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EXISTENCE AND UNIQUENESS OFWEAK
SOLUTIONS OF UNIFORMLY
DEGENERATE QUASILINEAR

PARABOLIC EQUATIONS

CHEN YazHE (7% T #7) %

Abstract

In this paper we deal with the quasilinear parabolic equation

ow 9 ou ou
—é-i--——ém—i-l:au(x, t, u)?&;—]'l‘b;(m, t, u) aw% +C<w, t, u),

which is uniformly degenerate at u=0. Under some assumptions we prove existence and
‘uniqueness of nonnegative weak solutions to the Cauchy problem and the first boundary value
problem for this equation. Furthermore, the weak solutions are globally Hélder continuous. .

s § 1. Introduction

- In 1961, E. 8. Sabinijna™ studied existence and uniqueness of weak solutions to
the Cauchy problem for the N-dimensional porous medium equation '

ou _

where ¢(0) =0 and H. Brezis & M. G. Grandall made & wonderful work™ on uni-
‘queness for the above problem. Furthermore, L. A. Caffarelli & A. Friedman
studied Holder continuity of weak solutions in [5, 6].

In this paper we establish the existence and uniqueness and Hélder Uontinuity
of weak solutions to the Cauchy problem and the first boundary value problem for
uniformly degenerate equations. Since we have found Hblder estimates for positive -
classical solutions of these equations in[1], weak solutions can be found easily. As
10 uniqueness we shall apply the method used in [2], but there are substantial
differences because we have no estimates for aﬁy derivatives of solutions which are
required for one-dimensional equations in [21.

Let R¥ be the N-dimensional euclidean space, 2 a bounded open domain in R¥
and 92 the boundary of Q. Let
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={(z, H)|0€Q, 0<1<T}, |
and I'T be the lateral surface of @] and Q; the section of @ at time %.
In Qf, we consider the following quasilinear. degenerate parabolic equation

-%%”— 63: [ (@, 1, u) ]—l—b;(w t, u)—————l—c(a; t, u) d.1)

with initial and boundary condmons ,
u(w, 0) =u(w), wEQy, (1.2)
wlpe=g(a, 1), (&, 8) €I7, (1.8)

Definition 1.1. The function u(w, ) defined in QT is called & weak solution to the
Jfirst boundary value problem (1.1), (1.2), (1.8), if
(1) u(w, £) €C(QT) and u is nonnegative in Q.
(ii) for any ¥(w, t) ECEI(QT) with (w, t) ]m 0 and l[:(a; ) I,_T-O u(z, t)
satisfies

A b _ Y 240G
”[m[:,-}-A@,(w, t, w) 20,53, Bi(w, t, u) 2, +C (e, t, u)mp]dmdt
oF '

= ~_J9 U ()P (, 0)._dm+j Ai(w, 1, g) cos(n, @;)dwdi, (1.4)
where # is the outward normal on I'* and '

A;;(w, t, 'U/) "-—-"Jj w;;(m, t, _'v')d'v‘,

Bz, t, w) =f‘ (02, 4, ©) ~—2“_ﬁ_(i”_;;_t:_1>_]dw, - (1.5)

J

C(w, t, u)~—c(a; t, u)—i—J a—b@——t——l)-dr

Similarly in the domain
. ={(2, t) |z ERY, 0<t<T}
we discuss the Cauchy problem for equation (1.1) with initial condition
| w]seo=to(®), TERY, , (1.6)
- Definition 1.2. The function u(w, t) deﬁrned in QT is called & weak solution to
the Cauchy problem (1.1), (1.6) ¢f '
(i) u(w, t) EO(QT) and u is bounded and nonnegative in Q;
( ii) for any bounded domain QCR® with smooth boundary and any
- ¥, 1) €0LH@x [0, T1)
with Y@, ) |sx0,m=0, U@, t)|ir=0, u(w, t) satisfies

j:jg[u%—‘_‘ii’(w’}t’ u) agjlgw —B(w, t, w) _—alk—%—O'(w, t, u)t[:]dmdt-

— | @ e, aot | Ao, 8, 1) 2L 9*” cos(n, o,)dodt, (1.7)

Assume that the coefficients of equatlon (1 1) for the first boundary value
problem satlsfy the followmg conditions:
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(BA) for any (s, 1) €], 0<u<co, EERY
v(Jul) [€1°<ay(a, ¢, wEE< M (|u) €], (1.8)

where A is a constant and »(s) has the following properties:
(a) »(s) EC[0, o), »(0)=0 and »(s) >0 if s>>0, @.9)

(b) Let gp_('v)'=j: v(s)ds and its inverse be @(W). There exist >0 and m>1
such that, for any Wi and W, satisfying 0<W;<Wa<9,

1/ Wy T @'(Ws,) :
(WQ) << | (L.10)
(EB) for any (#, t) €@, u& [0, o),
_ C\(w, t, wy<d, O=, ¢, 0)=0, (1.11)
(EO) ay(a, ¢, v), bi(w, 1, vy, L@ bW  daw® b W) o1 4 u)(s, j, k=1,
: aw : &vk

, V) belong to O%(Q % (0, o0)) (a>0) and satisfy
2 Oay, (@, t, u)
ety (R e 1 0} B B et

k=1 7
13| BB LB [ 01, 4, )| <nlul) (L12)

in @7 % (0, o0) where n(z) is an increasing function.

In addition, assume that the initial and boundary data satisfy that

(DA) uo(2) €0%(Q), g(w, 1) €CX(T™) (a>0);

(DB) uo(2) =0 in Qo and g(w, t)=0 in I'T;

(DO) uo(@) =g(, 0) if €.

On the boundary 9Q of 2 we suppose that

(BA) 2Q Dbelongs to C?+*, '

By assumption (BA), we have the following corollaries:

(BA); 29 satisfies the uniformly outer spherical condition, that is, there exists
80>>0 such that for any @, € A2 an outer sphere KX (30) with radius ‘o‘o satlsfylng
K (8,) cR¥\Q and @, € K (8) can be found.

(BA), there exist ao>0 and 00>0 such that for any o can the sphere K (p; o)
with its centre at w, and radius p<a, satisfies

mes{K (p; @)\ (K (p; %) NQ)}=6o mes{K (p; ®0)},
where mes {+} is the measure of a set in R”,

In what follows we shall describe the main results in this paper. ,

Theorem 1.1. Suppose that (EA), (EB) (EO'), (D4), (DB), (DO) and (BA)
hold. Thern, problem (1.1), (1.2), (1. 3) has at least @ weak solution which ’bs Holdefr
c«mmnuous in Q.

In order to establish the umqueness theorem, we have to give additional
assumptions:
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(ED) for any sy, s satisfying 0<s;<s3<d
v(s
Tag=i()
where A(7) is a function which tends to zero as 7—>0*.
(DD) »(uo(w)) is Lipschitz continuous on Qo and »(¢(w, #)) Llpschﬂsz continu-
ous with respect to © and ¢ on I'7.
Theorem 1.2. Suppose that (ED) and (DD) hold im addition to the assumptions
of Theorem 1.1. Then, the weak solution of problem (1.1), (1.2), (1.8) is unique.
For the Cauchy problem we still suppose that (EA), (EB), (EC) are satisfied,
but instead of @ and Q2 we use Q% and RY respectively.
(DA ug(w) is uniformly Holder continuous in R¥.
(DB)’ up(%) =0 in RY, |
Theorem 1.3. Suppose that (EA), (EB), (EC), (DA)’ and (DB)’ hald. Then,
problem (1.1), (1.6) admits a unique wewk solution. Furthermore, the weak solution i3
uniformly Holder éon_ténuons in Q7. |

§ 2. The First Boundary Value Problem

By assumptions (DA), (DB) and (DC), we can establish the sequences {tou(2)}
and {g,(#, t)} of sufficiently smooth functions satisfying '

%@w‘(w) —uo(m)<—%-, 5€Q,

L <o, =g, <2, (v, DETT, (2.1)
“ Uon () " '0“(5.) <L, .
[9.(2, ©) | oz, 2ar<La, ' (2.2)

and the corresponding consistency conditions, where L, is independent of n.
If (DD) holds, we siill require that |
[ (2ton (#4)) — v (Uion(22)) | < L| w1 —a], V1, 22 €25, (2.8)
|9 (g, ) —2(ga(®s, 1)) | <L(| 21— a| + |t1~ta]),
V(w1, 1), (s, ta) €17,
Consider equation (1.1) with the initial and boundary conditions
U] 4=0="on(®), BE L, (2.4)
| re=ga(w, ). , - (2.5)
Here we extend a;,(z, ¢, w), bi(, t, w), ¢(w, t, u) from Q7 x (0, +oo)to Qf X (—oo,
+ oo) properly so that (EA), (EB) and (EQ) still hold in @ X (—o0, +o0).
Lemma 2.1. If u.(w, t) is a solution to problem (1.1), (2.4), (2.5), we have

% eIy (0, §) <M, (2.6)
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where M =e‘“"max{mgx uo(w), max g(z, t)142,
1"1‘

Proof Set u,—e*v. By means of the maximum principle, it follows imme-
diately that
O<un(a; H<M,
In order to obtam a positive lower bound of u,,(a:, t), woe seb, for any >0,
W (=, t) ="y, (z, 1)+ e,

W (w, t) will satisfy the equation

| ou G |~ b0 S~ [o(a, £, W)+ ()] (W ~o6t) ~ ! =0,

Owing t0 W — se‘>0, W (w, t) will not reach its positive minimum in the interior
of @f and so |

W (s, t)>%—_+s,

Up>> [% +g— eé* ]e”"‘””.,

Setting &—>0, we obtain (2.6). The pi‘OOf is completed.

Remark. We can suppose that condition (1.10) holds for any Wi, W, satis-
fying 0<Wi<Wa<p(Me"T) if we change the constant m properly.

By means of the a priori estimates in Lemma 2.1, it is easy to show that the
classical solution to problem (1.1), (2.4), (2 .5) ex1sts. Applying Holder estimates
for solutions in [1], we have

Lemma 2.2. The solution u,,(a: t) to problem (1.1), (2.4), (2.5) ims the
Jollowing estimate

IUn[Ga"%(Qq:)<Mau (2.7)

where a; € (0, 1) and M,, are-independent of n. : :
The proof of Theorem 1.1 By Lemma 2.1 and 2.2, the sequence {u,} of
solutions is compact in C (QT) and so we can extracta subsequence {u,} which
converges t0 some function u(w, £) in C(Q}). Without any difficulty, we can verify
that u(s, #) is a weak solution to problem (1.1), (1.2), (1.8). These prove
Theorem 1.1.
To discuss the uniqueness theorem, we need other properties of u, (=, t). 4
Let (2°, ) €QF and K (p, 2°) (for simplicity, usually denoted by K (p)) be a
sphere with its centre at #° and radius p. We denote that |
Bio(8) ={€ K (p) N QW (z, H)<F} (0<i<T), 2.8)
where
Ju,.(w,t)aﬂm'

Wz, t)= v(s)ds, (2.9)
Lemma 2.3. Let u,(2, t) be o solution to problem (1.1), (2.4), (2.5), and
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{(») a cut—off funct@on in K(p). L f
0<b<< min W(w, t),

K(p)nog
then we have

0 'ﬂj 2% —_ _‘ 1 . ;-7t—(m-1)n(M)TJ 2 2
N [6 Bron(®) 7l W)dw]+ 2m™ ¢ . Brot) ¢ IVWI do

<7J LW ~B)*da, (2.10)
where v depends only on N, m, T, M and A, ' |
: ' Tu(s) = J @’(lc—'v)rds o (2.11)
and fv'-‘=@(W)" is the in@e%sibn of |
ij:v(s)‘ds=¢(®),
Proof Set v=u,(w, )", fv(w, t) will satisfy the equation |

%';-)- ' 33: [czij(a; t,. fv) ]+5 (w Z, fv) —I—c(w t, v)v, (2..12.‘)

where
ai,(w t, v) =ay(w, ¢, e“"‘”’tv)
by(w, t v) =b(w, t, e Wiy),

(o, 4, 1) = o, b, w)du-tn(M).
By conditions (EA), (EB), (EO) and (2.18) which will be proired' below, we have

e i, (o) €12 1, D<A O£,

Zz(m t, v)<mn(M)v(v),
0<3 (z, &, v)<29(M).

The rest of proof will be similar to the proof of Lemﬁla 2.1in [1].
By condition (1.10), for 0<s;<sa<<Me"™T) we have
1 EZ!-_ m-1 1)(81) < .
m’”(sz> S p(s) . (2.18)
In fact, if denoting 6 =Wsa/W1, we have, for 0<W 1 <W,,
BWy) _ OWy)—B(0) __&'(W)
O(Wa) @(OW2)—2(0) 60’ (W)’
Using (1.10) we find that, for 0<Wi<Wa<p(Me®T),
1
1 W1 < @(Wi) < Wi m
m Wg @(Wﬂ) m( W2 )
which implies that, for 0<31<32<Me”‘M>T
1 (s @(s1) 81
L () < <n(2), o~
GOmbmmg (1.10) with (2.14), we can obtain (2.13).

0<W<W1. B
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Lemma 2.4. Suppose that for p& (0, 1], _
| mes(K (p) \{K (o) ﬂQ})>bxnp , - (2.1B)
where b is a positive constant. Then, there ewists @ constwnt s which depends only on N,
m, T, v and b such that if &k swmsﬁes ,
<  min  {W(s, )}, (2.16)

v€EK(p)nog
-/ ( )p’<t<t°

then we have

mes By o ()= =0 for s€|.# | 116 @'<§70:~z>p2; #l. @y

—oera !

Moreover ¢f mes By,, (t"—@’ <i)p2> =0, then (2.17) holds for

2s+2

[0 (ko ¢)

Proof  Similarly to the proof of Lemma 8.5 in the paper [1], we can get that
for any ;>0 there exists § =8 (6,) such that

& ' b\ i
Jto_Q' (2%05)9 mes B k ﬁ(t) dt<01@ <23+2 )P ?

but now there will not come up the case: h<<2*%p* becamse there is no term
mes By, ,(t) on the right side of inequality (2.10).
Then, for any 6,>0, there exists 61=0; (63) such thatb

mes B 2731 2 (t')<9sz for tE [t"—— %—‘@'(-2%);)9, i°]

and ﬁnally there exists d; such that ‘
mes B (t) =0 for 1= [tof—::[% @’(%)pﬁ, to],
which are analogous to Lemmas 8.6 and 3.7 in [1]. We can determine 01 by 6, and
then s by 6;, which is the required constant. :
Lemma 2.5. Suppose that the assumptions of Theorem 2.2 hold. Then, there
ewist constants Cy and Cq independent of n suck that for any (a°, t°) €I we have

mm U, (w, t)> g,,(wo ), (2.18)

where : o
p=01r'min{r(g.(<° 1)), a0}, (2.19)
N,={(z, ©) €Qf] |o—2°| <p, *<t<min{t’+p, T}}, - (2.20)

and ap is defined in (BA)a.

Proof Denote that -

- W(w, 0" (g )T i

(@, 1) = {g (= ?) (@ DET, (2.21)
’l.Co,,(fI)), - (w) t)e ‘QO.

By (2.8), for any (2°, %), (=, t) cl'yQy -
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[v(ga(®, ©) —v(ga(a’, ¥))|<L(|o—2°| + |t —]),
where g,(@, ¢) is defined as u,(2) on .Qo Denote that
Po= 4:_[1 V(.gn(m() t0)>:

on= {<m: t) l lw—_'wol <P01 It_tol <p0}l
then we have

L (e, D) <r(gulo, D)<2 v(e(@s, ©)), (0, H EQNT.
$1“nce, A(s)—0 as s>0*, we can find 8o>>0 such that
| | h(s)<—;— if 0<s<do.
H%@®<%Wt%by®mmM@2&
\ v(ga(m, £)) _ 7»( 9u(@, ) )} (z, ©)€Q,.NT.

v(9a(@”, 1°)) "\ gala’, 7°)
From (2.26) it follows that '

So<< %{ﬁ ?f<1 for (w, £) €Q,.N T,
If g,.(w, t) >g,,(w° #), by (ED) and (2.25)
TSt Gy e oeear
Using (2.26) again, we have ' , ' ‘
ar< bt <1 tor (s, 1) €QNT.

o 3

Thus, no matter which case it is, we a.lways have

dogn (22, t") < g, (w, t)< g,,(a; &) for (w, t) €Q,. N T,

By means of (2.14), we can find that
0570 (ga(2°, ) <@(gal®,; 1)) <Oop(ga(s, t°)) (2, £) €Q, N T,
where O’o-0'0(m S, T).

‘We shall apply Lemma 2.4 to W (&, t) =@ (ue"™"). Clearly, we have

W (@, ) [rua.=(9a(®, £)).

k= (200)2p(ga(a®, %))
and then take p;>>0 such that

NOW téke

@}(“5;]072‘>P§<P0;

(2.22)

(2.23)
(2.24)

(2.25)

(2.26)

.27)

(2.28)

(2.29)
(2.80)

(@.31)

where s is defined in Lemma 2.4. By the definition of py and , it foIlows that

’ ]0 1 ’ ’
o (2s+2>p° 4.[1 @ <2s+30 q)(gn(w to)) /Q (9’(97»(“’0 t0))):
- and so, by (1.10)

28-)-2

00 < < k >P0<50:
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where Co=Co(m, L, 8, T). To guarantee the inequality (2.31), it suflices to take

~—l
P =min{00 2p0, wo}, (2 . 32)
k

2S+2

2
Denote that 1= mm{t"—{—@’ < ) 1(15 , T}and consider the domain

8p={@, Dlo—0| <pr, maxfo, 5~ (ks )ot }<e<],
which is contained in @,,. By the selection of &, (2.28) and (2.29), we have
h< min- {W(s, t)}. ‘ (2.83)

Bo1 0 (TUQy)

This 1nequa11’uy and the condition (BA), yield
mes B ;, 2 )= 0 for t€ [#°, ']

26

by Lemma 2.4. This implies ‘uha,t 1f ‘we take

o= mln{ 3 116 0’0 po,}_,_
then ' o
. k 1 ~
]%lpn W(‘v; t) >'§F}T§ >°2T-F§'0'y; ¢(gn(w0; to))s (2 r34)
'In virtue of the definition of W (w, ¢) we have

. 1 - .
m;lzlu,,(m, t) >me n(M)Tg,,(!DO, to),

which is requlred
Now pass to the proof of uniqueness. Let u(w 1)) be the weak solution to pro-
blem (1.1), (1.2), (1.8) established in the proof of Theorem 1.1. There exists a
subsequence {u,,(», t)} of weak solutions to problems (1.1), (2.4), (2.5); which
converges to u(z, t). Assume that there is another solution u (@, t)to problem (1.1),
(1.2), (1.8) such that u(w, t)s=u (o, t). Then, there exists a point (o', ') €QT and
it¢ neighborhood Gs(a/, #) <@ in which u(w, &) #u(w, t) every Where Choose a
sufficiently smooth function U (, ¢) such that U, ¢) >0 and
supp{U (&, ) }<Gs(a', ),
It is clear that - ‘
j ”U(w, ) (u(s, £)—ii(s, §))dodt£0, | 2.35)
or ' :
By the definition of weak solutions, it follows that for any (v, £) €0%H(QT) with’
fli-r=0, P]r==0, |

” (up— W) {¢,+ asy 322;,% — b (w, t) %b— +e®(m, t) ]dw &t
of

——L)o (uw—’f{o)lll(m,-O)dm-i—J‘ [4y(=, ¢, g,,) A,,(w t, g)] cos(n w;)ds,

(2.86)
where
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n)(w t)_AU(w t, Un) — Aﬁ(‘v ¢ ) J CUU(Q} £, vip+ (1__7){“)‘17,-

Uy, ——u
5]&7»)(50, t) o Bi(m, t; un);Bi(.a;: t, &/)
u,,——u

Jbs(a: 1, vupt(1— fa')u)—l—aa‘f (o, ¢, At (L-D)i)dy, (287

S (o, £)= c(w t, u,) —c(w, t{ u)

CUy—U
=J:[—— 0by(@, ¢, m;;;l- (A =)u) ¢, (w, ¢, U+ (1-7)6)](%7,
Denote that | |
0= {(o, 9 €QL lo—2*] <p, li—P]<e?,
w(p) = max osc{u; @}, . (2.88)
@) €T

By the continuity of u(a; t), we have o(p)—>0 as p—>0. For any integer 4>0, we
can select asufficiently smooth function u;(w, ) such that

| 0<tly— <—:]|0;,

~ 1 S
— . . wo’to
w(p) = Jax osc {ug(m, t); }<co(p+ lo) (2.39)
and then define ’

1 -
ai (s, t) =Iow¢;(m, t, v+ (1 —7)uy)dv,

'(;‘(n,k?(m, 6= ﬁ [b,(w, t, TU,+ (1—7)&;,) — —aa—“jj—(w, t, TUt+ (1—7)1’279)]111‘
' : (2.40)

W (AT 9b(=, ¢, fvu,.+(1 'v)uk) 1
cm (g f) A__Jo[ . ' +cu(w t U+ (1— m‘)uk)]
Now consider the problem . o : .
(n,k) & ll’ (n. %) _aib_ L0k Y — t :
{a @ O g, 00 Dy K@ Db =U D,
Pli=r=0, P|r-=0,

For any £ €R", we have N
€] J v (zu,+ (1 — fv)uk)dr<a§;"’®(w t)§i§,</1|§| J V(Wn + (1 —2)uy) dw
and ’ . :
) ~ ) 1 ~ 1 ~
(s, ©) =jo v(mn+(1—v)uk)dr>J1 » (i + (L— )10 d
7

’ ‘ - (T - . L .
= wlm ”(8 on ) | | (2.42)

which implies that -the eduation is' nondegenerate. Under the assumptions of

2400,

@ ‘
Theorem 1.2, the solution (@, ) €0y e (QT) to problem (2.41) exists. We
shall obtain some estimations of (%, ). By means of the maximum principle, it
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follows that -
Lemma 2.6. For the solutions Yy (2, t) o pfroblems 2. 41), we have

(o, 8| <,  (2.43)
where M, is independent of n and k.
Lemma 2.%7. For the solutions (s, t) fo problems (2.41), we have

|» (gu(a, t))—?-;—”-n"’—‘—. . <M2, | (2.44)
where 1 is the outward normal on I'T and M, is independent of n, k.

Proof Let (2° %) €I'. Denote that R=min{p, 3}, where p is defined in
Lemma 2.5 and §, in (BA)s. By condition (BA)1, we can make a sphere K (R, %)
such that K (R, y) CRY\Q and 2° E]'—{ (R, y). Denotg that

=|e—y|-R,
S(r) = M—’—"—a o5,

where K is a constant to be determined. Qonsider the function’

0
p(@, 1) = (o, Do +5( L)

in the neighborhood of (z° #°) .
N,={(a, 8) €Q]|a<p, P<t<t+p}.
Without loss of genetrality, we can assuine that supp{U(, ¢)} is outside N, other

wise it suffices to let p be small enough.
By Lemma 2. 6, it is easy to show p(w, £)=>0 on the lateral surface and the top
of N,. In NV, we consider (drop the superscripts &, n)

Lp=a,(a, t) +5¢<w t)—-+[c<w ) ~n (M) 1p-+p
S [~ 1 ( N ’!/s)(‘” ;) 1 8" (o, — ?/i)(w “y)
"‘{““[fw R T N T

. 4B, ‘”‘ z‘l+1}+[c—n(M)]S

Noting that 8" (r) = — K8'(r) and using condltmns (EA), (EQ) and the expression
(2.42), we have :

1 ’ n/l;
Ip<=-S | ’

By the definition of p in Lemma 2 .5, it follows that

(1 ~ )
01 JO 14 ("b‘u,.'l“ (1 -—’v‘)’l{k)dﬁ‘
TR DY

’ 1 | 1 m*‘-i
14 Uy . - Un
> Oy <2 > - > 01 mm{—1—<———-——-2 ) ’ -1“}

am v (gu(a, £9) " ™A\ go(2®, 1°) m

o 1 \m-t }= 1
>grnin(zg;) 0 =gy

—K%+A+1]_+[E—n(M)]S,

v
P
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Taking K =>24n+ (4+2)0;, we have
Lp<0in N,
Thus, p(s, ) will reach its minimum in N » ab (2°, ¢°) and so

p |
on

<
@,

which implies (2.44).
Lemma 2.8. For appropriately large k>0, we have

| H(%f@d&ﬂs@), “(W’ ) dmdt<M3(n),
er L4
where Ms(n) is independent of k.
Proof By means of Theorem 17 in the paper [7] and the condition (2.39) om
ty, we can find these conclusions.
Now return to the proof of Theorem 1.2. Substituting the solutions (%, ©)
to problems (2.41) into (2.86), we obtain

“(Un—ﬁ)l{(m, t)dwdt= —Lo (uo,,——uo)xp(a:; 0)dw
o

+J’ '._(-A'li(w: t) gﬂ);Alj(w: t: g))'%k‘_cos’(n: mi)ds
rT . @w;

+J‘J‘(un"&)[ (5%»,70) a(")) 3 ll’ma _I_(b(n,k) ™) aal;;,,,,
o 74

L

+ (E—5w) b |dwds,

With the help of Lemmas 8.6—3.8, it follows that
U(“n““)U(” Wmdtl <M, maXluon — | -+max -Afgfﬁmt———)g; |ga(w, &) —g(e, 1)}
QI’
+O(mymax[|» —ap| + 4 s,
. Ql’ : o

Setting k—>co, we geb

oA, |7 (ot (1= g)dr
n v(gn(®, 1))

‘”(u,.—u)U(w t)dwdt(<ﬂ1n;ax|uon uol—l—max
oF .

2 1 + 2.AM2m

<
n nal

and then setting n—»co(n=mn,), we have

”(u(w, ) ~ii(a, £))U (@, Hdwdi=0,
of

which is contrary to (2.83). Theorem 1.2 has been proved..
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§ 3. Cauchy Problem

For each integer n>>0, let O, be a sphere in RY with its contre at the origin
and radius n, Q7 the (V-+1)-dimensional cylinder, 2,% (0, 7], and I, the lateral
surface of QF, and select a smooth function uw,(#) defined in £, satisfying

1 2
e Yo () — )<< —
n o"( ) u‘)( ) n’

[von(@) ot <L, - (3.1)
where I is a constant independent of n. We define a smooth function g,(z, ¢) on I,
‘such that '

vern<<L,

19u(=, #) |
%b—.<g,,(w, ¢) <max | (w) | 42 (3.2)

and g,(w, ) and w,,(2) satisfy the consistency conditions of order one.
Consider equation (1.1) with initial and boundary conditions
U 1m0 =20, (%), 2EQ,, i (8.3)
%|r,=gu(®, ¥). (8.4)
It is similar to the above section that the problems (1.1), (8.8), (8.4) have
clagsical solutions u,(x, ¢) which have the following estimates
max |ue (2, £) | <M =e’1T(nciax uo(z) +2), (8.5)

lallozs, % @ <M, (3.6)
where M,, a;>0 are independent of n. :

From this it follows at once that we can extract a subsequence {w, (%, £)}
which uniformly converges to a function u(z, ¢) in any compact subset in Q7. It is
easy to verify that w(w, ¢) is a weak solution to the Cauchy problem (1.1), (1.6)
which implies the existence of weak solutions. .

If problem (1.1), (1.6) has another weak solution u(w t) such that u(w, t) %
u(w, t), then there exists a sufficiently smooth function U(m t) with a compact
support in QT such that '

[[o@ e, §-ie, Do, R )
o ' : ‘
Similaﬂy o (2. 41), we consider the following problems

{wu )i+ 1 (0, )G9 o, Y-+ y=Uw, ©) 1n @,
]

. ¢!t-T~O liblr'n_o .
These problems will have classical solutions zp,.k(m ¢) which have the followmg

(3.8)

estimates.
Lemma 8.1. For the solutwns v,b,,;,(w t) to problems (3.8), we have
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]%a'”x 'll’nk(w: t) (<M1,

where My is independent of n and k.
Lemma 8.2. For the solutions (o, ¢) to problems (3.8), we have

oz —tig
max | (@, 1) | <Mae V5"
o
where My is independent of n and k.

in Q,,

Proof In the domain
={(, ) €Q} |2:>0},
consider the function’ ‘
p(w, t) =K6_l”‘|+’sw—”il,bnk(m, t)gﬂ(ﬂl)to
Clearly, we have p(z, T) =0, p(w, t)| T”.>0 and
(@, t) | s=0=K (o, t)e"(M)t>O
if we take K =M.e"™®T, In Qn, we find :

Lp=§(s, 52 L +50 @, 1)L+ [ (s, 1)~ 2 (D 1p 4

= [aﬁ’i"‘>~5£”"‘>+(c(“”"—n(M)) B] « Kem1o 80D - [ (w, 1),
It is sure to be able to find ny such that
supp{U (2, t)}Qr,.

Taking }
K>max|U(w, 3)|-e,
| B=8n(M)+1,
we have -
Lp<0-
and

p(w, £)=0 in Qf,
which implies that ) ’
@, 8)| <Ke-ta1400-5 in Q.

In the same way, we can obtain

| l'llnk(w t) l <K6-—max|ml+ﬁ(2'—-t) < Keﬁ'.l' ﬁ""
as claimed if we take My= Ke?T. ’ _
Lemma 8.8. For the solutions i, to problems (8 '8)! we have
1 (1Nobw | <37 '{__ﬁ;}
lv(n> ow r,,_\M3 oxp WNY
if n is sufficiently large, where M is independent of n.

(3.9)

- (8.10)

(3.10)

(8.12)

(3.13)

‘Proof Tob p=m’in {v(%{>’ 1}. For‘any (2%, 1) €T, we make an outer sphore

K (p; y) such that K(p; y) CR”\Q,, an'c_.ll;umoef(p; y). Deno’_oe that d=|o—y| -

and
N,={(=, t)EQn|d<p, O<t<T}

In N, we consider the function

- (3.14)




No. 2 Chen,Y.Z. EYISTENCE AND UNIQUENESS OF WHEAKSOL UTIONS 145

n _Ed
p(w, 8) =t u(w, )™+ Mge V8 (1—¢ 7). (8.15)

N
lateral surface and the top of N,. Let n be sufficiently large so that N, and
supp {U(=z, t)} do not intersect. It is similar to Lemma 2.7 that we can obtain
- Lp<O '
if K is sufﬁclenﬂy large. We shall obtain the estimate (8.13) from this.
Lemma 8.4. For appropriatety large k>0, we have

«Jf aa;l!gk Ao dt<My(n). 2”( )dwdtﬂM‘;(n), (3.16)

#=1
9

Take K >1 and Mz=2M,exp {\/1-——-——} It is easy to verify that p(w, t)=0 on the

where M4(n) ds findegpendent of k.

Applying Lemma 3.1 to Lemma 3.4, we can prove the uniqueness for the
Cauchy problem. At this time, it is easier than that for the first boundary value
problem gince ' '

a'mbnk (w; t)

My 77
or <

N _:(%_j_';o‘as n>too N

by Lemma 3.8. These will prbve Theorem 1.38.
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