ITERATION OF ANALYTIC NORMAL FUNCTIONS OF MATRICES

TAO ZHIGUANG (陶志光)*

Abstract

In this paper, the author proves that the classical theorem of Wolff in the theory of complex functions may be extended to the class of operator-valued functions f, where f is an analytic function from the open unit disc Δ in the complex plane into a family of commutative normal operators on a certain n-dimensional complex Hilbert space, and ||f(z)|| < 1 holds for every z in Δ :

Let H be a complex Hilbert space. Let L(H) be the Banach space of all bounded linear operators on H. If a function f on the open unit disc Δ in the complex plane into L(H) is of the form

$$f(z) = \sum_{n=0}^{\infty} B_n z^n \text{ for } z \in \Delta,$$

where the series is convergent in the uniform operator topology and $\{B_n\}$ is a sequence of normal operators on H, commuting pairwise, then we call f an analytic normal function of operators and denote by $N_H(\Delta)$ the set of all such functions. For two Hermitian operators A, B on H, by $A \geqslant B$, we mean A - B is positive. The notation A > B indicate that A - B is both positive and invertible.

In [2] and [3], K. Fan extended a classical theorem of J. Wolff^[7] to a result in functional calculus. The purpose of this note is to generalize in finite-dimensional Hilbert space H K. Fan's theorem in [3] to functions in $N_H(\Delta)$, i. e. analytic normal functions of matrices.

We begin with three lemmas.

Lemma 1. Let H be a complex Hilbert space, and let $f \in N_H(\Delta)$ with ||f(z)|| < r <1 for all z in Δ . Then there is a unique normal operator B such that B=f(B), ||B|| < r, and B commutes with $T \in L(H)$ if T commutes with f (i. e. Tf(z) = f(z)T for all z in Δ).

Remark. Here, f(B) is defined by $\sum_{n=0}^{\infty} B_n B^n$ if $f(z) = \sum_{n=0}^{\infty} B_n z^n$ [5], Lemma 2.2). Proof Suppose

Manuscript received December 29, 1982. Revised May 9, 1983.

^{*} Department of Mathematics, Guangxi University, Nanning, China.

$$f(z) = \sum_{n=0}^{\infty} B_n z^n$$
 for z in Δ ,

where $\{B_n\}$ is a sequence of normal operators commuting pairwise. Let E be the closed, normal subalgebra of L(H), generated by $\{B_n\}$ and I (the identity operator). Clearly, AT = TA for $A \in E$, $T \in L(H)$ if T commutes with f. Let

$$X = \{A \in E : ||A|| < 1\}.$$

It is seen that E is a Banach space and X is a bounded connected open set in E. Theorem 1 in [1] says that if $g:X\to X$ is analytic and g(X) lies strictly inside X, then g has a unique fixed point. To complete the proof, it is enough to show that $F:X\to X$, defined by F(A)=f(A), satisfies all the hypotheses. Clearly, each element S of E is normal and commutes with f. Thus, by Theorem 3.1 in [5], we have

$$||F(A)|| = ||f(A)|| < r < 1$$
 for all A in X.

Furthermore, $F(A) \in E$ for $A \in X$ and hence F(X) lies strictly inside X. We will show that F is analytic in X. Since E is a commutative complex Banach algebra with a unit element, we prove that for any A_0 in X, there exists a positive number $\delta > 0$ such that F is (L)-analytic (i. e. analytic in the Lorch sense [4], § 3.19) in $\{A \in E: ||A - A_0|| < \delta\}$. Let $A_0 \in X$. Take $\delta = 1 - ||A_0|| > 0$. Then

$$F(A) = f(A) = \sum_{n=0}^{\infty} B_n A^n = \sum_{n=0}^{\infty} B_n (A_0 + A - A_0)^n$$

By Cauchy's estimates ([4], p. 97), we have $||B_n|| \le 1$, n=0, 1, 2, For $||A-A_0|| < \delta$,

$$||F(A)|| = B_0 + \sum_{n=1}^{\infty} B_n \sum_{k=1}^{n} \binom{n}{k} A_0^k (A - A_0)^{n-k} \le 1 + \sum_{n=1}^{\infty} \sum_{k=0}^{n} \binom{n}{k} ||A_0||^k ||A - A_0||^{n-k}$$

$$= 1 + \sum_{n=1}^{\infty} [||A_0|| + ||A - A_0||]^n < \infty.$$

Thus, we may rearrange the terms of the series F(A) in powers of $(A-A_0)$, and then

$$F(A) = \sum_{n=0}^{\infty} C_n (A - A_0)^n \text{ for } ||A - A_0|| < \delta,$$

where

$$C_n = \sum_{n > n} \binom{m}{n} B_m A_0^{m-n}.$$

Since $\sum C_n(A - A_0)^n$ absolutely converges for all A with $||A - A_0|| < \delta$, F is (L)-analytic in $\{A \in E: ||A - A_0|| < \delta\}$ by Theorem 3.19.1 in [4]. Thus F is analytic in X ([4], p. 115). The proof is complete.

Remark. Lemma 1 is an extension of Rouche's theorem in sanalytic operator functions.

Lemma 2. Suppose A, B are positive and invertible operators on a complex Hilbert space H. Then $A \ge B$ is equivalent to $A^{-1} \le B^{-1}$.

Proof By Lemma 5.1 in [5], $A \gg Bi$. e. $A^{\frac{1}{2}}A^{\frac{1}{2}} \gg B^{\frac{1}{2}}B^{\frac{1}{2}}$ if and only if $\|A^{-\frac{1}{2}}B^{\frac{1}{2}}\| \leqslant 1$

which is equivalent to $A^{-\frac{1}{2}}A^{-\frac{1}{2}} \leqslant B^{-\frac{1}{2}}B^{-\frac{1}{2}}$, i. e. $A^{-1} \leqslant B^{-1}$. This ends the proof.

Lemma 3. Let B be a normal operator on a complex Hilbert space H with $||B|| \le 1$. Suppose $T \in L(H)$ commutes with B and ||T|| < 1. Then validity of the inequality $||(I - B^*T)(I - T^*T)^{-1}(I - T^*B)|| \le d$ (1)

implies both

$$||T - B(dI + B^*B)^{-1}|| \leq d^{\frac{1}{2}} || [B^*B + (d-1)I]^{\frac{1}{2}} (dI + B^*B)^{-1} ||,$$
 (2)

and

$$\|(T-B)(I-B^*T)^{-1}\| \leqslant d^{-\frac{1}{2}} \|(d-1)I+B^*B\|^{\frac{1}{2}}.$$
 (3)

Proof Clearly, the constant d in (1) must be positive. Suppose (1) holds. Then $(I-B^*T)(I-T^*T)^{-1}(I-T^*B) \leqslant dI,$

i. e.

$$(I\!-\!T^*T)^{-1}\!\!\leqslant\!\! d(I\!-\!B^*T)^{-1}(I\!-\!T^*B)^{-1}$$

Since the operators on both sides are positive and invertible, it follows from Lemma 2 that

$$(I-T^*B)(I-B^*T) \leq d(I-T^*T),$$
 (4)

which is equivalent to

$$\{T^* - B^*(dI + B^*B)^{-1}\} \{T - B(dI + B^*B)^{-1}\} \leqslant d[B^*B + (d-1)I](dI + B^*B)^{-2},$$

Thus

$$\|T - B(dI + B^*B)^{-1}\| \leqslant d^{\frac{1}{2}} \| [B^*B + (d-1)I]^{\frac{1}{2}} (dI + B^*B)^{-1} \|_{\bullet}$$

This proves that (2) follows from (1).

It is seen that (1) is equivalent to (4), which can be written as $(dI+B^*B)T^*T-T^*B-B^*T+(1-d)I\leqslant 0.$

Then

$$(I-B^*B)\{(dI+B^*B)T^*T-T^*B-B^*T+(1-d)I\} \leqslant 0,$$

or

$$(T^*-B^*)(T-B) \leq d^{-1}[(d-1)I+B^*B](I-T^*B)(I-B^*T).$$

Hence

$$\begin{split} &(I-T^*B)\{d^{-1}[(d-1)I+B^*B]-(I-T^*B)^{-1}(T^*-B^*)(T-B)\\ & \cdot (I-B^*T)^{-1}\}(I-B^*T)\! \geqslant \! 0,\\ &(I-T^*B)^{-1}(T^*-B^*)(T-B)(I-B^*T)^{-1}\! \leqslant \! d^{-1}[(d-1)I+B^*B], \end{split}$$

which implies (3). The proof is complete.

Remark. The space H in the lemmas above is not necessarily finite-dimensional, while H in the following theorem has to be of finite-dimension.

Theorem. Let H be a complex Hilbert space of finite-dimension and let f

 $N_H(\Delta)$ with ||f(z)|| < 1 for all z in $\Delta = \{z: |z| < 1\}$. Suppose $f^{[n]}$ $(n=1, 2, \cdots)$ stands for the n-th iterate of f, i. e. $f^{[1]}(z) = f(z)$, $f^{[n]}(z) = f(f^{[n-1]}(z))$ for z in Δ and $n \ge 2$. Then there exists a normal operator A on H with $||A|| \le 1$ such that the following relations hold for any $T \in L(H)$, commuting with f and ||T|| < 1:

$$(I - A^*A) \leq \{I - A^*f(T)\}\{I - f(T)^*f(T)\}^{-1}\{I - f(T)^*A\}$$

$$\leq (I - A^*T)(I - T^*T)^{-1}(I - T^*A),$$
(5)

$$(I - A^*A) \leqslant \{I - A^*f(T)\} \{(I + AA^*) - A^*f(T) - f(T)^*A\}^{-1} \{I - f(T)^*A\}$$

$$\leqslant \{I - A^*T\} \{(I + A^*A) - A^*T - T^*A\}^{-1} \{I - T^*A\},$$

$$\|f^{[n]}(T) - A[d(A, T)I + A^*A]^{-1}\|$$

$$(6)$$

$$\leq \|\{d(A, T) \lceil A^*A + (d(A, T) - 1)I\}\}^{\frac{1}{2}} \{d(A, T)I + A^*A\}^{-1}\|, \tag{7}$$

$$\| [f^{[n]}(T) - A] [I - A^*f^{[n]}(T)]^{-1} \| \leq \left\{ \frac{\| (d(A, T) - 1) + A^*A \|}{d(A, T)} \right\}^{\frac{1}{2}}, \tag{8}$$

where $n=1, 2, 3, \cdots$ and

$$d(A, T) = \| (I - A^*T)(I - T^*T)^{-1}(I - T^*A) \|.$$
(9)

Besides, f(A) = A if ||A|| < 1.

Remark. Here $f \in N_H(\Delta)$ means that f is an analytic normal function of matrices.

Proof Since ||f(z)|| < 1 for $z \in \Delta$ implies $||f^{(2)}(z)|| = ||f(f(z))|| < 1$ by Theorem 3.1 in [5], it follows from Lemma 2.5 and Theorem 3.1 in [5] that $f^{(n)}(n=2, 3, \cdots)$ are well—defined and $||f^{(n)}(z)|| < 1$ by induction.

Now choose a sequence of positive numbers $\{a_m\}$ such that $0 < a_m < 1$ and

$$\lim_{m\to\infty}a_m=1.$$

Put $f_m = a_m f$. Then by Lemma 1, we have a sequence of normal operators $\{A_m\}$ such that $A_m = a_m f(A_m)$, $\|A_m\| < a_m$, and A_m commutes with both T and f. Thanks to the fact that H is finite-dimensional, one may assume $\{A_m\}$ converges in the uniform operator topology (Replace the sequence by a convergent subsequence if necessary). Suppose

$$A = \lim_{m \to \infty} A_m$$
.

Then $||A|| \le 1$ and A commutes with both T and f. We show that f(A) = A whenever ||A|| < 1. Let

$$f(z) = \sum_{n=0}^{\infty} B_n z^n \text{ for } z \in \Delta.$$

By Cauchy's estimates, we have $||B_n|| \le 1$ $(n=0, 1, 2, \cdots)$ ([4], p. 97). Since $\{A_m\}$ are commuting pairwise and hence each A_m commutes with A, it follows that for all such m that $||A-A_m|| < \frac{1-||A||}{2}$ and any positive integer n,

$$||A_m^n - A^n|| \le ||A_m - A||n[||A|| + ||A - A_m||]^{n-1} \le ||A_m - A||n[\frac{1 + ||A||}{2}]^{n-1}$$

Then

$$|| f(A_m) - f(A) || = || \sum_{n=0}^{\infty} B_n A_m^n - \sum_{n=0}^{\infty} B_n A^n || \le \sum_{n=0}^{\infty} || A_m^n - A^n ||$$

$$\le || A_m - A || \sum_{n=1}^{\infty} n \left[\frac{1 + || A ||}{2} \right]^{n-1} \to 0,$$

as $m \rightarrow \infty$. On the other hand

$$||A_m - f(A)|| = ||a_m f(A_m) - f(A)|| \le (1 - a_m) ||f(A)|| + a_m ||f(A_m) - f(A)||.$$
 Thus $A = f(A)$ in case $||A|| < 1$.

It is easy to verify that if B is a normal operator on H with $||B|| \le 1$ and S is any operator on H with ||S|| < 1 such that SB = BS (hence $SB^* = B^*S$ by Fuglede-Putnam-Rosenplum's theorem [6]), then the following relations (10), (11), (12) hold

$$(I - S^*B)^{-1}(S^* - B^*)(S - B)(I - B^*S)^{-1}$$

$$= I - (I - B^*B)(I - S^*B)^{-1}(I - S^*S)(I - B^*S)^{-1},$$

$$I - B^*B(I - S^*B)^{-1}(S^* - B^*)(S - B)(I - B^*S)^{-1}$$
(10)

$$= (I - B^*B) (I - S^*B)^{-1} \{ (I + B^*B) - S^*B - B^*S \} (I - B^*S)^{-1}, \tag{11}$$

$$I + B^*B - S^*B - B^*S > 0.$$
 (12)

We check (12) only. In fact

$$I+B^*B-S^*B-B^*S = (I-S^*B)(I-B^*S)+B^*B(I-S^*S)$$

 $\geqslant (I-S^*B)(I-B^*S)>0.$

As T commutes with f and ||T|| < 1, Theorem 3.1 in [5] asserts ||f(T)|| < 1. An application of the identity (10) to A and f(T) gives

$$(I - A^*A) (I - f(T)^*A)^{-1} (I - f(T)^*f(T)) (I - A^*f(T))^{-1} \le I,$$
(13)

since the left side of (10) is a positive operator. Observe that for two Hermitian operators B_1 , B on H, if $B_1>0$, $B_1B\geqslant 0$, then $B\geqslant 0$. Inequality (13) may be written as

$$(I-f(T)^*A)^{-1}(I-f(T)^*f(T))(I-A^*f(T))^{-1} \\ \circ \{(I-A^*f(T))(I-f(T)^*f(T))^{-1}(I-f(T)^*A)-(I-A^*A)\} \geqslant 0, \\ (I-A^*f(T))(I-f(T)^*f(T))^{-1}(I-f(T)^*A)-(I-A^*A) \geqslant 0.$$
 (14)

This is the first inequality in (5).

Similarly, applying the identity (11) to A and f(T), we obtain

$$(I-A^*A) (I-f(T)^*A)^{-1} [(I+A^*A)-f(T)^*A-A^*f(T)] (I-A^*f(T))^{-1} \leqslant I,$$

and hence (notice (12) and the observation following (13))

$$(I - A^*A) \leqslant (I - A^*f(T)) \{ (I + A^*A) - f(T)^*A - A^*f(T) \}^{-1} (I - f(T)^*A).$$

This is the first inequality in (6).

Since $||f_m(T)|| < 1$ ([5], Theorem 3.1) and A_m is normal and commutes with f_m and T, it follows from Theorem 5.2 in [5] that

$$\begin{aligned}
\{I - f_m(T)^* A_m\}^{-1} \{f_m(T)^* - A_m^*\} \{f_m(T) - A_m\} \{I - A_m^* f_m(T)\}^{-1} \\
&= \{I - f_m(T)^* f_m(A_m)\}^{-1} \{f_m(T)^* - f_m(A_m)^*\} \{f_m(T) - f_m(A_m)\} \\
&\times \{I - f_m(A_m)^* f_m(T)\}^{-1} \\
&\leqslant \{I - T^* A_m\}^{-1} \{T^* - A_m^*\} \{T - A_m\} \{I - A_m^* T\}^{-1}
\end{aligned} \tag{15}$$

which may be written, by the identity (10), as

$$I - (I - A_m^* A_m) (I - f_m(T)^* A_m)^{-1} (I - f_m(T)^* f_m(T)) (I - A_m^* f_m(T))^{-1}$$

$$\leq I - (I - A_m^* A_m) (I - T^* A_m)^{-1} (I - T^* T) (I - A_m^* T)^{-1}.$$

$$(I - T^* A_m)^{-1} (I - T^* T) (I - A_m^* T)^{-1}$$

Thus

$$\leq (I - f_m(T)^* A_m)^{-1} (I - f_m(T)^* f_m(T)) (I - A_m^* f_m(T))^{-1}$$

(by the observation following (13) and $I - A_m^* A_m > 0$) and letting $m \to \infty$,

$$(I-T^*A)^{-1}(I-T^*T)(I-A^*T)^{-1} \le (I-f(T)^*A)^{-1}(I-f(T)^*f(T))(I-A^*f(T))^{-1}.$$
(16)

Lemma 2 shows

$$(I-A^*f(T))(I-f(T)^*f(T))^{-1}(I-f(T)^*A) \leq (I-A^*T)(I-T^*T)^{-1}(I-T^*A),$$
 which is the second inequality in (5).

Similarly, using (11) and following (13), we deduce from (15)

$$\begin{split} &(I-T^*A_m)^{-1}\{(I+A_m^*A_m)-T^*A_m-A_m^*T\}(I-A_m^*T)^{-1}\\ &\leqslant \{I-f_m(T)^*A_m\}^{-1}\{(I+A_m^*A_m)-f_m(T)^*A_m-A_m^*f_m(T)\}\{I-A_m^*f_m(T)\}^{-1}, \end{split}$$

Hence a passage to the limit shows that

$$\begin{split} &(I-T^*A)^{-1}\{(I+A^*A)-T^*A-A^*T\}\,(I-A^*T)^{-1}\\ &\leqslant \{I-f(T)^*A\}^{-1}\{(I+A^*A)-f(T)^*A-A^*f(T)\}\{I-A^*f(T)\}^{-1}. \end{split}$$

This implies the second inequality in (6) (by (12) and Lemma 2).

We have shown that $||f^{[n]}(z)|| < 1$ for all n and $z \in \Delta$, and hence $||f^{[n]}(T)|| < 1$ (Theorem 3.1 in [5]). Lemma 2.5 in [5] tells us that $f^{[n]}(T) = f(f^{[n-1]}(T))$.

Clearly, $f^{[n]}(T)$ commutes with f for all n. Applications of (5) show that for $n \ge 1$,

$$\begin{split} \{I - A^* f^{[n]}(T)\} \{I - f^{[n]}(T)^* f^{[n]}(T)\}^{-1} \{I - f^{[n]}(T)^* A\} \\ \leqslant \{I - A^* f^{[n-1]}(T)\} \{I - f^{[n-1]}(T)^* f^{[n-1]}(T)\}^{-1} \{I - f^{[n-1]}(T)^* A\} \leqslant \cdots \\ \leqslant (I - A^* T) (I - T^* T)^{-1} (I - T^* A) \,. \end{split}$$

Hence

$$\|\{I - A^*f^{[n]}(T)\}\{I - f^{[n]}(T)^*f^{[n]}(T)\}^{-1}\{I - f^{[n]}(T)^*A\}\| \leq d(A, T).$$
(17)

Then (7), (8) are attained by Lemma 3 and (17). This completes the proof.

Acknowledgement. In closing the author would like to thank Professor K. Fan for useful suggestions and instructions.

References

- [1] Earle, C. J. and Hamilton, R. S., A fixed point theorem for holomorphic mappings, Global Analysis, 61—65 Amer. Math. Soc., Providence, R. I., 1970.
- [2] Fan, K., Iteration of analytic functions of operators, Math. Z., 179 (1982), 293-298.
- [3] Fan, K., Iteration of analytic functions of operators, II. (to appear).
- [4] Hille, E. and Philips, R. S., Functional analysis and semi-groups (Rev. ed.), Amer. Math. Soc., Providence, R. I., 1957.
- [5] Tao, Z. G., Analytic operator functions (to appear).
- [6] Rudin, W., Functional analysis. McGraw-Hill, New York, 1973.
- [7] Wolff, J., Sur une généralisation d'un théorème de Schwarz, C. R. Acad. Sci., Pairs 182 (1926), 918-920; 183 (1926), 500-502.