds bounded above (below) by A(2) for each $=0.

(2) N1<icNa means that there emist two processes Ny and Ny on a common
probability space with associated occurrence time sequences Ty and Ty such that L(N;)=
L(N,) for each ¢ and ‘ - :
(@), T2@), ~3S{Ts ), Ta@), -} (2.1)
Sfor all sample paths. o '

(8) N:1<iyuNs means that there ewist two processes Ny and N, on & common
probability space such that L(N;) =L(N;) for each ¢ and

Ty (n) = Ti(n—1)>Ta(n) — Fa(n—1) (2.2)
Jor all n=1 and all sample paths. '
(4) Ni< N2 means that there ewist two processes N, and Ny on @ common

" probability space such that L(N ;) ———_L(ﬁ ;) for each i and

F<F@ (2.8)
Jor all t=0 and all sample paths. ' | '
(B) N1i<iNs means that
Pr{N,(?) >o}<Pr{N,() >} (2.4)

JSor all @.and 3.

Remark 1. Recall that a nonnegative random variable has a failure rate y(¢)
if its distribution function F (#) is absolutely continuous with respect to Lebesgue
measure (a counting measure) and has a density (a probabilify mass function) f(¢),
then r(¢)=f(¢)/(1—F(¢)) for all ¢such that F(¢)<1, see, e. g., Barlow and
Proschan [1]. :

The failure rate y(¢) as well as the densi’uy f() is defined uniquely, neglecting
values on a null set with respect to Lebesgue measure. Therefore, e. g., in the defi
nition of N;<;N, the condition of boundedness may be restated more exactly as.
follows: For some A(#) the failure rate 7:(w, ¢) for =1 (=2) is bounded above
(below) by A(#) for each ¢>0 and almost all . Because two failure rates which are.
equal almost everywhere correspond to the same distribution function, we may
identify statistically such two failure rates, and so we do not mention the words:
“almost all” or “almost everywhere” repeatedly in similar situations for simpliocity
and clarity, but we have to bear-this remark in mind.

Remark 2. On talking about the orderings of random processes, an extension
of a result of Strassen which shows that the stochastic order of all finite dimensional
distributions of two random processes is equivalent to the possibility to construct two
stochastically equivalent processes being compared on a common probability space so
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that each sample paths of one proocess lies below the corresponding sample path of the
other process plays an important role, see, o. g. Kamal, Krengel and O’Brien™ or
Sonderman®™, . _

Remark 3. As Whitt"* notes, we use the term ‘partial ordering’ loosely. The
ordering <; is not reflexive. The ordering <, is not antisymmetric, and the quasi-
Poisson processes of Szasz™® afford a simple example illustrating this fact.

Remark 4. Whitt™¥ added the requirement that for each t>>0 and all sample

paths . _. ' : :
N ~Nu(t)<N.(8) - Ny (2) - (2.5)

t0 the definition of the ordering N;<(inolVa. It should be pointed out that (2.5) is not
" necessary for counting processes.. Notmg (1.1) and (1.2) we are able to see that
(2.5) is automatically satisfied Whl].e (2.1) holds in this case. However, (2.5)
should be added for comparing marked point processes which will be concerned with
below. S | .

Now, turn to discussion of the relationships among various orderings in
Definition. 1. f | ‘
Theorem 1. For general point proceéses Ny and N,

Ni< NN 1 <inoeNeDN1 < No=>N1<alVa
Ni<uulNs=>N1<.s,
fO')" renewal processes Ny and N,
N1<fN2=9N1<ch2=>N1<»intNa¢=>N1<}&N2(ﬂ)N1<dN2)

where “=" means “Go imply” and “C” means “equivalent to”.

and

This theorem without proof can be found in [14], here we just point out the-
following examples as a supplementary explanation. .

The example gi\ren in Sohmidt ™ shows that the ordering <, does not imply
the ordering <. Furthermore, the quési-]?oisson processes of Szasz M¥ is also able
to provide an example which. indicates the order_ing <4 does not imply the other
orderings.

In [2] Daley gave two examples. One of them illustrates that N, 1\fN 2 may be
false while N1<4lVs, where N, and N, both are doubly stochastic Poisson processes.
The another indicates that N;<,Ng does not imply Ny<;;Ns, where N is a renewal
process and Ny is an a,lternaﬁng renewal process. » .

" By defining the occurrence time sequences I'y and T’y directly, it is easy to
construct examples which show the ordering <, and the ordering <(;, do notimply
each other for general point processes.

The .ordering <; is the strongest among five orderings. Let N; be a renewal
proocess associated with interarrival time X; which has failure rate Y, () for i=1, 2.
Whitt (Theorem 2 of [14]) pointed out the following results:
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(1) N;<;N, if and only if in(f va(t) >sup v1(£);
t> i

(2) Ni<wslNs if and only if P(X;>0)<P(X,>e) for all o.
From this result it can be seen that the ordering < is strongest.
However, we have a very nice result in the case of homogeneous processes.
Theorem 2. For homogeneous Poisson processs all five orderings in Deﬁmmon 1
are equwwlent
The conclusion of Theorem 2 follows 1mmed1ately from the fact that a homo-
geneous Poisson process is defined statistically by its constant intensity A. But, this
conclusion is false for inhomogeneous Poisson prooesses, -moreovef, in this case the .
results for renewal proaesses in Theorem 1 are not available because an inhomoge-
neous Poisson process in general is not & renewal process. Henoce we have to study
how the orderings are related for mhomogeneous Poisson. processes.
We first introduce the following orderings < and, s which seem to be more
natural in the case of 1nhomogeneous point processes.
Definition 2. For two counting point processes N 1 and N,
(1) Ni<,N. means that there. ewist two. pfrocesses N 1 and Ns on a common
| probabiléty space such that L(N,;)= L(N N.) for each i and. o
- N, 4] N A ‘ (2.6)
for all t>s=>0 and all sample paths. o
Q) N:1<uNs means that for all & and all t>s=>0 _
Pr{N.(s, 1]1>a}<Pr{Na(s, £1>0}. ' @.7)
Note that the relations (2.1) and (2.5) may be specified as follows: Every jump
in N, is also a jump in N, and its size in Ny is at most as large as in N, for all
~ sample paiths, in other words, the inequality '
N, t+di]<Na(t, t+di] (2.1)
holds for all ¢ and all sample paths. Obviously, (2.1) is equlva,lent to (2.6), i. o,
Ni<N, is identical-with N 1 <¢noV 2+
Theorem 8. ILet Nyand Ny be two inkomogeneous Poisson processes wite intensities
Ay and Ay respectively, then N1<;Ns if and only if
sup M) < mf Ao (D).

Pqﬂoof ‘For an 1nhomogeneous Poisson prooess the fallure rate of the condit-
tonal distribution Pr{T (¥ (¢) +1) —i<a|N(s), 0<s< £} is equal to

A(i-l’—w)e;zp {——ﬁw ?\,(u)du}
7G, 2= 1—(1—exp{-—£+m h(u)du})

for all o and all §. By the definition of the ordermg <y we paxtioularly have
71(0, @) <7\'(O><’)’2(0 9’)

=?\.(t+a¢) o (2.8)
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for all #, where ?u(O) is some real number, so
sup M) < 1nf A (@)

On the other hand, if _
R =0 ) =0
holds, then
sup 71 (¢, @)<inf y:(¢, @)
. x>0 x>0
for all ¢ because
sup 1 (¢, @) =sup M (E+2) <sup A (@) < inf Ay (o) <inf Ay (t+2)
x>0 @=>0 >0 @=0 . w>0

<inf (¢, @)
x>0

for all £>0, so we are able o find some A (#) such that A (¢ @) <A(£) <Aa(f, @) for
all £, i. e., N;<;N,. -
Theorem &. Let N, and Na be two inhomogencous Poisson processes with intensi—
ties Ay and Ag respectively, then |
: Ni<ulN2&N 1< st 21 g,
Proof We first prove that Ni<gNo=>A1<MAg. In fact, from Pr{N,(s, ] >0} <<
Pr{N,(s, t]>0} for all £>s=0 follows that

l—eXp.{—.-Jt hi(u)du}<1—exp{—y ?\.z(u)du} for all 0<<s<¢,
8 ' s .
then S
¢ ¢
f M(u’)du<j. Ao () du for all 0<<s<t.
8 8

Tt is equivalent to Ay (£) <Aq(£) for all £=0.

To complete the proof, we have 10 prove that Ay <<he=>N;<i0oVa. For this end we
show that NV can be consiruoted by thinning N,, i. e., lot Tp= {Tz (D), Ta(2), -}
be the ocourrence fime sequence associated with N,, it is possible fo construct an
inhomogeneous Poisson prooess N; on the same probability space such that L(Ny) =
L(N,) and the ocourrence time sequence Ty = {7, (1), T(2), -} associated with ¥,
is a subsequence of Ty. Indeed, we may construct Ty = {T; (1), F1(2),--+} by thinning
(removing) the points Ta(n), n=1, 2, «--, with probability 1%7»1(T2 (1)) /A2 (Ta(n))
in sequence. Obviously, the sequence 7' obtained by thinning T, is a subsequence of

T, and the thinning of the points Ta(n), n=1,-2, -+, are independent mutually.

For any fixed {>>s>0, we first consider the probability
P, =Pr{N,(s, t]= 0|S<T2(N2(3) +1) =<5 <STy (Vo (s) +k) =1y
Na(s, t] =k},
Aceordmg to the rule of thinning
P {H(l Ai(t)/kg(t)), for k>1,
0k~

= 29
1, for & VO, '
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Then, by (1.8) and (2.9) it follows tha
Pr{N.(s, ¢] =O} = i Pr{Ni(s, t]1=0, Na(s, t]1 =k}

=oxp{—[4:(§) — A2<s>3}+2j P f3Ct, =, tlh)

s<h<ly<t
XPr{lNa(s, 1] =k}diy---dty |
- eXp{ [A2 (t) A2 (s )J } + 2 js<t;< <ly<t g(l B i\l\; g% >k ' f[ ?\‘2 <t)

X exp{— [Aa(t) — Ag(S)]}[.Ag(t) — Ao () 1%/ ket dby -y, .
—op{~ 4O -4OD+F] @ -u@]

8y, P

Aa(t) — Ay
exp{ L ]E') (1 Aty dsz,

By symmetry the last sum equals |
i U': (Ma(u) —?\,1(%) Ydu ]7‘ exp{— [Aglgt') —A3(s)71}

- EIZGER RO I GERHCI YR VRO — 41}

= (oxp{[4a(¥) =42 ()] — [41(8) = 42 ()1} — 1)6XP{ [4a() —4a(8)1},

hence
Pr({Ni(s £] =0} —=exp{— [A:L(t) /11(3)]}
Secondly, for any m=>1 '

Pr{f,(s, t]=m}_§ Pr{f.(s, t]=m, Na(s, £]1~k}

]

PI{N;L(S t] ml8<T2<Ng<S> +1)-—-t1\

‘k=m j‘s<t1< LSt
<To(Na(s) +k) =1,<t, Na(s, t]=Fk} |
XfE (b1, o+, b E)P{Na(s, t] =F}dty- - -dty,

— j- Ay (%)
K= J s<ty<m byt Wbng, s tng) iy e Ao (tn,)
E—m A (f/ )
x (1__ 1\ Yny
H 7\'2 (tnj)

J=1
tn € vy e\ {ny, s T}

X BT - oxp(— [ () ~ 4,91}

% [As (%) }c"'/]-z (8)1* dﬁ. «dity,

where 57 denotes the summation over all combinations of £,,, -, #,, out of 7,

WEnys s trry)

o+, 3. By using symmetry again it follows that

e, Qe AT il [ e e ]

X exp{—Aa(t) = 42(s)1}/k!

L) 4
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n=.—1_.{ i {45 () ‘“‘AQ(S)] — [A:(E) — A;(8)] 3™
m! k=m (k_M) !

¢ TAx (8) — As (s)]exp {— [a (£) — Ay(5)] }}
_ 4. — A (s)1™ exp{— [4: (£) -4111(8)]}_

m!

Finally, from the consiruction and the fact that NV 2 has 1ndependen13 inorements
follows thaty ﬁ 4 also has mdependent increments, so N, isan mhomogeneous Poisson
process with mtensuty Ag. ‘ ‘

Theorem 8. ILet Ny and N, be two inhomogeneous Poisson processes with
cumulative mean functions Ay (t) and Aa(f) respectively. If

1 (u) = A7 (0) = A7 (w) — 43 (v) for any u>v=0, (2.10)
at which the inverse functions are well-defined, then
| Ni<iuls,

where A7 (u) is the ;Zn'uelrse Junction of A;(t), which is defined by
A7 () =int{é: 4, () >u}.

Pq'oof The proof depends on the fact that an inhomogeneous Poisson process
N () with cumulative mean function A(#) may be represented as N () =M (A()),
where M(t) is a homogeneous Poisson process with unit 1ntenS1ty, see, e. g.,
Snyder®®®, In other words, an inhomogeneous Poisson process can be constructed
by rescaling the time coordinate from a homogeneous Poisson process M (t) with unit
intensity. Therefore, we may construct the processes Ny, ¢=1, 2, in this manner. Lot
M (¢) be a homogeneous Poisson process with unit intensity and let the occurrence
time sequence be 81, Sy, ---. For ¢=1, 2, translate the points S, associated with M (£)

16 T'y(n) = A7 (S,) for n=1, 2, --.. It is easy to see that the process N; with associated -

ocourrence time sequence T;(1), T;(2), -+ is an inhomogeneous Poisson process with
cumulative mean fanction A (8) for i=1, 2, a,nd

| Ti(n) —Ti(n—1L)=Ta(n) —Ta(n—1)

for all n=>1 from 2 .10) and the construction of Ny and N,.

Finally, it should be noted that the fact that A;* (S;) is not well-defined means
the point 7';(n) actually does not exist in the process IV;.

Theorem 6. Let N; be an inhomogensous Poisson process with intensity A; for
i=1, 2. If M<<ha and either Ay or A, is nonincreasing, then Ni<u,:Na.

Proof It suffices to prove that (2.10) is satisfied. At first, suppose that both
M(t) and As(%) are not equal to zero. Frrom the differential rule of inverse function
and definition of intensity follows that for any >0 and w>0, there exists (w, &)
>0 such that - ’ '
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Al (@) — A (@), A AT ) e R P
Az — A5 (w) d+/121(w) B 1 'a 5
0~ - dw +—§— hg(Azl(w) ~l—0) for e E (o wi*_ ),
| (2 11)
Az (d) At (@) dAit) & _ 1 s s,
oo  dw —2__— 7»1(/11"1(0))‘—0) Y for '€ (=9, @),
Az 1(m’) /12“1(0))< d- A3 (w) : 1 e P —5,
P Wt TR @—y 7 e C@h o).
From the condition A;<CA, follows that - - A
A:(H)<d,¢) for all £0,
then
AT (w)= A7 (w) | . for all >0,
. Under the assumption that either Ay or Ay is non—increasing, we have
1/M A (w)) =1/A (45 (w)) - forall 0=0. - (2.12)

Let I(w)=I_(0)U{w}UI.(0)=(w—0, w+0o), where I_(®)=(w— o, @) and
I, (w)=(w, o+0), from (2.11) and (2.12) it follows that

A (@) ~Ai*(@) - A58@) — A21<w>

(z) —® co—co

for o' €I(w) —{w}, | (2.18)
i. e., L
AN ) — A (@) > 451 (@) — 47 (@) —8(0' ~w)  for o €1, (w);

AT (o) — A7 (o) = A7 (o) —d54 o) —s(0—o')  for o €I_(o). (2.14)
For any fixed u>¢>>0, at which the inverse functions At and 45! are well
defined, the family of open intervals {I(w); @€ [v,’u]} constitutes an open cover for
the closed interval [, u]. By a well-known theorem there exists 4 finite suboover
{I(wo), I{w1),, I(wn)} of {I(w); 0 € [y, w1} for [v, u], without loss of generality
assume that v=wy<<wi<:--<w,=u and there is at least one common point w® in
Ii(wi) NI _(441) for 4=0, 1, .-, n—1, By wrﬂung :

A 1(%) __A 1(’?)) [A‘l(u) A 1(&)("_1)>] +[A 1(6«)(“ 1)) A 1<0)n—1)]+ oo
+ L4 (01) ~ 47 (@) 1+ L4 (0®) = 45 ()]
for i=1, 2 and using (2.14), it is easy to see that
A7 (w) = A7 () =451 (0) — A3 (v) +e(u—0w),
Because of the arbitrarity of ¢ it follows that
A7) — A7 () = A7 (w) — 451 (w),

Fma,lly, note that the inequality (2. 13) still holds only under the assumption.
that Ag(¢) >0 for all 120 (A,(¢) may be equal tozero). Turn to consideing the case
that Ax(%p) = 0 for some £,. If Ay (£) is non-increasing, then it follows from

o As (to) =1 (to)
that Ay (to) 0. Let t;=inf{#; Ay(¢) =0}, by hypothesis about Kl(t) it is elear that
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A1 (%) =0 for £ € [, o0), and Ay (¢) >0 then Ay(2) >0 as well for £€ [0, ¢1). So we may
compare N; and N, only in [0, #) because the situation is trivial in [Z,, oo).
Similarly, in the case that As (t) is non~increasing we have A, (¥)>0 for € [0, #,),
where fy=inf{#; Ay(¢) =0}. At this time we may compare Ny and N, only in [0, t)
because both Ay (¢) and Ag(t) equal zero in [y, o).
BEuxamples. Let Ny be an inhomogeneous Poisson process with intensity A;(f) for
i=1 2,
(1) Suppose that
A (D) ={a1, <t <ty
o 1>ty
and o
Aa() ={a2, _t<t<t0;
Lt 11,
here @, (>0), a.(=0), by, b and ?, are constants.
If (1) ay>th byi<0, ay<ap and by<bs,
or ‘
(ii) aa>tl, b2<0 a1<ag and bi\bg,
then Ni<<;3Na.
(2) Suppose that
A (8) =Dyt
and .
hz(t) = g™,
where a1, @, b;(=0) and b;(>0) are constants.
If 0, <0, a1<<a» and b;<<bs, then N;<;,;N,. :
Obviously, Theorem 6 gives just some kind of the sufficiet condition for N,<C
Ng. It is not difficult to construct examples demonstrating the fact that the relation
N.<;uN 2, in general, does not impljr the inequality Ay<CAs.
Summarizing Theorem 3, 4 and 6, we have the following conclusin.
Theorem 7, Let N;be an inhomogeneous Poisson process with intensity A, for
9=1, 2, then '
N1<fN2=>N1<inoN2<=>Nl<st2,
and '
N <;No= N i<V o
“The proof of the theorem is immediate, here we want to point out that if the
condition of Theorem 3 is satisfied, then the inequality (2.18) still holds, and from
this follows that N;<;,;Ns. ' :
Now, we deal with some questions concerning both limit operation and ordering
briefly. '
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Theorem 8. (1) Let N™, m=1, 2, .- and N be counting point processes. Lf
N™(8)—>N (£) as m—>o0 for each t almost surely, then T™(n)—T (n) for all n almost
sure, where T™(n) and T (n) are n—th ocourrence times associated with N™ and N
respectively.

(2) Let N7 and N be counting point processes for i=1, 2 and m=1, 2, ---. If
NP@)—>N(t) for each ¢ and every =0 almost surely and {T7(1), TT(2), -}
{T2), T3(2), -} (T{(n) =T (n—1) =T (n) —T¢(n—1) for all n>1) for each m,
then {T1(1), T1(2), - }E{T2Q), T2(2), -} T1(n) —T1(n—1) >Ta(n) —T2(n—1)
Jor all n=1) almost surely, . 6. N1<iolVo (N1<iulN 2).

Proof - _

(1). Because the sample paths of N™ and N belong to the function space D[O
o), it follows from the right continuity of sample paths that N™(#)—>N (t) implies
the following fact: there exists an integer K, which may be different for different
and different sample path w, such that N™(¢) =N () for m>K. To prove T™(n)—
T (n) for all n almost surely, it suffices to show that T™(n)—>T (n) for each n almost
surely. Were this CONVergence not'true, i. e., if there would exist a >0 and an
w-sot B such that Pr (B)>0 and for ® € B and every m, one could find an integer
M, >m such that |T(n, o) —T"(n, w)|>5. First assume that T'(n, ®) ~T"(n, w)
>3, i. e, T"*<T (n, ®)—3, writing T'(n, ®)=t,, we have N(t;—9) <n—1. On the
other hand, it follows from T™*(n, w)<<t,—d that N**(1,—5, w)>n, then

o N¥+(t,—5, w)>N(t,—9, ») ‘
for @ € B. This is contradictory to that N™(t)=N(%) for all # and enough large m
almost surely. In the case that T"(n, w)y—T(n, »)>0 a similar contradiction can

~ be obtained. The proof of (1) is complete.

(2) From T(n)—>T;(n) as m—>co for ¢=1, 2 and {T’”(n)}C{T’”(n)} follows

“that Ts(n) <T'4(n) for every n. Obviously, it is enough to disouss the case of T'y(n) <

oo, Denote T's(n) by ¥, In the finite interval [0, #,], there are only finitely many,
' say, points of N, by the hypothesis of finiteness of counting processes. On the other
hand, T%(n) is a point in the sequence{T's (1), T%(2), -} for every m, i. e., T7(n)
=T7%(n,,) for some n,=>n. It is edsy to see that n,<n’ for large m. We now consider
the sequence {T'3(n1), T3(na), «-+, T5(nx), +--}. There are infinitely many n, which
take a common value,' n'' say, because m,<n’ for large m. That is, there exists a
subsequence {78 (nm,), T8 (tm,), -} of the sequence {T3(ny), T3(ns), -} such that
T3 () =T5*(n'") for all my, then T5(n'")—>Ts(n'") as mu—>co follows from TP (n'")
—>Ts(n") as m~>co. However, the sequence {T4(ny), T3(ny), ++-} is the sequence
Ti(n), T3(n), -} originally. So T§*(n') =T7*(n)—>T1(n) as my—>co. Consequently.
it follows from the uniqueness of limit that T's(n) =Ta(n'"), i. e,
T, Tu(@), -~ 3S{TM), T(®), .
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It is obvious that Ty (n) — Ty (n—1)=>Ta(n) —Ts(n—1) for all n>1 if
- Tp(n) T (n—1) ST (n) —T§(n~1)
for all n>1 and all m. - o |

Remark. 1f N7 is consiructed by thinning NP on.a common probability
space for each m and N—>N; a. 8. for 4=1,.2, then the condition df Theorem 8 is
satisfied, 80 Ni<XNipolVa. - ' ‘

§ 3. Comparing compound Poisson processes

Finally, we discuss the problem on’comparison of compound Poisson processes.
Lot N={N(t), t=0} be an inhomogeneous Poisson process with intensity A(¢).
Label an auxﬂmry variable w;, which is called a mark, 1o J-th point ¢; of N for j==
1,2, Suppose that {u;} is a sequence of mutually independent 1dentlea,11y
dlstrlbuted random variables which is also independent of &N, and take thelr value
in a mark space U which is a closed partially ordered Polish space (see, e. g .o
Naohbm 156]) and the addltlon on U is well-defined. The process

E{A(t)__—. Euj, t>0}

with its va;lu‘e in U is called compound Poisson process (assume that u; %0 for all n).
Obviously, the class of compound Poisson is a kind of simple marked point processes:

Theorem 9. Lot A;={4;(3), t=>0} be a compound Poisson process with associated
énhomogeneous Poisson process N; which has intensity A, Jor i=1, 2, and let the mark
variable w; have the distribution Py(+) for =1, 2. If M (¢)<Ma(t) for all ¢ and Py(-)
<aPa(+) (for the definition of the ordering <, for distributions of random variables,
see, e. ¢., [3]), then A1<insAs. '

“Proof We use the constructive argument to prove the desived conolusion as
follows. N1<<inelVa Tosults from A; <<k, and Theorem 4. Hence we are able o construot
two iﬁhomogeneous Poissnn processes N, and N, with. intensities Ay and A,
respectively, on a common probability space (£2°, F°, P%) such that the ocourrence .
time sequence T'y={7; (1), T1(2), -~} associated with N; is a subsequence of the
~ ocourrence time sequence Ta={T3(1), T2(2), -} assooiated with N, i. e.,

@) =Ta(ny), T1(2) =Ta(ny)--.
On the other hand, for each natural number 4 it is possible to construct two random
“variables Vy; and V', (independently in j) on a common probability space (@, F%
P*) such that ¥y, and V,; have the disiribution Py(. ) and P,( « ) respectively, and
| V1;<V3;. Then, by deﬁmng Us;=Vs; and Uyy=V1,, we obtain two processes

¥t AW

Ag= Xty and Ay(1)= p3 uu
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on the product space

v (QOX Q' XQ K ovey FOXEF'XF X+ee, PO P'X P %),
According to the construction of 4, and the definition of oompound Poisson process,
it is clear that L(Ai) L(A ;) for 4=1, 2, then A;<ieda. , :

When the mark space U is dlscrete i. e. U -{U4, Uy, *=}, We have the followmg
theorem.

‘Theorem 10. If the mark /uamable w; of the j-th po'mt in A,; twlces values Uy
with pfrobabdwy Py f0fr i=1, 2, j=1, 2 wand k=1, 2, -+, and

P 1k7\'1(t> <P 2k7\:2(t> ’ (3.1

for each k and each t, then As<incA4s. ' |

Pfroof Note that 4;, =1, 2, may be represented see 0. g., Snyder [81, ». 140

A,(8) = gUkNik<t>: | , (3.2)

where N. x(?), k=1, 2, -+, are mutually independent (inhomogeneouS) Poisson.
processes with P,,Jn;(t) for 4=1, 2 and Uk is mark for k=1, 2, ---. From (3.1) and
Theorem 4 follows that

_ Nuy<inolNaw - for each ,
where Ny, can be constructed by thinning Ng. Then .
g‘i UplV 1<<ino %1 UV o fbr all m.
k= k=

Consequently, by Theorem 8 (it is clear that the conclusion of Theorem 8 still holds
for the processes concerned with here) follows that
A <incAa,

Remark. (1) Theorems 9 and 10 do not imply each other. However, (3.1)
1mp11es that Ay<XAg. .

(2) In Theorems 9 and 10, in addition to the correspondmg stated conditions,
we suppose that either A;(¢) or As(?) is nmon-inorersing, then A4;<i4s follows
1mmed1a13e1y from the definition of compound Poisson processes and Theorem 6.

_ This paper was written Wh11e the author was enjoying the hospitality of the
Department of Statistics (IAS) of The Australian National University. The author
particularly thanks Dr D. J. Daley for his advice and help.
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