ALMOST SURE CONVERGENCE OF NONPARAMETRIC REGRESSION ESTIMATES

CHEN XIBU(陈希孺)*

Abstract

Let (X, Y), (X_i, Y_i) , $i=1, \dots, n$, be iid. $\mathbb{R}^d \times \mathbb{R}^1$ -ralued vandom vectors with $E(|Y|) < \infty$ and m(x) = E(Y|X=x) be the regression function. Select the weight functions $W_{ni}(x) = W_{ni}(x; X_1, \dots, X_n)$, and use $m_n(x) = \sum_{i=1}^n W_{ni}(x)Y_i$ as an estimator of m(x). This paper shows that $\lim m_n(X) = m(X)$, a. s., under weaker conditions.

§1. The main result

Let (X, Y), (X_i, Y_i) $i=1, \dots, n$, be iid. $\mathbb{R}^d \times \mathbb{R}^1$ -valued random vectors with $\mathbb{E}(|Y|) < \infty$. A much-studied method (see [1]) for estimating the regression function $m(x) = \mathbb{E}(Y \mid X = x)$

is as follows: Select the weight functions $W_{ni}(x) = W_{ni}(x; X_1, \dots, X_n)$, $i=1, \dots, n$, and use

$$m_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i$$

as an estimator of m(x).

The purpose of this paper is to prove a result concerning the a. s. convergence of m_n . To begin with, for each fixed $x \in \mathbb{R}^d$, define the ranks R_1, \dots, R_n by

 $||X_{R_1} - x|| \le ||X_{R_2} - x|| \le \cdots \le ||X_{R_n} - x||$

with ties broken by comparing indices. Choose an integer k_n for each n such that

$$1 \leqslant k \leqslant n, \ k/n \to 0, \ \log n/k \to 0, \ \text{as } n \to \infty$$
(1)

(2)

and define

 $C(s) = \sup_{n} \{\max(\sum_{i}^{\prime} W_{ni}: \text{ the number of terms contained in} \\ \sum_{i}^{\prime} \text{ does not exceed } ks)\}.$

Following is the main result of this paper.

Theorem 1. Suppose that $k = k_n$ satisfies (1), Y is bounded, and

Manuscript received January 3, 1983.

* Department of Mathematics, China University of Science and Technology, Hefei, China.

$$W_{ni}(X) \ge 0, \sum_{i=1}^{n} W_{ni}(X) = 1, a. s.$$
 (3)

$$\sum_{i=1}^{k} W_{nR_{i}}^{2}(X) = o\left(\frac{1}{\log n}\right), \text{ a. s.}$$
(4)

$$\lim_{n \to \infty} \sum_{i=k+1}^{n} W_{nR_{i}}(X) = 0, \text{ a. s.}$$
(5)

$$\lim_{s \to 0} O(s) = 0, \text{ a. s.}$$
(6)

Then we have

$$\lim_{n \to \infty} m_n(X) = m(X), \text{ a. s.}$$
(7)

This result gives an improvement of a result by Devroye (See [2], Th. 4). See also the Remark 2 at the end of this paper).

Remark 1. The proof, to be given below, applies to the case where (3) is weakened to

$$\lim_{n\to\infty}\sum_{i=1}^{n}W_{ni}(X)=1,\ \limsup_{n\to\infty}\sum_{i=1}^{n}|W_{ni}(X)|<\infty,\ \text{a. s.},$$
(3')

but, in (5) and the definition of O(s), $W_{nR_i}(x)$ should be replaced by $|W_{nR_i}(x)|$.

§ 2. First part of the proof

Write

$$m_{n}(X) - m(X) = \sum_{i=1}^{n} W_{ni}(X)(Y_{i} - m(X_{i})) + \sum_{i=1}^{n} W_{ni}(X)(m(X_{i}) - m(X))$$

$$\triangleq J_{1n}(X) + J_{2n}(X) + J_{3n}(X), \qquad (8)$$

where

$$J_{1n}(X) = \sum_{i=1}^{k} W_{nR_i}(X) (Y_{R_i} - m(X_{R_i})),$$
(9)

$$J_{2n}(X) = \sum_{i=1}^{k} W_{nR_i}(X) (m(X_{R_i}) - m(X)), \qquad (10)$$

$$U_{8n}(X) = \sum_{i=k+1}^{n} W_{nR_i}(X) (Y_{R_i} - m(X)), \qquad (11)$$

Further,

$$|Y| \leq M < \infty, M \text{ is a constant.}$$
 (12)

By (5), (11), (12), we have

$$\lim J_{3n}(X) = 0$$
, a. s. (13)

To deal with J_{1n} , we need a result proved in [3]:

Lemma 0. Let z_1, \dots, z_n be independent variables with mean zero, and a_1, \dots, a_n be constants such that $\sum_{i=1}^n a_i^2 = 1$. Then $E\left(\sum_{i=1}^n a_i z_i\right)^{2s} \leqslant 3^s (2s-1) ! ! \max_{1 \le i \le n} Ez_1^{2s}, s=1, 2, \dots.$ (14) For simplicity, we assume that (3)—(6) hold for all values of (X, X_1, X_2, \cdots) . For given X=x, $X_i=x_i$, $i=1, 2, \cdots$, the conditional distribution of $J_{1n}(X)$ is the same as that of $\sum_{i=1}^{k} c_i z_i$, where z_1, \cdots, z_k are independent variables each bounded by 2M and with mean zero, c_1, \cdots, c_k are constants which, according to (4), satisfy

$$d_n \triangleq \sum_{i=1}^{k} c_i^2 = \sum_{i=1}^{k} W_{nR_i}(x) = o\left(\frac{1}{\log n}\right).$$
(15)

105

Writing $T_{n} = \sum_{i=1}^{n} c_{i} z_{i} / \sqrt{d_{n}}$, by (14) we have, for fixed s > 0, $P\left(\left|\sum_{i=1}^{k} c_{i} z_{i}\right| \ge s\right) = P(|T_{n}| \ge s / \sqrt{d_{n}}) = \exp(-s^{2} / d_{n}) E(e^{T_{n}^{2}})$ $= \exp(-s^{2} / d_{n}) \sum_{s=0}^{\infty} \frac{1}{s!} ET_{n}^{2s}$ $\le \exp(-s^{2} / d_{n}) \left[1 + \sum_{s=1}^{\infty} \frac{1}{s!} 3^{s} (2s - 1)!! (2M)^{2s}\right]$ $\le \exp(-s^{2} / d_{n}) \left[1 + \sum_{s=1}^{\infty} (24M^{2})^{s}\right].$ (16)

Suppose first that $M \leq 1/5$, then by (15), (16), we have

$$\sum_{n=1}^{\infty} P\left(\left|\sum_{i=1}^{k} c_{i} z_{i}\right| \ge \varepsilon\right) \le 25 \sum_{n=1}^{\infty} \exp(-\varepsilon^{2}/d_{n}) < \infty.$$

Hence we have proved that for any fixed X=x, $X_i=x_i$, $i=1, 2, \dots$, the assertion (note that J_{1n} depends also on X_i , Y_i , $i=1, \dots, n$)

 $\lim_{n \to \infty} J_{1n}(x; x_1, Y_1, \dots, x_n, Y_n) = 0, a. s.$

is true. This in turn proves that

$$\lim_{n\to\infty} J_{1n}(X; X_1, Y_1, \dots, X_n, Y_n) = 0, \text{ a. s.}$$
(17)

Replacing by Y/(5M) (and Y_i by $Y_i/(5M)$ accordingly) in case M>1/5, we see that (17) is true for any M.

§ 3. Second part of the proof

We shall put $C_{ki} = W_{nR_i}(x)$ for simplicity of writing.

Lemma 1. Let ξ be binomial variable with parameters n and p. Then for s > 0,

$$P(|\xi/n-p| \ge s) \le 2 \exp(-ns^2/(2p+s)).$$

For the proof, see Hoeffding [4].

Lemma 2. Let F be a probability measure on the class β^r of all Borel sets in \mathbb{R}^r , $A \in \beta^r$ and F(A) > 0. Denote by $S(x, \rho)$ the open or closed sphere centered at x and with radius ρ , and

$$\widetilde{A} = \{x : x \in A, \lim_{\rho \to \infty} F(S(x, \rho) \cap A) / F(S(x, \rho)) = 1\}.$$

Then $F(A - \widetilde{A}) = 0$.

For the Proof, see [5], p. 189.

Now turn to the proof of $J_{2n}(x) \rightarrow 0$, a. s. For any $\rho > 0$, denote by S_{ρ} , \overline{S}_{ρ} and \overline{S}_{ρ}^{*} the open, closed and the surface of the sphere with radius ρ and centered at x_{ρ} respectively. Let N be a natural number, and

$$B_{Ni} = \left(x: \frac{i-1}{N} \leqslant m(x) < \frac{i}{N}\right), \ i = 0, \ \pm 1, \ \pm 2, \ \cdots,$$
$$\widetilde{B}_{Ni} = \left\{x: x \in B_{Ni}, \ \lim_{\rho \to 0} F(S_{\rho} \cap B_{Ni}) / F(S_{\rho}) = 1\right\}.$$

According to Lemma 2, $F(B_{Ni} - \tilde{B}_{Ni}) = 0$, $i = 0, \pm 1, \pm 2, \dots$. Hence, on writing $\widetilde{B}_N = \bigcup_{i=1}^{n} \widetilde{B}_{Ni}, \ \widetilde{B} = \bigcap_{i=1}^{n} \widetilde{B}_N,$

we have $F(\tilde{B}_N) = 1$ for $N = 1, 2, \dots$, thus $F(\tilde{B}) = 1$. Further, by Lemma 2, we also have $\lim_{\rho \to 0} F(\bar{S}_{\rho} \cap B_{Ni})/F(\bar{S}_{\rho}) = 1$.

Further, if $\rho' \rightarrow 0$ along a sequence such that $F(S_{\rho'}^*)/F(S_{\rho'}) \ge \alpha > 0$ for some fixed $\alpha > 0$, then $\lim_{\alpha \to 0} F(S_{\rho'}^* \cap B_{Ni})/F(S_{\rho'}^*) = 1$ for $x \in \widetilde{B}_{Ni}$.

Define $\widetilde{C} = \{x: F(S_{\rho}) > 0 \text{ for any } \rho > 0\}$, which is the support of F. We have $F(\widetilde{C}) = 1$. Finally, putting $A = \widetilde{B} \cap \widetilde{C}$, we have F(A) = 1.

Now fix arbitrarily $x \in A$ and proceed to show that $J_{2n}(x) \rightarrow 0$, a. s. First consider the case $F(\{x\}) > 0$. In this case, by the Law of Large Numbers and the definition of $J_{2n}(x)$, it is easily seen that

 $P(J_{2n}(x)=0 \text{ for } n \text{ sufficiently large})=1_o$

Therefore, for such x, $J_{2n}(x) \rightarrow 0$ a. s. is trivially true.

Next assume that $F({x})=0$. For fixed *n*, find $\rho_n > 0$ (in the following ρ_n will be simplified to ρ) such that

$$F(S_{\rho}) \leq k/n, F(\overline{S}_{\rho}) \geq k/n.$$

From $F(\{x\})=0$, $x\in \widetilde{C}$ and $k/n \to 0$, we see that $\lim_{n\to\infty} \rho=0$. Further, Since $x\in \widetilde{B}$, for any positive integer N there exists i_N such that

$$v \in \widetilde{B}_{Ni_N}, N=1, 2, \cdots$$

We shall fix N in the following discussion. Given $0 < \eta < 1$, consider separately three cases for n:

1.
$$k/n \ge F(S_{\rho}) \ge (1-\eta)k/n$$
.

From $x \in \widetilde{B}_{N_{i_N}}$ and $\lim \rho = 0$, we see that for *n* sufficiently large

$$p_n = F(S_\rho \cap B_{Ni_N}) \ge (1 - \eta^2) k/n,$$

$$p_n^* = F(S_\rho \cap B_{Ni_N}^c) \le \eta k/n.$$
(18)

Define

$$D_{n} = \{X_{1}, \dots, X_{n}\} \cap S_{\rho} \cap B_{Ni_{N}}, Q_{n} = \#(D_{n}), D_{n}^{*} = \{X_{1}, \dots, X_{n}\} \cap S_{\rho} \cap B_{Ni_{N}}^{*}, Q_{n}^{*} = \#(D_{n}^{*}).$$
(19)

According to Lemma 1, and noticing (18), one gets

$$P(|Q_n/n - p_n| \ge \eta p_n) \le 2 \exp[-n\eta^2 p_n^2/(2p + \eta p_n)] \\ \le 2 \exp[-k(1-\eta)^2 \eta^2/(2+\eta)],$$
(20)

$$P(|Q_n^*/n - p_n^*|\eta p_n) \leq 2 \exp[-k(1-\eta)^2 \eta^2/(2+\eta)].$$
(21)

Since $k/\log n \rightarrow \infty$. for any $\eta \in (0, 1)$ the right hand sides of (20), (21) are terms of convergent series. Hence by the lemma of Borel-Cantell, the following assertion is true with probability one: For n large enough

$$Q_n \ge n(1-\eta)p_n \ge k(1-\eta)^3 \ge k(1-3\eta), \tag{22}$$

$$Q_n^* \leqslant n(p_n^* + \eta p_n) \leqslant k\eta + k\eta (1 - \eta)^2 \leqslant 2k\eta.$$
⁽²³⁾

By the definition of R_1 , ..., R_n , in case that (22) and (23) hold, among X_{R_1} , ..., X_{R_k} there will be at least $(1-3\eta)k$ members lying in D_n . By the meaning of $B_{Ni_{N'}}$ for such X_{R_i} we have $|m(x) - m(X_{R_i})| \leq 1/N$. Hence, noticing the definition of c(s) mentioned earlier, we get

$$J_{2n}(x) | \leq 1/N + 2Mc(3\eta).$$
(24)

That is to say, for those n under discussion, (24) holds for large n with probaility one.

2. $k/n \leq F(\overline{S}_{\rho}) \leq (1+\eta)k/n$.

Modifying previous definitions of D_n , Q_n , p_n , D_n^* , Q_n^* , p_n^* by changing S_ρ to \overline{S}_{ρ} , we get for *n* large enough

 $p_n \ge (1-\eta)k/n, p_n^* \le \eta(1+\eta)k/n \le 2\eta k/n.$

Again by Lemma 1

$$\begin{split} & P(|Q_n|n-p_n| \ge \eta p_n) \le 2 \exp[-k(1-\eta)^2 \eta^2/(2+\eta)], \\ & P(|Q_n^*/n-p_n^*| \ge \eta p_n) \le 2 \exp[-k(1-\eta)^2 \eta^2/(2+\eta)]. \end{split}$$

An argument similar to the previous case shows that the following assertion holds with probability one: For n large enough

$$Q_n \ge (1-\eta) n p_n \ge k (1-\eta^2) \ge k (1-2\eta), \tag{25}$$

$$Q_n^* \leq n(p_n^* + \eta p_n) \leq 2\eta k + \eta (1+\eta) k \leq 4\eta k.$$
⁽²⁶⁾

In the same vein as the previous case, in case that (25) and (26) hold, among X_{R_1} , ..., X_{R_k} there will be at least $(1-4\eta)k$ members lying in D_n , and we get

$$|J_{2n}(x)| \leq 1/N + 2Mc(4\eta).$$
 (27)

3.
$$F(S_{\rho}) < (1-\eta)k/n, F(\overline{S}_{\rho}) > (1+\eta)k/n$$

Restore the definitions of D_n , Q_n , p_n , Q_n^* , Q_n^* , p_n^* to its original form in case 1, and let

 $Z_n = \{\text{the number of } X_1, \dots, X'_n \text{s contained in } \overline{S}_p\}$

and $H_{n1} = \{Z_n \ge k\}$. Using Lemma 1, one can show that

$$P(H_{n1} \text{ occurs for } n \text{ sufficiently large}) = 1.$$
(28)

Indeed, putting $q = F(S_{\rho}) \ge (1+\eta)k/n$, by Lemma 1, we have

$$P(H_{n1}^{c}) \leqslant P(|Z_{n}/n-q| \ge q-k/n) \leqslant 2 \exp[-n(q-k/n)^{2}/3q].$$

The last expression is strictly decreasing in q. Hence

 $P(H_{n1}^c) \leq 2 \exp[-n(\eta^2 k^2/n^2)/(3(1+\eta)k/n)] = 2 \exp[-k\eta^2/(3(1+\eta))].$ This proves (28). Similarly we prove that

 $P(Q_n^* \leq 2\eta k \text{ for } n \text{ sufficiently large}) = 1,$ (29)

107

Define

$$P(Q_n + Q_n^* \leq (1 - \eta/2)k \text{ for } n \text{ sufficiently large}) = 1.$$

 $H_{n2} = \{Q_n + Q_n^* \leq (1 - \eta/2)k, Z_n \geq k\},\$

then by (28), (30), it follows that

 $P(H_{n2} \text{ occurs for } n \text{ sufficiently large}) = 1.$ (31)

A few words on (31): It means that for *n* sufficiently large, it is almost certain that there will be at most $k(1-\eta/2)$ members of $\{X_{R_1}, \dots, X_{R_k}\}$ lying in S_{ρ} , but the remaining part can all be found in S_{ρ}^* . Further, by (29) we see that

 $\#(\{X_{R_1}, \dots, X_{R_k}\} \cap S_{\rho} \cap B^{\circ}_{N_{i_k}}\} \leq 2\eta k.$

Since $F(S_{\rho}^{*}) = F(\overline{S}_{\rho}) - F(S_{\rho}) \ge 2\eta k$, *n* and $F(S_{\rho}^{*})/F(S_{\rho}) \ge 2\eta(1-\eta)$, if we define $w_n = F(S_n^{*} \cap B_{Ni_N})/F(S_{\rho}^{*})$ and $w'_n = F(S_{\rho}^{*} \cap B_{Ni_N}^{\circ})/F(S_{\rho}^{*})$, then $w_n \ge 1-\eta$, $w'_n \le \eta$ for *n* large enough. It is not difficult to prove that if a certain part of X_1 , ..., X_n , for example X_{i_1}, \ldots, X_{i_j} , fall into S_{ρ}^{*} , then each of them will appear in B_{Ni_N} or $B_{Ni_N}^{\circ}$ with probability w_n or w'_n respectively, and these events occur independently. Suppose that we need to choose l members of $\{X_1, \ldots, X_n\} \cap S_{\rho}^{*}$ to cover the deficit resulting . from $Q_n + Q'_n < k$, then as stated earlier, with probability one, for *n* sufficiently large we have $l \ge k\eta/2$, and these l members should be chosen from $\{X_1, \ldots, X_n\} \cap S_{\rho}^{*}$ with possibly smallest indices. Hence by Lemma 1, for $l \ge k\eta/2$ we have

 $P(\text{The number of elements falling into } S^*_{\rho} \cap B^c_{N_{i_N}} \text{ among the } l \text{ elements})$

mentioned above
$$\geq 2\eta l \leq 2\exp(-l\eta^2/3\eta) = 2\exp(-l\eta/3)$$

$$\leq 2\exp(-k\eta^2/6),\tag{32}$$

and this estimation does not depend on l for $l \ge k\eta^2/2$. Summing up (28), (29), (31), and (32), one sees that with probability one the following assertion holds: For nsufficiently large $\#(\{X_{R_1}, \dots, X_{Q_k}\} \cap B^c_{N_{\delta_N}}) \le 2\eta k + 2\eta k = 4\eta k$, and when this occurs we have

$$J_{2n}(x) | \leq 1/N + 2Mc(4\eta).$$
(33)

From (24), (27) and (33). we see that, with probability one,

$$J_{2n}(x) | \leq 1/N + 2Mo(4\eta) \tag{34}$$

for n sufficiently large. Since the positive integer N and $\eta \in (0, 1)$ can be arbitrarilychosen and $\lim c(s) = 0$, one gets from

$$\lim J_{2n}(x) = 0, \text{ a. s.}$$
(35)

From (35) it follows that $J_{2n}(X) \rightarrow 0$, a. s. This, combining with (8)—(11), (13) .and (17), finally gives (7). The proof of Theorem 1 is concluded.

References

- [1] Stone, C. J., Ann. Statist., 5 (1977), 595-645.
- [2] Devroye, L., Ann. Statist., 9 (1981), 1310-1319.
- [3] Tao Bo & Cheng Ping, Chin. Ann. of Math., 2: 4 (1981), 451-461, (in Chinese).
- [4] Hoeffding, W., J. Amer. Statist. Assoc., 58 (1963), 13-30.
- [5] Wheeden, R. L. & Zygmund, A., Measure and Integral, Marcel Dekker, New York, 1977.