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PROCESSES
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Abstract

This note illustrates the use o f various partial orderings for point processes by  
comparing inhomogeneous Poisson processes, and studies the relationships among these 
orderings mainly in the ease o f inhomogeneous Poisson processes. Whitt has detailed several 
definitions o f partial orderings which have been applied mainly to renewal processes (see, e. 
g., W hitt [14] and M iller[4]) and semi-Markov proeesse (see, e. g ., Sonderman [1 0 ]) .

§ 1. Introduction

Comparisons of random processes are useful in  applied probability theory. In  
particular, these comparisons are often useful in.providing bounds and approxima­
tions for intractable systems. So far, most work on comparing point processes, e. g. 
[4, 10, 14], have been devoted to comparing renewal processes and semi-Markov 
processes. Stoyan1-11'123 simply gave definition and a few examples on comparison of 
point processes. Miller1-43 and Sonderman1-103 focused on renewal processes and semi- 
Markov processes respectively. In  [14] W hitt introduced several partial orderings, 
for point processes, and then studied the comparison mainly of renewal processes.

I t  seems desirable to study the comparison of inhomogeneous Poisson processes in 
detail because such a process is not in  general a renewal process and because this 
kind of point process is important in  both theory and practice. In  this paper we first 
illustrate various partial orderings of point processes which have been applied mainly 
to renewal processes [4], [14] and semi-Markov processes [10], and discuss their 
relationship in the case of inhomogeneous Poisson processes. Then some questions 
concerning both limit operation and ordering are studied briefly. Finally, on the 
basis of results for inhomogeneous Poisson processes, we obtain two results concerning 
the comparison of compound Poisson processes.

We introduce the following notation.
Let N=-{N(t) ,  V>0} be a counting process on [0, oo), where N(t)  denotes the-
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number of points occuring in the interval (0, if] for this process (assume tha t Pr 
{N(0) =0} = 1, i. e., the probability that no point occurs at if=0  is equal to 1). And 
let T=={T(n), ri>0}. be the sequence of occurrence times associated with N,  where

2r(»)==inf{s>0:A (s)>n}, « > 1  (1.1)
with T{0) = 0  and T(n) = oo if N (t)  <n  for all f> 0 . Obviously

0 = У (0 )< Г (1 )< 2 7 (2) (1.2)
Let L (N )  denote the probability law of the random process N  on the space of its 

sample paths.
In  this paper, a counting process N ^ { N ( t ) ,  0<f<oo} is called a (inhomoge­

neous) Poisson process if
( i ) N  has independent increments, and
( i i)  for any # > s> 0, the increment IV(s, £] = N ( t ) —N(s) is Poisson distributed 

with parameter Al(i) — A  (s'), i. e.,
Pr{W(s, f] =ia} =  (w!)'":1[]Al(i)—yl(s)]nexp{—[Л(#)—A (s)]} for w>0, 

where A(t)  is a nonnegative nondecreasing right-continuous function of t. I f  A(t)  
is continuous, the process N  is said to be simple or orderly. We call A(t)  the 
accumulative mean or expectation function of the process N  because .

EN(s,  f \ = A ( t ) - A { s ) .
If Ait)  is differentiable and its derivative is X(f), then A(t)  can be expressed as

A(t)  =  f %(u)du,Jo
and A= {A (<5); #>0} is called the intensity of the process N.

I t  is known, see, e. g., Snyder13-1 or МШегю, that if N  is an inhomogeneous 
Poisson process with intensity X, then for any tf>s>0 the conditional joint distrib 
ution of occurence times T(N'(s) + 1), T(N (s )  +  2), •••, T ( N (s) +/c), given N (s,f] — 
k, is the same as the distribution of the order statistics of n independent identically 
distributed random variables with the common distribution function {A (u) —A (s))/  
(A(f) —A(s)) on (s, if], $<w<£, and the density of this conditional joint distribution 
is

f ; t ( i  1, k, к \ к ) - Ы П К к )  /  { A ^ - A i ^ Y ^ K t ^ ^ h ^ t ,  (1.3)
i =1

§ 2 Monotonicity of inhomogeneous Poisson processes

At first, following W h ittC14J we introduce five different partial orderings for 
counting processes as follows.

Definition 1. For two counting processes N± and N 2,
(1) N ^ f N z  means that the conditional distribution Pr{27(Ari(i) + 1 ) — f<a»j N (s),
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which is the distribution fimction o f the forward recwrence time at t condi­
tional on the entire history o f up to t, have failure rate y fx ,  t) for each t and i —1, 2 
(almost surely with respect to Nf), and for some k(t) the fm ime rate у  fa ,  t) fo r  i = 1 
( i= 2) is bounded above (below) by 'kit) for each 0.

(2) Ni< ,in0N^ means that there exist two processes Mi and M2 on a common 
probability space with associated occurrence time sequences T% <md T 2 such that L ( N t) = 
L(Mi) for each i  and

{ ^ (1 ) ,  f t  (2), - } G { f t ( l ) ,  f t  (2), - .}  (2.1)
for all sample paths.

(3) Ni<:intN 2 means that there exist two processes N t and M2 on a common 
probability space such that L ( N {) = L(Mi) fo r each i  and

T ^ - T ^ n - l ^ T ^ - T ^ n - l )  (2.2)
for all n > l  and all sample paths.

(4) Ni<*nN% means that there exist two processes Mi and N 2 on a common- 
probability space such that L{Ni) =L(Mi) for each i  and

Mi(t)<M2(t) (2.3)
for all t&z0 and all sample paths.

(6) Ni<,aN 2 means that
Pr{^(i5) > x } < ? x { N 2(t) >«} (2.4)

for  all x .andt.  -
R em ark  1. Recall that a noxmegative random variable has a failure rate y( t )  

if its distribution function F  (x) is absolutely continuous with respect to Lebesgue 
measure (a counting measure) and has a density (a probability mass function) f ( t ) ,  
then r( t )= = f( t ) / ( l—F (t) )  for all t such that F ( t ) <  1, see, e. g., Barlow and 
Proschan [1].

The failure rate y( t )  as well as the d en sity /(t) is defined uniquely, neglecting 
values on a nu ll set with respect to Lebesgue measure. Therefore, e. g., in  the defi 
nition of Ni<:fNz the condition of boundedness may be restated more exactly as 
follows: For some k(t)  the failure rate у«(ш, t) for i —1 (i = 2) is bounded above 
(below) by k(t)  for each 0 and almost all x. Because two failure rates which are. 
equal almost everywhere correspond to the same distribution function, we may 
identify statistically such two failure rates, and so we do not mention the words; 
“almost all” or “almost everywhere” repeatedly in  similar situations for simplicity 
and clarity, but we have to bear this remark in mind.

R em ark  % On talking about the orderings of random processes, an extension, 
of a result of Strassen which shows that the stochastic order of all finite dimensional 
distributions of two random processes is equivalent to the possibility to construct two 
stochastically equivalent processes being compared on a common probability space so
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for all cc, where A,(0) is some real number, so
sup A i(a;)<inf K2(co).
я »  0 sp>0

On the other hand, if
sup Ai(#)<inf Яа(£)

. t> о t>o
holds, then

sup 7 i (t, a ;)< inf y 2(t, x) .
a»0 a?>0

for all i  because
sup 7 i (t, cc) =  sup Xi (t+ cc) <sup Ai (cc) <  in f X2 (ж) <  inf Aa (t+x)
cd> 0 «>0 <c>0 as> 0

< in f  y 2(t, cc)&>o
for all t> 0, so we are able to find some A,(£) such that X±(t. cc) <A(tf)<A2(;f, ж) for 
all t, i. e., N t<:fN2.

T heorem  4. Let N t and N 2 be two inhomogeneous Poisson processes with intensi­
ties and A2 respectively, then

Nx «ч sd^a^A.i A2.
Proof We first prove that A i < stJA2=ФА,1 < A2. In  fact, from Pr{lVi(s, > 0 } <  

Pr{lV2 (s, t] >0} for all £> s> 0  follows that

1 —exp.j—j  Ai (m)(Zm| < 1—expj—j  Л2(м)йм| for all 0<s<i5,
then

j  Ai(ii)dw< j  A2(u) du for all 0<s<£,

I t  is equivalent to Ai(t)<A,2(t) for all t> 0 .
To complete the proof, we have to prove that A* <  А2=Ф>ЛГ1<  inaN a. For this end we 

show that N t can be constructed by thinning N 2, i. e., let Та = {T2(1), Га(2), '•••} 
be the occurrence time sequence associated with N 3, it is possible to construct an 
inhomogeneous Poisson prooess ffix on the same probability spaoe such that L(Nx) = 
L (N f)  and the occurrence time sequence T x =  {2\  (1), (2), •••} associated with N 1
is a subsequence of T2. Indeed, we may construct 771=={ri(l),5?i(2),--»} by thinning 
(removing) the points T s(n), «== 1, 2, •••, with probability 1—A*(T2(n))/X2(T2(я) ) 
in  sequence. Obviously, the sequence T % obtained by thinning T a is a subsequence of 
T a and the thinning of the points T a(n), n = l ,  2, •••, axe independent mutually. 
For any fixed 2>s>0, we first consider the probability

-P0,}c=Pr{iVi(s, t] =  0 | s < r 2(lV2(s) + 1 ) =  • • • < Г 2 (172(s) +k)  =tfcj
e-i} .

According to the rule of thinning

o,fc°
ПС1- -М О Л * (*<))> for k > l,i=X ■

• 1, for k=0.
(2.9)
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Then, by (1.3) and (2.9) it follows that

P r{#!(*, £1= 0} =  f j P r {&(«, £ ]= 0, N a(s, £]=*}
fc=0

=exp{— [_Aa(t) -  A (s )]}  +  2  f Po,Tc‘f $ ( t i, h\k)k—1 J
x P r {1V2 (s, i] — A} dfi • • *dffc

f■exp{-W a( f ) - A ( s ) ] } + 2  |fc—1 »/ S Ш к - Щ - Н
^2 (tj)

A a(t) Л-2 (s)
X e x p { -[^ 2( t ) - A ( s ) ] } [ ^ 2( t ) -A ( s ) ]7 ^ k - '* d tB . ;

=  exp{— [J.2(t) —Л2(в)]} +  2  f П  [ 2̂ (t>)
. k-l JS<h,-,h<t i=l .

x  e 4 ,{ - [ A ( t ) - A ( 8 ) ] }  d h ...dth_ ■
k>\

By symmetry the last sum equals

2  T Г M u ) -M « ))c fo  T .?#>{fc=iLJs J A!

=  2  *[yl-Ф ~ [yl* ^  ~ A еаф{' - [ Л( 0 “ -4а(*)]>
' k \i

=  (exp{[Aa(#) -Jd a(e)] -  [ Л ( 0  -  A ( s ) ] } - l ) e x p { - [Л 0 0  - Л ( з ) ] } ,
hence

. P r({# t(s , *] =0} =  exp{ — [Ax(t) ~ /ii(s )]} .
Secondly, for any m >  1

OO ' ■ •
P r{ ^ i(s , £]=m} =  S P r { l i ( s ,  #]=m , iV2(s, t ] ^k}

7c~m
O O /*

=  2  P r{ ^ ( s ,  # ]= m |s< T 2( ^ 2( s ) + l ) = ^ < -
k—m J

<  T 2 (JV2 (s) +k)  =  #, 1V2 (s, t] -  A}
X /® (^  •••, £c |&)Pr {lV2(s,

= S  f S  Й  ^  A )fc=m- j8<fi<-<is<iar0»1.-,tMm) «=1 ^а(^)
k—m

x П

к
УЫ JX --j ТТ/Ч  ̂ YiA A a( t )—Aa(s)

^ з (£ )

Л - М м \  .
\  ^2 (4,) /

-exp{- [ЛОО A a(s)]}

x [Л О Р -Л 0 0 ]*
Ж!

dh-'-dt,Tc,

where 2  denotes the summation over all combinations of tn
(̂̂ «1» "*» ̂Пщ)

fB. By using symmetry again it follows that

•, tnm out of h,

P r{^ i(s , f\ =m} k \
m\ (k—m ) !

Xexp{ —A a(t) —A a(s)~\}/k\

-ft ■ . -]mrn
1 %±(u)du j [Л2(м) — ̂ i(w)]dM

-]k-



ml \ktin (Jc—m)\

X [A («) -  A (s ) ] ’ e4? { -  [A(<) - A M ] } }

. _ М ,( < Ы ( » ) 1 , 1 ех р { -  [Л (<) _ A (s)]>,

' Finally, from the construction and the faot that N 2 has independent increments 
follows that ffii also has independent increments,, so JVi is an inhomogeneous Poisson 
process with intensity Ai. !

Theorem. 6. Let N% and N 2 be two inhomogeneous Poisson processes with 
cumulative mean functions Ai(t) and A 2(f) respectively. I f

A ^ iu )  — A x1 (v)~^А 2г(u) —A^Cv) for any u> v^G , (2.10)

at which the inverse functions are well-defined, then • .

N  2, .

where AA(u)  is the inverse function o f A { (t), which is defined by

A f1 (u) = in f{ t : Ai (t) >w}.

Proof The proof depends on the fact that an inhomogeneous Poisson process 
N(t)  with cumulative mean function Aifi) may be represented as N(t)  = M (A ( t ) ) ,  
where M(t) is a -homogeneous Poisson process with unit intensity, see, e. g., 
Snydera8:]p,62). In  other words, an inhomogeneous Poisson process can be constructed 
by rescaling the time coordinate from a homogeneous Poisson prooess M  (f) with unit 
intensity. Therefore, we may construct the processes N i} i = l ,  2, in  this manner. Let 
M(f)  be a homogeneous Poisson process with unit intensity and let the occurrence 
time sequence be Si, S 2) •••• For i  = 1, 2, translate the points ^„ associated with M(f) 
to Ti(n) = A  A  (Sn) for w = l, 2, •••. I t  is easy to see that the process N { with associated 
occurrence time sequence T {( 1), T t(2), ••• is an inhomogeneous Poisson prooess with 
cumulative mean function At(t) for i = 1, 2, and

Pi(n) — T i (n —1 ) > Т 2(п) — T 2(n—1)

for all n>  1 from (2.10) and the construction of N i  and N 2.
Finally, it should be noted that the fact that A f 1 (Sf) is not well-defined means 

the point Ti(n) actually does not exist in  the process IV).
Theorem 6. Lei Ni be an inhomogeneous Poisson process with intensity A4 for  

i= 1, 2. I f  Ai<Aa and either Ax or A2 is nonincreasing, then Ni<±lntN 2.
Proof I t  suffices to prove that (2.10) is satisfied. At first, suppose that both 

Xi(t) and A2 (t) are not equal to zero. From the differential rule of inverse function 
and definition of intensity follows that for any e> 0  and co>0, there exists .8(o>, s) 
> 0  such that
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d+A 11(<o) s 1 8
ft)'—ft) dft) 2 A* ( i l /1 (со) +  0) 2

Л-Чсо') - A ? ( < » ) ^ d+A 21 (со) 1_ 8 -- 1 ■ Ih 8
се'—со dc«) 2 A<2 (A21 (ft)) +  0) 2

A t 1^ ' )  - A A C g) ) ^ d -y lr1 (со) 8 _ 1 8
ft)'—со dft) 2 АаС^ГЧй)) - 0 ) 2

А г Ч о О - Л г Ч » ) - d~A21 (со) f £  = * „ и b f
ft) —  ft)

From the condition A,i <A2 follows that
A± O 0^4t2 (0 for all 0,

for ft/£  (ft>, ft> 4-5),

for «и' £  (o>i co-\-8),

(2 .11)

for ft)'G (<*>—8, ft)), 

for ft/£  (ft)—8, со).

then

-4i1(ft))> ^21(ft>) . for all 6)>0.
Under the assumption that either A* or A,2 is non-inoreasing, we have

(<»)) ^ 1 / Х 2(А2г (со)) for all coX). (2.12)
Let I  (со) =J_(ft)) U {ft)} U I+(ft)) = (ft)- cr, ft)+<r), where I -(со) = (со—cr, со) and 
d+ (со) =  (со, со4-cr), from (2.11) and (2.12) it follows that

Л г У О  - ЛгЧс») >  W  - Л - 1̂ )
со'—со о /—со for ft)'€  I  (со)-{ft)}, (2.13)

i .  e .,

^r4ft)0  — Лгх(со) >u4i'1(co/) — / l21 (со) — e (со'—со) for ft)'G-f+(co);
ЛГ1(со) — Air1 ( с о ' ) ( с о )  — Alj^cft') — e(co—со') for со'£ 7_(со). (2.14)

For any fixed u > v > 0, at which the inverse functions Лг1 and Л21 are well 
defined, the family of open intervals { I (со); co£ constitutes an open cover for
the closed interval [o>, u \. By a well-known theorem there exists a finite suboover 
{/(coo), I(coi), ••*, I (ft>„)} of {J(to); coG [m, } for i>, w], without loss of generality
assume that v = coo<<oi< - ■ ° <<on= и and there is at least one common point <o(i) in 
J +(cOi) f |L ( % i )  fo r i= 0 , 1, •••, л —1. By writing . ■ - . ■

A i \ u )  - A ; \ v )  =  U ; \ u )  - A r l (« (n_1>)] +  [Лг1( " (п“1)) -  ЛгЧед,.!)] +  ».
: . . + U r 4 ^ ) - ^ 4 ^ 003 +  U / J(a>(0)) - ^ 1W ]

for i  =  l , 2 and using (2.14), it is easy to see that :
-4r1(M) —^ r 1(^ )> ^ 2 1(u )—Al21('D)+8 (^ —1)), .

Because of the arbitrarity of 8 it follows that
A l%{u) —A x1('o) > A 21(u) —Д/Ч-у).

Finally, note that the inequality (2.13) still holds only under the assumption 
that K2(t) > 0  for all 0 (fa(t) may be equal to zero). Turn to consideing the case 
that Х2(*о) = 0  for some t0. I f  Ai (t) is non-increasing, then it follows from

A,2 (to) ^ ^ 1 (̂ 0)
that Ai(t0) =0 . Let x̂ == inf{<f; fa(t) = 0}, by hypothesis about A*(t) it is clear that
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hi (t) =0  for t G [ft, oo), and Xi (t) > 0  -then h2(i) > 0  as well for t (= [0, f t) . So we may 
compare N t and N 2 only in  [0, ft) because the situation is trivial in [ft, oo). 
Similarly, in  the case that A2 (t) is non-inoreasing we have h2 ( t)>0  for t £  [0, ft), 
where f t= in f {ft h2(t) =0}. At this time we may compare Aft and Aft only in  [0, ft) 
because both ^(ft) and %2(t) equal zero in  [ft, oo).

Examples. Let Aft be an. inhomogeneous Poisson process with intensity (t) for 

< - 1,
(1) Suppose that

and

M 0-{

Xa ( i )  =  ^

Ci, 0^t<Cft$
i \  O f t ,

c2, ^ ft;
tb\  t> to ,

here C i(>0), c2(> 0 ), b1} b2 and t0 are constants.
If ( i ) C i & i < 0 ,  Ci<o2 and 6 i< 62,

or
( i i )  c2>foa, b2<0, Ci<c2 and bi<&2, 

then Aft^^Aft.
(2) Suppose that

^i (0  — Ъ±еаЛ
and .

fta(0 =  b2e0at,
where %, a2) b i(> 0 ) and 62( > 0) are constants. 

If Ci<0, c i< c 2 and &i<&2, then Aft<ftftft.
Obviously, Theorem 6 gives just some kind of the suffioiet condition for Aft< 

N 2. I t  is not difficult to construct examples demonstrating the fact that the relation 
Aft < Л ,  in  general, does not imply the inequality

Summarizing Theorem 3, 4 and 6, we have the following conclusin.
T heorem  7. Let Aft be an inhomogeneous Poisson process with intensity ft for

£ = 1, 2, then
• A  i<:fN 2=>A l ^ i n o E i < sdA2,

and

The proof of the theorem is immediate, here we want to point out that if the 
condition of Theorem 3 is satisfied, then the inequality (2.13) still holds, and from 
this follows that Aft<tefAft. •

Now, we deal with some questions concerning both limit operation and ordering 
briefly.



Theorem 8. (1) Let N m, m= 1, 2, ••• and N  be counting point processes. I f
N m(t)—*N(t) asm -*oo fo r each t almost surely, then T m(n )-*T (и) fo r  all n almost 
sure, where T m(n) and T in )  are n-th occurrence times associated with N m and N  
respectively.

(2) Let N f  and N t be counting point processes for ъ*= 1, 2 and m = l, 2, •••. I f  
NT(t)-*-Ni(t) for each i  and every 0 almost surely and { T f (1), P f(2 ), •••}£ 
{T2 (1), T f ( 2), •••} (T f ( n ) —Pf(w —1 ) > P 2 (w) —T 2 (n—1) for  all n>  1) /o r eachm, 
then { ^ (1 ) ,  P / 2 ) ,  - } c { P 2(l) , P a(2), ..•}(2T1(w) - r 1(w- l ) > r 2(n )-!T 2( n - l )  
/o r «М w > l) almost surely, i. e. N 1<,incN2 (iVi<itljiVa).

Proo/ •
(1) . Because the sample paths of N m and N  belong to the funotion spaoe D[0, 

oo), it follows from the right continuity of sample paths that N m(t)-*N(t)  implies 
the following fact: there exists an integer К , which may be different for different t 
and different sample path a>, suoh that N m(t) — N ( t )  for m > K .  To prove
Tin)  for all n almost surely, it suffices to show that T m(n)->T(n) for each n almost 
surely. Were this convergence not true, i. e., if there would exist a §> 0  and an 
co-set В  such that P r (B )> 0  and for co£P and every m, one could find an integer 
Mic>m such that \T(n, a>)—T MHin, со) j > 8 . First assume that Tin , a>)—T Mkin, со) 
>8, i. e., T M*<T(n, a>)—8, writing Tin,  со) =  tn, we have N ( tn—8 )< n —l.  On the 
other hand, it follows from Т ш*(п, со) <t„—8 that N M*(tn—8, co)>n, then

co)>N(tn-8,a>)
for co£B. This is contradictory to that N m(t) = N ( t) for all t and enough large m  
almost surely. In  the case that Т и*(п, со) — T(n, co)>S a similar contradiction can 
be obtained. The proof of (1) is complete.

(2) From T?(n)->Tt(n) as m->oo for i = l ,  2 and {T f  (n )} c { P 2 (ю)} follows 
that T a(n) ̂ T i ( n )  for every n. Obviously, it is enough to discuss the case of Ti(n)  <  
oo. Denote Pa.(ог) by tn. In  the finite interval [0, tf\ , there are only finitely many, 
ri say, points of N s by the hypothesis of finiteness of counting processes. On the other 
hand, Tf(n )  is a point in the sequence {TIT (1), T f ( 2), •••} for every m, i. e., Tf(n)  
= T 2(nm) for some nm>n. I t is easy to see that nm̂ n  for large m. We now consider 
the sequence {Tlinf),  T \ in2), •••, Tl inh), •••}. There are infinitely many nm which 
take a common value, n" say, because nm<,n for large m. That is, there exists a 
subsequence {Т ^{пт1), Tf°(nm), •••} of the sequence {Tlinf), Tlinf),  •••} such that 
T 2*(nmx) =Т$*(п") f o r a l l w fc, then Tf*(n")^>T2(n") as t%-»oo follows from T 2(n") 
->T2(n") as m-~*oo. However, the sequence {T\(nf), T 2(n2), •••} is the sequence 
{T{(n), T\(n),  •••} originally. So Tf*(n") =Tf*(n)^>T1in) as mfc->oo. Consequently, 
it follows from the uniqueness of limit that T t (n) —T 2(n"), i. e.,

{ З Д ) ,  Px(2), . . .} c { P 2( l) ,  P a(2), ».}.
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