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- ALMOST SURE CONVERGENCE OF
NONPARAMETRIC REGRESSION
ESTIMATES

CueN XIRU(f4 4 15) *

. Abstract
Let (X, ¥), (X, Yy, i=1, ++, n, bo iid. R?x Rl-ralued vandom vectors with
E(|Y])<eo and m(z) =E (Y| X =x) be the regression function. Select the weight functions
Woai(@) =W (2; X1, +++, X,), and use m,(%) =ﬁ1Wn¢(w)Y‘ ‘as an estimator of m(w). This

paper shows that limm, (X)) =m(X), a. 5., under weaker conditions.
n-row

§ 1. The main result

Let (X, Y), (X,)Y}) 4=1, -, m, be iid. R?X R*-valued random vectors with
E(|Y])<oo. A much-studied method (see[1]) for estimating the regression function
m(z) =B | X =a)
is ag follows: Select the weight functions W (e) =Wz Xq, =+, X n), f=1, o, m,

and use | '

min () =3 War(2)

as an estimator of m(w). ‘
The purpoée of this paper is to prove a result concerning the a. 8. convergence |

of m,. To begin with, for each fixed #€ R?, define the ranks Ry, :--, R, by

| X o~ 2| <| Xp =0 << | X, — 2]
with ties broken by comparing indices. Choose an integer k, for each n such that

1<k<n, k/n—>0, logn/k—>0, asn—>c0 1
and define

O(&) =sup{max (3 W,: the number of terms contained in

3V does not exceed ks)}. . 2
Following is the main result of this paper.
Theorem 1. Suppos that k="k, satisfies (1), ¥ is bounded, and
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Wu(X)0, S Wa(X) =1, a.s. ®)
=1

Ek]Wz (X)=o( 1 > a. S. : 4)

= I logn /’
lim S Wop(X)=0, a. s ()

n-ryoo f=k+1
lim O(g)=0, a. 8. (6)
T g=~0 .

Then we have
Hm my,( X)) =m(X), a. 8. (")

This result gives an improvement of a result by Devroye (See [2], Th. 4). See

also the Remark 2 at the end of this paper).
Remark 1. The proof, to be given helow, applies to the case where (3) is

weakened to

lim N Wo(X) =1, imsup 3 |[Wau(X)] <00, a. 5., @3

n-roe §=1 n—r00 g==1

but, in (5) and the definition of O(s), Wz,(#) should be replaced by |W .z (@)|.

§ 2. First part of the proof

“Write

1a(X) = X) = 31 3 () (Fe=m( XD + 3 W s (X) (m( X) ~m( X))
| AT 10(X) +Tan( X ) +Tan(X), ®)
where

T ) =B WD) Vm=m(Xn)), ©
 an(X) = B W (X) (X ) = m()), (10)
Tsn(X) = 3} W o, (X) (¥ = m(X), (1)

Further, ' ‘, - ' '
Y | <M<oo, M is a constant, »’(12)

By (5), (11), (12), we have
| lim Jg,(X) =0, a.'s. (13)

nN—ro0

To deal with J1,, we need a result proved in [3]: .
Lemma 0. Let 2, -, 2, be independent variables with mean zero, and a, *+, aq

be constants such that > a?=1. Then

§=1

E’<éa¢z5)2s <8(Zs—1)11max B, s=1, '2, (14)
g==1 .

1<i<n
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For simplicity, we assume that (8) —(6) hold for all values of (X, X, X, ).
For given X =, X;=ug,, ¢=1, 2, ---, the conditional distribution of J1,(X) is the

13
same as that of ) ¢;2;, where 2y, +--, 2, are independent variables each bounded by

i=1
2M and with mean zero, ¢;, -, 6 aTe constants which, according to (4), satisfy
BAZ 6 =2 Wan (o) =0 (mgn). (15)

Writing T',=>) ¢;21/8/dy, by (14) we have, for fixed >0,
=1 -

P(|3 0| 36) =PI, | 36/ N/7) =exp(— /0 Bem)
=1
=oxp(—e*/dy) 3} BT
<exp(—&?/d,) [1+ > 38(23 1)1 '(2M)28]
<eoxp(—s&?/d,) [1—}— 21 (24M%)* ] (16)
Suppose first that M<1 /5, then by (15), (16), we have
ﬁ.‘: P ( Ekl Ci% >8><25 i oxp(— 32/dn)<oo"
a=1 -\ |§=1 =

Hence we have proved that for any fixed X =g, X;=a;, ¢=1, 2, .-, the assertion
(note that Ji, depends also on X, ¥y, 4=1, -+, n)
].im J1n<w; wl’ Yl’ °ety w”, Yn) =O’ a. 8.

is true. This in turn proves that
lim J1,(X; Xy, Yy, +, X,, Y2)=0, a.s. 3N

n—>co

Replacing by Y/(8M)(and Yy by ¥,/(BM) accordingly) in case M>1/5, we see
that (17) is true for any M.

§ 8. Second part of the proof

We shall put Oy=W .z, (#) for simplicity of writing.
- Lemma 1. Let £ be binomial variable with parameters n and p. Then Jor >0,
P(|¢/n—p|>8) <2 exp( —ns*/ (2p-+8)).
For the proof, see Hoeffding [4].
Lemma 2. Let F bo o probability measure on the class B” of all Borel sets in R,
A€ B and F(A)>0. Denote by S (@, p) the open or closed sphere centered at @ and with

‘radius p, and

A—{w:0€ 4, lim F(S(z, p) N4)/F(8(s, p))=1},

Then F(A—24)=0.
For the Proof, see [5], p. 189.
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Now turn to the proof of Jy,(2)—>0, a. s. For any >0, denote by S,, S, and S*
the open, closed and the surface of the sphere with radius p and centered ai a,
respectively. Lot N be a natural number, and
By~ (o2 < ) =0, 1, £3, -,
By={w:0€ By, })]-gl F(S,NBy)/F(8,)=1},
According to Lemma 2, F(By;— By) =0, i=0, +1, +2, «-. Hence, on writing
| By= U By, B= (1 Bx,

"‘—-00

we have F(By) =1 for N=1, 2, -, thus F(B)=1. Further, by Lemma 2, we also
have lim F(S,NBy)/F(S,)=1,

Further if p’-0 along a sequence such that F(S%)/F (Sp:)>oa>0 for some fixed >0,
then llm F(85NBw)/F(8:) =1 for o€ By,

Deﬁne O {w:F(S,)>0 for any p>0}, which is the support of F ‘We have F(0)
= 1. Finally, putting A=B N, we haveF (4)=1,

Now fix arbitrarily # € A and proceed to show that Ja,(#)—>0, a.'s. First consider
the case F({w})>0. In this case, by the Law of Large Numbers and the definition of _
Jan(®), it is easily seen that

P(J () = =0 for n sufficiently large) 1,
Therefore, for such @, Ja.(#)—>0 a. 8. is trivially true.
| Next assume that F({x})=0. For fixed n, find p,>>0 (in the following p, will
be simplified to p) such that
4 F(S,)<k/n, F(S,)=k/n,
From F({&})=0, »€C and k/n—0, we see that lim p=0. Further, Since € B, for

N~r00

any bositive integer N there exists ¢ such that
| 8€ By, N=1, 2, -,
We shall fix NV in the following discussion. Given 0<n<1, consider separately three
cases for n: : |
1. k/n=F(S,)=(1—n)k/n,
From wéﬁmw and lim p=0, we see that for n sufficienty large

=F(Sp.ﬂ BanN)?(l—'V}g)k/'n’: »
Dr=F(8,N BSs,)<nk/n,

Da={Xs, *, Xu} N8, N Bus,, Qu=2(Dy), (19)
D:’—“ {X1, *tty n}nSpanm Qn"‘#(l): °
According to Lemma 1, and noticing (18), one gets
P( ] Qn/n “pn] =10,) <2 oxp[ ~nn’py/ (2P+77pn>]
<2exp[—k(d—n)*"/(2+n)], (20)

(18)
Define
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P(|@Qn/n—mpy | nps) <2exp[—E(L—n)*7/ (2+n)]. (21)
Since k/logn—>co. for any n& (0, 1) the right hand sides of (20), (21) are terms of
convergent series. Henoe by the lemma of Borel-Cantell, the following assertion is
true with probability one: For n large enough '
Q=n(L—n)p>k(AL—n)*>k(1—8n), (22)
Qr<n{ Py +npn) <kn+In(1—n)><2kn, (28)
By the definition of Ry, .---, R,, in caso that (22) and (28) hold, among Xp,, ...,'
X g, there will be at least (1—3n)k members lying in D,. By the mea,ning of By,
for such Xz, we have |m(s) —m(Xg)|<L/N. Henbe, noticing the definition of
¢(e) mentioned earlier, we get |
| Jan() | <1/N+2Mc(8n)., (24)
That is to say, for those n under discussion, (24) holds for large n W11;h probaahty one
2, k/fn<F(;S‘p) <A+n)k/n,
Modifying previous definitions of Dy, @u, Pa, D:, Q, 2 by changmg S, to S,,,
we get for n large enough
. 2= (1=m)k/n, pi<n(L+n)k/n<2nk/n.
Again by Lemma 1
P(|Qu|n—pn| =nps) <2exp[—E(1—n)*n*/(2+n)],
P(|@/n—p| >npa) <2exp[— k(L —n)*P?/(2-+n)].
An argument sumlar to the previous case shows that the followmg assertlon holds
with probabzhty one: For n large enough A ,
Q= (A—n)mp>k(1—r)>k(1—20), (25)
Qi<n(ph+npe) <mb+n(L+n)b<dnk,  (26)
In the same vein as the previous case, in case that (25) and (26) hold, among X By
, X g, there will be at leagt (1 — —4n)k members lying in D,, and we get
| Jan(2) | <L/N +2Me(4n), S - @7
8. F(S,)<dA—nk/n, F(8S,)>1A~+n)k/n,
Restore the definitions of D,, @, 24, @, &, p, to its original form in case 1,
and let
Z,={the number of Xy, +-», X's contained in S,}
and H,y={Z,>k}. Using Lemma. 1 one can show that
P(H,, occurs for n sufficiently large) =1, | ' (28).
Indeed, putting ¢=F (8,)=(1+9)k/n, by Lemma 1, we have
P(H::) < P(|Zuf/n—q| >0~ b/m)<2expl—n(g—k/n)*/34].
The last expression is strictly decreasing in ¢. Hence
P(H3) <2expl—n(rPk/r?) /(B(L+n)k/n)] = 2exp[ - b/ (8(L+))],
This proves (28). Similarily we prove that - |
P(Qi<2nk for n sufficiently large)=1, =~ (29)
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P(Qu+@n<(L—n/2)k for n sufﬁdiently large) =1, (30)

Hun={Qu+ Qi< (1~7/2)k, Zn>k};
then by (28), (80), it follows that
P(H,y occurs for n sufficiently large) =1, (31)
A fow words on (31): It means that for n suﬁicmnﬂy large, it is almost certain that
there will be at most £(1—n/2) members of {Xp, -, Xg} lying in 8, but the
remaining part can all be found in S}. Further, by (29) we see that
’ #({ Xy, =, Xagd N8s N By} <20k,
Since F(8%)=F(8,) — F(S,,)>2nk nand F(85)/F(8,)=>2q(1—n), if we define
wy=F (87 N Bys,) /F (S;) and w,=F(S; N Bss,)/F(8S;), then w,>1—n, w,<n for n
large enough. It is not difficult to prbve that if a certain part of X, .-+, X,, for

Define

example X, --+, X, fall into S}, then each of them will appear in By, or B,
with probability w, or w), respectively, and these events occur independently. Suppose
$hat we need to choose § members of {Xy, o, X} NS, to cover the deficit resulting .
from Q,+@Q, <k, then ag stated earlier, with probability one, for n sufficiently large
‘we have I=/n/2, and these ! members should be chosen from {X 1, ***, Xa} NS with
possibly smallest indices. Hence by Lemma 1, for I=>%7/2 we have
P(The number of elements falling into S% N B, among the § elements

~ mentioned above >2nl) <2 exp(—Un?/3n) %2 oxp(—1In/8)

<2exp(—kn?/6), o (32)
and this estimation does not depend on ? for I=>kn?/2. Summing up (28), (29), (31),
and (82), one sees that with probability one the following assertion holds: For n
Sufﬁclently large :H;({X Byt Xt N B%iy) <2nk+2nk=4nk, and when this occurs
wo have

| T an (@) | <1/N+2Mo(dn), (83)
From (24) (27) and (33). we see that, with probability ons,

Jon(®) | <L/N +2Me(4n) - (84)
for n sufficiently large. Since the positive integer N and 1€ (0, 1) can be arbitaraily
chosen and El}on ¢(g) =0,0ne gets from (34)

lim Jo,(@) =0, a. s. (85)

n—roo

From (85) it follows that Joa(X)—>0, a. 8. This, combining with (8) (11), (13)
.and (17), finally gives (7). The proof of Theorem 1 is concluded.
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