STRONG CONVERGENCE OF KERNEL ESTIMATES OF NONPARAMETRIC REGRESSION FUNCTIONS

ZHAO LINCHENG(赵林城)* FANG ZHAOBEN(方兆本)*

Abstract

Let $(X, Y), (X_1, Y_1), \dots, (X_n, Y_n)$ be i. i. d. random vectors taking values in $R_d \times R$ with $E(|Y|) < \infty$. To estimate the regression function m(x) = E(Y|X = x), we use the kernel estimate $m_n(x) = \sum_{i=1}^n K\left(\frac{X_i - x}{h_n}\right) Y_i / \sum_{j=1}^n K\left(\frac{X_j - x}{h_n}\right)$, where K(x) is a kernel function and h_n a window width. In this paper, we establish the strong consistency of $m_n(x)$ when $E(|Y|^p) < \infty$ for some p > 1 or $E\{\exp(t|Y|^{\lambda})\} < \infty$ for some $\lambda > 0$ and t > 0. It is remarkable that other conditions imposed here are independent of the distribution of (X, Y).

§ 1. Introduction

Let (X, Y), (X_1, Y_1) , ..., (X_n, Y_n) be independent identically distributed $\mathbb{R}^d \times \mathbb{R}$ valued random vectors with $\mathbb{E}|Y| < \infty$. The regression function

$$m(x) = E(Y | X = x)$$

is estimated by

$$m_n(x) = \sum_{i=1}^n W_{ni}(x) Y_i,$$
 (1)

where $W_{ni}(x)$ is a Borel measurable function of x and X_1 , X_2 , ..., X_n . The so-called kernel estimate can be obtained by putting

$$W_{ni}(x) = K\left(\frac{X_i - x}{h}\right) / \sum_{j=1}^{n} K\left(\frac{X_j - x}{h}\right), \tag{2}$$

where K(x) is a given kernel density on R^d and $h=h_n$ is a positive number depending upon n only; for definition, we treat 0/0 in (2) as 0.

The fundamental problem of large-sample nonparametric regression theory is to find the conditions under which $m_n(x)$ is a strong consistent estimate of m(x). The first general result in this direction belongs to Devroye (1981[1]). He proved the strong consistency of $m_n(x)$ under a series of restrictions including the crucial one that Y is bounded. Recently we succeeded in getting rid of this excessively

Manscript received February 9, 1983.

^{*} Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, China.

stringent condition, and establish the strong consistency of $m_n(x)$ under more natural and reasonable conditions.

In this paper, either the ordinary Euclidean norm or the maximum component norm $||x|| = \max_{1 \le i \le d} |x^{(i)}|$ can be taken as the norm of $x = (x^{(1)}, \dots, \lambda^{(d)})$. Such as in [1], the kernel K(x) satisfies

(i) there exist positive numbers, r, \tilde{c}_1 , \tilde{c}_2 such that

$$\widetilde{c}_1 I(\|x\| \leqslant r) \leqslant K(x) \leqslant \widetilde{c}_2 I(\|x\| \leqslant r), \tag{3}$$

where I(A) is the indicator function of set A. We establish the following

Theorem 1. Suppose that $E|Y|^p < \infty$ for some p>1, kernel K satisfies condition (3), $\alpha \in \left(\frac{1}{p}, 1\right)$ is a constant, $\lim_{n\to\infty} h_n=0$, and $\inf_n \{h_n^d/n^{\alpha-1}\}>0$. Then we have

$$m_n(X) \rightarrow m(X)$$
 a. s. as $n \rightarrow \infty$. (4)

Theorem 2. Suppose that $E\{\exp(t|Y|^{\lambda})\}<\infty$ for some $\lambda>0$ and t>0, kernel K satisfies condition (3), $\alpha>\frac{1}{\lambda}$ is a constant, $\lim_{n\to\infty}h_n=0$, and $\inf_n\{nh_n^d/(\log n)^{1+\alpha}\}>0$, then (4) is true.

It is remarkable that the conditions of these theorems impose no specific restrictions on the distribution μ of X.

§ 2. Proof of the Theorems

For simplicity, we use the following symbols in this paper:

c>0 denotes a contant;

c(x) > 0 denotes a constant depending upon x;

 $c(x, \Delta) > 0$ denotes a constant depending upon x and Δ , where $\Delta = (X_1, X_2 \cdots)$. (These constants can be assumed to be different values in their appearance, even within the same expression.)

 μ denotes the distribution of X; F denotes the support of μ ; S_{ρ} -the closed sphere of radius ρ centered at x.

Lemma 1. Suppose that
$$\int |f(x)|^p \mu(dx) < \infty$$
 for some $p > 0$, then
$$\lim_{\rho \to 0} \int_{S_\rho} |f(u) - f(x)|^p \mu(du) / \mu(S_\rho) = 0, \quad \text{for} \quad a. \ e. \ x(\mu). \tag{5}$$

We emphasize that (5) is true for both the norms mentioned ealier. Refer to [2], p. 191, example 20.

Lemma 2. Let $h=h_n$ be a sequence of positive numbers with $\lim_{n\to\infty} h=0$. For all c>0, there exists a nonnegative function g with $g(x)<\infty$ such that

$$h^d/\mu(S_{ch}) \rightarrow g(x)$$
 as $n \rightarrow \infty$, a. e. $x(\mu)$. (6)

Refer to the proof of [1], Lemma 2.2.

Lemma 3. [8] Let $r. v. Y \sim B(n, p), 0 \epsilon > 0$, we have

$$P\left(\frac{Y}{n} - p \le -\varepsilon\right) \le \exp(-n\varepsilon^2/(2p+\varepsilon)). \tag{7}$$

There exists a similar result for $P\left(\frac{Y}{n}-p\geqslant s\right)$.

Proof of the Theorems. In the following we shall make repeatedly use of Lemma 1 and Lemma 2. On each special occasion of its use, there is an exceptive set on which the related formula may not be true, these exceptive sets sum up to α μ -null set. For simplicity of writing we suppose that this set is empty, this can be done without loss of generality. Take $x \in F$. Put $A_i = \{\|X_i - x\| \le rh\}$,

$$N = \sum_{j=1}^{n} I(A_{j}), p_{n} = \mu(S_{rh}).$$

By(3)

$$J_n(x) \triangleq \left| \sum_{i=1}^n W_{ni}(x) (m(X_i) - m(x)) \right| \leq \tilde{c}_2 / \tilde{c}_1 \cdot N^{-1} \sum_{i=1}^n |m(X_i) - m(x)| I(A_i). \tag{8}$$

Write g(u) = |m(u) - m(x)|. Let

$$U_n(x) = N^{-1} \sum_{i=1}^n I(A_i) |m(X_i) - m(x)| = N^{-1} \sum_{i=1}^n I(A_i) g(X_i),$$
 (9)

$$\widetilde{E}U_n(x) = E\{U_n(x) | I(A_1), \dots, I(A_n)\}.$$
(10)

Using lemma I, we have

$$\widetilde{E}U_{n}(x) = N^{-1} \sum_{i=1}^{n} I(A_{i}) \int_{S_{rh}} |m(u) - m(x)| \mu(du) / \mu(S_{rh})$$

$$= \int_{S_{rh}} |m(u) - m(x)| \mu(du) / \mu(S_{rh}) \rightarrow 0, n \rightarrow \infty.$$
(11)

We proceed to show that

$$\lim_{n\to\infty} U_n(x) = 0 \quad \text{a. s.} \tag{12}$$

Write $g_j = g(X_j)$, $\log_2 n = \log \log n$, and take $d_n = \log n \log_2 n$, $c_j = j^{1/p}$ (in Theorem. 1) or $2(1/t \log j)^{1/\lambda}$ (in Theorem. 2).

Let

$$g'_{j} = g_{j}I(g_{j} > c_{j}), \ U'_{n} = N^{-1} \sum_{j=1}^{n} I(A_{j})g'_{j},$$

$$g''_{nj} = g_{j}I(N^{-1}I(A_{j})g_{j} \leqslant d_{n}^{-1}), \ U''_{n} = N^{-1} \sum_{j=1}^{n} I(A_{j})g''_{nj},$$

$$g'''_{nj} = g_{j} - g'_{j} - g''_{nj}, \ U'''_{n} = N^{-1} \sum_{j=1}^{n} I(A_{j})g'''_{nj}.$$
(13)

Since $|y|^p$ is a convex function of y for p>1, and for fixed t>0 and $\lambda>0$, $\exp(ty^{\lambda}) I(y>a)$ is a convex function of $y\in(a, +\infty)$ for snfficiently large a, from the Jensen's inequality it is easy to see that $E|g(X_1)|^p<\infty$ or $E\{\exp(t|g(X_1)|^{\lambda})\}<\infty$ according to the conditions of Theorem 1 or Theorem 2

$$\sum_{i} P(g_{i}>c_{i})<\infty$$

respectively. Hence

and by Borel-Cantelli's lemma, we have

$$P(g_{i}>c_{i}, i. o.)=0.$$

Therefore

$$\sum_{j=1}^{\infty} g_j^2 I(g_j > c_j) < \infty \qquad \text{a. s.}$$
 (14)

By lemma 2, we have

$$np_n = n\mu(S_{rh}) \geqslant c(x) \cdot n^{\alpha}, \ \forall n, \tag{15}$$

in the case of Theorem 1, and

$$np_n \geqslant c(x) (\log n)^{1+\alpha}, \ \forall n,$$
 (15')

in the case of Theorem 2. Therefore for any $\varepsilon > 0$, we have $\frac{1}{n\varepsilon} \leq \frac{1}{2} p_n$ for sufficiently large n. By Hoeffding's inequality, we have

$$\begin{split} &P(N^{-1} > \varepsilon) = P(N < 1/\varepsilon) = P\Big(\frac{N}{n} - p_n < \frac{1}{n\varepsilon} - p_n\Big) \\ &\leqslant P\Big(\frac{N}{n} - p_n < -\frac{1}{2}p_n\Big) \leqslant \exp\Big\{-n\Big(\frac{1}{2}p_n\Big)^2 \bigg/ \Big(2p_n + \frac{1}{2}p_n\Big)\Big\} \\ &\leqslant \exp\{-np_n/10\} \end{split}$$

when n is large enough. Hence, for any s>0,

$$\sum_{n=1}^{\infty} P(N^{-1} > \varepsilon) < \infty.$$

By Borel-Cantelli's lemma, we have

$$\lim_{n\to\infty} N^{-1} = 0 \qquad a. s. \tag{16}$$

From Schwarz's inequality, noticing (14), we have

$$(U'_n)^2 \leqslant N^{-2} \sum_{i=1}^n I(A_i) \sum_{j=1}^n g_j^2 I(g_j > c_j)$$

$$\leqslant \frac{1}{N} I(N > 0) \sum_{j=1}^n g_j^2 I(g_j > c_j) \to 0 \quad \text{a. s.}$$
(17)

Now, we proceed to prove

$$U_n'' \rightarrow 0$$
 a. s. (18)

Let $\widetilde{E}(\cdot) = E(\cdot | I(A_1), \dots, I(A_n)), Z_j = d_n I(A_j) N^{-1} [g''_{nj} - E(g''_{nj} | A_j)], \text{ then } \widetilde{E}Z_j = 0, Z_j \leq 1, j = 1, \dots, n.$

Suppose that $E|Y|^p < \infty$, or $E\{\exp(t|Y|^{\lambda})\} < \infty$, one can take b < p, $1 < b \le 2$, since $e^z \le 1 + z + |z|^b$ when $z \le 1$, we have

$$\widetilde{E}\{\exp(Z_j)\} \leqslant 1 + \widetilde{E}|Z_j|^b \leqslant \exp(\widetilde{E}|Z_j|^b).$$

When $I(A_1)$, ..., $I(A_n)$ are given, Z_1 , ..., Z_n are iid, hence

$$\widetilde{E}\{\exp[d_{n}(U_{n}''-\widetilde{E}U_{n}'')]\} \leqslant \exp\left\{d_{n}^{b}N^{-1}\sum_{j=1}^{n}I(A_{j})\widetilde{E}|g_{nj}''-\widetilde{E}g_{nj}''|^{b}\right\}
\leqslant \exp\left\{d_{n}^{b}N^{-b}\sum_{j=1}^{n}I(A_{j})\widetilde{E}g^{b}(X_{j})\right\} = \exp\left\{d_{n}^{b}N^{-(b-1)}I(N>0)\int_{S_{r,b}}g^{b}(v)\mu(dv)/\mu(S_{rh})\right\}
\leqslant \exp\{d_{n}^{b}N^{-(b-1)}I(N>0)g^{b*}(x)\},$$
(19)

where we have written

$$\varphi^*(x) = \sup_{\rho > 0} \int_{S_{\rho}} \varphi(u) \mu(du) / \mu(S_{\rho})$$

for any μ -integrable function $\varphi(x)$. Note that by Lemma 1 and the choice of x, we have $g^{b*}(x) < \infty$. By (15) or (15') and $d_n = \log n \log_2 n$, we know that for any s > 0, there exists $n_0 = n_0(x)$ such that

$$d_n^b \Big(rac{2}{np_a} \Big)^{b-1} \ g^{b*}(x) < rac{1}{2} \ d_n s$$

for $n \ge n_0$. So, by Hoeffding's inequality and Markov's inequality, we have

$$P(U_n'' - \widetilde{E}U_n'' \geqslant \varepsilon) \leqslant P\left(N < \frac{1}{2}np_n\right) + P\left(U_n'' - \widetilde{E}U_n'' \geqslant \varepsilon, N \geqslant \frac{1}{2}np_n\right)$$

$$\leqslant P\left(\frac{N}{n} - p_n < -\frac{1}{2}p_n\right) + e^{-d_n\varepsilon} \int_{N \geqslant \frac{1}{2}np_n} \widetilde{E}\left\{\exp\left[d_n(U_n'' - \widetilde{E}U_n'')\right]\right\} dP$$

$$\leqslant \exp(-np_n/10) + \exp(-d_n\varepsilon) \cdot \exp\left\{d_n^b(2/np_n)^{b-1}g^{b*}(x)\right\}$$

$$\leqslant \exp(-np_n/10) + \exp\left(-\frac{1}{2}d_n\varepsilon\right). \tag{20}$$

By (15') and by the choice of d_n , we get

$$\sum_{n} P(U_{n}'' - \widetilde{E}U_{n}'' \geqslant \varepsilon) < \infty, \text{ for any } \varepsilon > 0.$$
 (21)

By Borel-Cantelli's lemma

$$\limsup_{n\to\infty} (U_n'' - \widetilde{E}U_n'') \leq 0 \quad \text{a. s.}$$
 (22)

Recalling (11), we see that $\widetilde{E}U_n'' \rightarrow 0$ a. s., thus,

$$\limsup_{u\to\infty} U_n'' \leqslant 0 \qquad \text{a. s.,}$$

therefore, (18) is true.

Now we come to prove: $\lim_{n\to\infty} U_n^m = 0$ a. s. Putting

$$D_n = \{j: 1 \le j \le n, \ I(A_j) \cdot N^{-1} > d_n^{-1}\},$$
(23)

we have

$$N^{-1} \sum_{j=1}^{n} I(A_{j}) g_{nj}^{"'} \leqslant \sum_{j \in D_{n}} N^{-1} I(A_{j}) c_{j} \leqslant N^{-1} c_{n} \# (D_{n}).$$

Hence, for any $\varepsilon > 0$, in order to get $U_n''' > \varepsilon$, we must have

$$\#(D_n) \geqslant \varepsilon N c_n^{-1}. \tag{24}$$

Take a positive integer $k > \frac{1}{p\alpha - 1}$ in the case of Theorem 1, and k = 1 in another case, by $c_n = n^{1/p}$ (in Theorem 1) or $c_n = 2 \cdot (t^{-1} \log n)^{1/\lambda}$ (in Theorem 2), recalling (15) or (15'), we know that there exists $n_0 = n_0$ (x) such that

$$N \geqslant \frac{1}{2} np_n, U_n''' \geqslant \varepsilon \Rightarrow \#(D_n) \geqslant \varepsilon \frac{1}{2} np_n c_n^{-1} \geqslant k$$
 (25)

for $n \ge n_0$, and that

$$N \geqslant \frac{1}{2} np_n, j \in D_n \Rightarrow g_j > \frac{np_n}{2d_n}.$$
 (26)

Hence, when $n \ge n_0$, we get

$$P(U_n''' \geqslant \varepsilon) \leqslant P\left(N < \frac{1}{2} n p_n\right) + P\left(N \geqslant \frac{1}{2} n p_n, U_n''' \geqslant \varepsilon\right)$$

$$\leqslant P\left(N < \frac{1}{2} n p_n\right) + P\left(\#\left\{j : j \leqslant n, g_j > \frac{n p_n}{2 d_n}\right\} > k\right). \tag{27}$$

In the case of Theorem 1, since g_1, \dots, g_n are iid and $np_n \gg c(x)n^{\alpha}$, we have

$$P(U_n''' \geqslant \varepsilon) \leqslant P\left(N < \frac{1}{2} n p_n\right) + \left\{\sum_{j=1}^n P\left(g_j > \frac{n p_n}{2d_n}\right)\right\}^k$$

$$\leqslant P\left(N < \frac{1}{2} n p_n\right) + \left\{n\left(\frac{2d_n}{n p_n}\right)^p E |g_1|^p\right\}^k$$

$$\leqslant P\left(N < \frac{1}{2} n p_n\right) + \left\{n d_n^p n^{-p\alpha} c(x)\right\}^k$$

$$\leqslant \exp(-n p_n/10) + c(x) d_n^{pk} n^{-(p\alpha-1)k}, n \geqslant n_0.$$
(28)

In the case of Theorem 2, from (15'), there exsits $n'_0 = n'_0(x)$ such that

$$t \left| \frac{np_n}{2d_n} \right|^{\lambda} \geqslant 3 \log n \text{ for } n \geqslant n'_0.$$

Choosing k=1 in (27), we get

$$P(U_n''') \geqslant \varepsilon \geqslant P\left(N < \frac{1}{2} n p_n\right) + n P\left(g_1 > \frac{n p_n}{2d_n}\right)$$

$$\leq P\left(N < \frac{1}{2} n p_n\right) + n \cdot \exp\left(-t \left|\frac{n p_n}{2d_n}\right|^{\lambda}\right) E\left[\exp(t |g_1|^{\lambda})\right]$$

$$\leq \exp(-n p_n/10) + c(x) n \exp(-3 \log n)$$

$$\leq \exp(-n p_n/10) + c(x) n^{-2}, \ n \geqslant n'_0. \tag{28'}$$

From (28) or (28'), we get

$$\sum_{n} P(U_n'') \geqslant \varepsilon > 0, \text{ for any } \varepsilon > 0.$$
 (29)

By Borel-Cantelli's lemma and $U_n'' \geqslant 0$, we have

$$\lim_{n\to\infty} U_n''' = 0 \qquad \text{a. s.} \tag{30}$$

From (17), (18), (30) and $U_n(x) = U'_n + U''_n + U'''_n$, we know that (12) is true.

In the following we prove that

$$T_n(x) \triangleq \sum_{j=1}^n W_{nj}(x) (Y_j - m(X_j)) \rightarrow 0$$
 a. s. (31)

as $n\to\infty$, where $W_{nj}(x)=K((X_j-x)/h)/\sum_{i=1}^n K((X_i-x)/h)$ has been defined in (2).

Write $e_j = Y_j - m(X_j)$, take c_j , d_n as above, and let

$$e'_{j} = e_{j}I(e_{j} > c_{j}), \quad T'_{n} = \sum_{j=1}^{n} W_{nj}e'_{j},$$

$$e''_{nj} = e_{j}I(W_{nj}e_{j} \leqslant d_{n}^{-1}), \quad T''_{n} = \sum_{j=1}^{n} W_{nj}e''_{nj},$$

$$e'''_{nj} = e_{j} - e'_{j} - e''_{j}, \quad T'''_{n} = \sum_{j=1}^{n} W_{nj}e'''_{nj}.$$

$$(32)$$

Similarily, we get

$$\sum_{i} P(e_{i} > c_{i}) \leq \sum_{i} P(|Y_{i}| < \frac{1}{2} c_{i}) + \sum_{i} P(|m(X_{i})| > \frac{1}{2} c_{i}) < \infty,$$

$$P(e_j{>}c_j, ext{ i. o.}){\,=\,}0,$$
 $\sum_{j=1}^\infty e_j^2 I(e_j{>}c_j){<}\infty$ a. s..

By Schwarz's inequality and (16), we have

$$(T'_n)^2 \leqslant \sum_{j=1}^n W_{nj}^2(x) \sum_{j=1}^\infty e_j^2 I(e_j > c_j)$$

$$\leqslant (\tilde{c}_2/\tilde{c}_1)^2 N^{-1} I(N > 0) \sum_{j=1}^\infty e_j^2 I(e_j > c_j) \xrightarrow{\mathbf{a.s.}} 0. \tag{33}$$

Writing $Z_j = d_n W_{nj} e_{nj}^{"}$, we have $Z_j \leq 1$. When $\Delta = (X_1, X_2, \cdots)$ is given, Z_1, \cdots, Z_n are conditionally independent, and $E(Z_j | X_j) \leq 0$.

Assume that $1 < b \le 2$, write $g_b(X_j) = E(|Y_j|^b | X_j)$, then we have as before

$$E(e^{Z_{j}}|X_{j}) \leq 1 + E(|Z_{j}|^{b}|X_{j}) \leq \exp\{E(|Z_{j}|^{b}|X_{j})\},$$

$$E\{\exp(d_{n}T_{u}'')|\Delta\} \leq \exp\left\{cd_{n}^{b}\sum_{j=1}^{n}W_{nj}^{b}g_{b}(X_{j})\right\}$$

$$\leq \exp\left\{cd_{n}^{b}N^{-b}\sum_{i=1}^{n}I(A_{j})g_{b}(X_{j})\right\}.$$
(34)

Suppose p>1, by $\alpha>p^{-1}$, one can take b>1 sufficiently close to 1 such that q=p/b >1 and $\alpha>1/q$. Suppose $\lambda>0$, by $\alpha>\frac{1}{\lambda}$, one can take b>1 sufficiently close to 1 such that the inequality $\alpha>1/\nu$ is valid for $\nu=\lambda/b$. In this case, $E|g_b(X_j)|^q \leq E|Y_j|^p < \infty$, and $1/q < \alpha < 1$ for the occasion of Theorem 1. For the case of Theorem 2, we have $E\{\exp(t|g_b(X_j)|^\nu)\}<\infty$, and $\alpha>1/\nu$. Therefore, from the proof of (12), we obtain

$$N^{-1} \sum_{i=1}^{n} I(A_i) g_b(X_i) \rightarrow g_b(x) \quad \text{a. s,}$$
 (35)

as $n \rightarrow \infty$. Writing $\mu^{\infty} = \mu \times \mu \times \cdots$, we have

$$cN^{-1}\sum_{i=1}^{n}I(A_{i})g_{b}(X_{i}) \leqslant c(x, \Delta)$$
 a. e. $\Delta(\mu^{\infty})$. (36)

Just as before, from Hoeffding's inequality

$$\sum_{n} P(N \leqslant \frac{1}{2} n p_n) < \infty.$$

By Borel-Cantelli's lemma

$$P\left(N \leqslant \frac{1}{2} n p_n, \text{ i. o.}\right) = 0. \tag{37}$$

Hence, when n is sufficiently large

$$N > \frac{1}{2} n p_n$$
, a. e. $\Delta(\mu^{\infty})$. (38)

From (34), recalling $np_n \geqslant c(x) (\log n)^{1+\alpha}$, $d_n = \log n \log_2 n$, for a. e. $\Delta(\mu^{\infty})$ and given s > 0, there exists $n_0 = n_0(x, \Delta)$ such that

$$P(T_n'') \ge |\Delta| \le e^{-d_n \varepsilon} E\{\exp(d_n T_n'') \mid \Delta\} \le e^{-d_n \varepsilon} \exp\{d_n^b N^{-(b-1)} I(N > 0) c(x, \Delta)\}$$

$$\le e^{-d_n \varepsilon} \exp\left\{d_n^b \left(\frac{2}{np_n}\right)^{b-1} c(x, \Delta)\right\} \le e^{-d_n \varepsilon} e^{d_n \varepsilon/2} = \exp\left(-\frac{1}{2} d_n \varepsilon\right) \quad (39)$$

for $n \ge n_0$. Here, we get the second inequality by (36). By (38) we get the third one. From (39), we have

$$\sum_{n} P(T_n'' \geqslant \varepsilon \mid \Delta) < \infty, \text{ for any } \varepsilon > 0.$$
 (40)

Hence, by Borel-Cantelli's lemma, we have

$$P(\limsup_{n\to\infty} T_n''>0 | \Delta) = 0$$
, for a.e. $\Delta(\mu^{\infty})$. (41)

By Fubini's theorem, we have

$$P(\limsup_{n\to\infty} T_n''>0)=0, \tag{42}$$

i. e,

$$\limsup_{n\to\infty} T_n'' \leqslant 0 \quad \text{a. s.,} \tag{43}$$

For the proof of $\limsup_{n\to\infty} T_n''' \leq 0$ a. s., write

$$D_n = \{j: 1 \le j \le n, \ W_{n,j}e_j > d_n^{-1}\}. \tag{44}$$

Then

$$\sum_{j=1}^{n} W_{nj} e_{nj}^{"} \leq \sum_{j \in D_{n}} (\tilde{c}_{2}/\tilde{c}_{1}) N^{-1} I(A_{j}) c_{j} \leq (\tilde{c}_{2}/\tilde{c}_{1}) N^{-1} c_{n} \# (D_{n}).$$

Therefore, in order to get $T_n''' \geqslant \varepsilon$ for any $\varepsilon > 0$, we must have

$$\#(D_n) \geqslant \tilde{c}_1 \tilde{c}_2^{-1} \varepsilon N c_n^{-1}. \tag{45}$$

Taking a positive integer $k > \frac{1}{p\alpha - 1}$, just as before, there exists $n_0 = n_0(x)$ such that

$$N \geqslant \frac{1}{2} n p_n, \quad T_n''' \geqslant \varepsilon \Rightarrow \#(D_n) \geqslant k$$
 (46)

for $n \ge n_0$, and

$$N \geqslant \frac{1}{2} np_n, j \in D_n \Rightarrow e_j > \tilde{c}_1 np_n / (2d_n \tilde{c}_2) \triangleq cnp_n / d_n.$$

$$(47)$$

Hence, when $n \ge n_0$, we have

$$P(T_n''' \geqslant \varepsilon) \leqslant P\left(N < \frac{1}{2} np_n\right) + P\left(N > \frac{1}{2} np_n, T_n''' \geqslant \varepsilon\right)$$

$$\leqslant P\left(N < \frac{1}{2} np_n\right) + P(\#\{j: j \leqslant n, e_j > cnp_n/d_n\} > k). \tag{48}$$

In the case of Theorem 1, since e_1, \dots, e_n are iid, and $np_n \ge c(x)n^a$, we have

$$P(T_n^{""} \geqslant \varepsilon) \leqslant P\left(N < \frac{1}{2} np_n\right) + \left\{\sum_{j=1}^n P(e_j > cnp_n/d_n)\right\}^k$$

$$\leqslant P\left(N < \frac{1}{2} np_n\right) + \left\{n(d_n/(cnp_n))^p E |e_1|^p\right\}^k$$

$$\leqslant P\left(N < \frac{1}{2} np_n\right) + \left\{nd_n^p n^{-p\alpha} c(x)\right\}^k$$

$$\leqslant \exp(-np_n/10) + c(x) d_n^{pk} n^{-(p\alpha-1)k}, n \geqslant n_0. \tag{49}$$

In the case of Theorem 2, take k=1 in (48). Similar to the proof of (28), there exists $n'=n'_0(x)$ such that

$$P(T_n^{\prime\prime\prime} \geqslant \varepsilon) \leqslant \exp(-np_n/10) + c(x)n^{-2} \tag{49'}$$

for $n > n'_0$. From (49) and (49'), we get

$$\sum_{n} P(T_n''' \geqslant \varepsilon) < \infty \text{ for any } \varepsilon > 0.$$
 (50)

Hence, by Borel-Cantelli's lemma, we have

$$\limsup_{n\to\infty} T_n''' \leqslant 0 \qquad \text{a. s.} \tag{51}$$

From (33), (43), (51) and $T_n(x) = T'_n + T''_n + T'''_n$, we have

$$\limsup_{n\to\infty} T_n(x) \leqslant 0 \quad \text{a. s.,} \tag{52}$$

Replacing e_i by $-e_i$, (52) implies

$$\lim_{n\to\infty}\inf T_n(x)\geqslant 0 \quad \text{a. s..}$$
(53)

From (52) and (53), we get (31).

Finally by (8), (9), (12) and (31), noticing

$$| m_n(x) - m(x) | \leq \left| \sum_{i=1}^n W_{ni}(x) \left(m(X_i) - m(x) \right) \right| + \left| \sum_{i=1}^n W_{ni}(x) \left(Y_i - m(X_i) \right) \right|$$

$$= J_n(x) + |T_n(x)|,$$
(54)

for $x \in F$, we have

$$\lim_{n\to\infty} |m_n(x) - m(x)| = 0 \quad \text{a. s.}$$
 (55)

Since F is the support of μ , we have $\mu(F)=1$. By Fubini's theorem, we get (4). This completes the proof of Theorem 1 and 2.

References

- [1] Devroye, L., On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates, Ann. Statist., 9 (1981), 1310—1319.
- [2] Wheeden, B. L. & Zygmund, A., Mcasure and Integral, Marcel Dekker, New York, 1977.
- [3] Hoeffding, W., Probability Inequalities for sums of Bounded Random Variables, J. Amer. Statist. Assoc., 58 (1963), 13-30.