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Abstract

Let (X, Y), (X1, Y1), =+, (Xa, ¥») be i i. d. random vectors taking values in Rd‘xR
with E(|Y])<oo. To estimate the regression function m(x)=E(Y|X=2x), we use the

kernel estimate my, () EK ( X;» L )Y ZK < X;}—m) » where K () is a kernel function -

and 4, a window width. In this paper, we establish the strong consistency of m,(z) when
E(|Y]?) <o for some p>1 or E{exp(t|Y|*)} <co for some A>0 and ¢>0. It is remakable
that other conditions imposed here are independent of the distribution of (X, ¥).

§ 1. Introduction

Let (X, Y), (X4, Yy, -, (X, Y,) be independent identically distributed
R*x R valued random vectors with B | Y| <oo. The regression function
m(w) =B | X =u)
is estimated by

mn (w) = é WM (w) Yb (1)

where W ,,(@)is a Borel measurable function of # and X3, X,, -+, X,. The so~
called kernel estimate can be obtained by putting

W) =K (2 [Sr(Eme), | (@)

where K () is a given kernel den51ty on R* and h=h,, is a positive number depen-
ding upon n only; for deﬁﬁition, we treat 0/0 in (2) as 0.

The fundaiﬁental problem of large-sample nonparametric regression theory is
to find the conditions under which m,(®) is a strong consistent estimate of m(s)..
The first general result in thig direction belongs to Devroye (1981[1]). He proved
the sti'ong consistency of 1, () under a series of restrictions including the crucial
one that ¥ is bounded. Recently we succeeded in getting rid of this excessively-
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stringent condition, and establish the strong consistency of m,(#) under more

natural and reasonable conditions. |
In this paper, either the ordinary Euclidean norm or the maximum compo-

nent norm || =max [a;.“)lcan be taken as the norm of &= (&, ++-, A®), Such as in

[1], the kernel K () satisfies -
(i) there exist positive numbers r, €1, €5 sSuch that
eI (Jo] <r) <K (w)<caI (o] <r), - (8)
where I(4) is the indicator function of set-A. We estabish the following
Theorem 1. Suppose that E|Y |?<oo for some p>>1, kernel K satisfies cond@-

tion (8), a€ <-— 1) s @ constant, lim h,=0, and 1nf {h2/n*1}>0. Then we have

n—oo

m,(X)—>m(X) a.s. asn—>c0, 4)
Theorem 2. S’uppose that E{exp (t|Y |*)}<oo for some A>0 and £>0, kernel

K satisfies condzmon (3), a>—%— s a constant, lim A, =0, and 1nf {nh / (log n)““} > 0,

* then (4) is true. 4
Itis remarkable that the conditions of theSe theorems impose no specific restric-
tions on the distribution w of X.

| § 2. Proof of the Theorem_s

For simplicity, we use the following symbols in this paper:
¢>0 denotes a contant; _ »
¢(#) >0 denotes a constant depending upon ;
¢(w, 4) >0 denotes a constant dependmg upon o and 4, where 4= (X 1, Xa*)e
(These constants can be assumed 10 be different values in thelr appearance, even
within the same expression.)

w denotes the distribution of X; F denotes the support of u;

S ,~the closed sphere of radius p centered at .

Lemma 1. Suppose that J | f (@) |Pu(dz) <oo for some p>0, then
limf £ —F @) 1%a() /u(8) =0, for a.o.0(). ®)

We emphasuze that (5) is true for both the norms mentioned eaher Refer to

[2] , p. 191, example 20.
Lemma 2. Let h= b be @ sequence of posq,tfwe numbefrs with lim h=0. For wll

-0

¢>-0, there exists @ nonnegative function g with g(w)<<oo such that
B/u(Sa)>g(®) s n->00, 1. e 2(W). ®
Refer to the proof of [1], Lemma 2.2. ’
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Lemma 3.8  Lei r. v. Y ~B(n, p), 0<p<1, for any é>0, we have
P (L p=—c)<oxp(—ns’/@p+s)). )
. .. Y
There exists a similar result for P (-;{—p> s)

Proof of the Theorems. In the following we shall make repeatedly use of
Lemma I and Lemma 2. On each special occasion of its use, there is an exceptive
seb on which the related formula may not be true, these exceptive sets sum up to a
u—null set. For simplicity of writing we suppose that this set is empty, this can be
done without loss of generality. Take # € F. Put 4,={|X i— | <rh},

N =3 I(4), pr=p(Sa)-
By (3) |
7o) & | 3] Wu(@)(m(X)—m(@))| <ia/6s N Hm(X) ~m(z) [ 1(4).  ©)
Writo g(u) = | m(u) —m(@) . Lot "

C U@ =N R4 Im(X)—m(@)| =N 3 I(4)g(X), )
AU, () =E{U,() | I(41), =, I(4a)}, (10)

Using lemma 1, we have

U@ =N 14D m(e) ~m(o) 1)1 (5

=, Im@) —m(@) | (@) /u(Sa) >0, n>o0, (11)

We proceed to show that : '
imU,(2)=0 a.s. (12)

erte 9i=9(Xy), loggn—-loglogn, and take d,=1log n loga n, ¢;=4? (in Theorem. 1)
or 2(1/t logj)*/*(in Theorem. 2).
Let

=g;I(g;>¢;), Up=N ”igil I(4p9s,
=gl (NI (4;)9,<d;"), U= ’12 I(A47) g, ; (13)

g%—gj gnh U,” Nﬁi 2 I(‘A >g”,

Since |y|? is a convex function of- gy for p>1, and for fixed #>0 and
2>0, exp (ty*) I (y>a) is a convex function of y€ (a4, +oo) for snfficiently
large @, from the Jensen’s inequality it is easy to see that F|g(X,)|?<oo or
B {exp (¢]g(X41)|*)}<oo according t0 the conditions of Theorem 1 or Thesrem 2

| ;P(91>05) <oo,

respectively. Hence
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and by Borel-Cantelli’s lemma, we have
P(gy>¢;, i. 0.)=0,

Therefore ,

g @I(g>e)<co  a.s. | (14)
By lemma 2, we have

P, =nw(Sm) =c (@) «n®, Vn, , (15)

in the case of Theorem 1, and _ :
| np,=>c (@) (log n)***, Vn, (15)

in the case of Theorem 2. Therefore for any >0, we have 7&18—<%— p. for sufficiently-

large n. By Hoeffding’s inequality, we have

P(N~>8)~P(N<1/8)=P(X o< )

_ -p ( 17\:“_1"” — _;__ p”><exp{-n(%p,,>2 /<2pn+%pn)}

<exp{-np,/10} |
when n is large enough. Hence, for any s>0,

PS8y <o,

By Borel-Cantelli’s lemma, we have ‘
~ lim N*=0 a.s. (16)

n—ro0

From Schwarz's inequality, noticing (14), we have
ULV 2 I(A) 2931 (95> 01)

<71v“ I(N>0)§1 BI(g>e)->0  a.s. (17,

Now, we proceed to prove . . .
U—0 a.s. (18)

Lot B(-)=E(+ |I(4s), -+, I(A2)), Zy=dI (4) N2 [gly—B(gly| 471, then. FZ,—
0, Z;<1, j=1, -, m, '

" Suppose that B|Y"|?<co, or E{exp(t|Y |*)}<co, one can take b<p, 1<b<2,
since ¢*<<1+2-+ |2|® when 2<<1, we have

Elosp(Z)}<i+E|Z;|*<exp(H|Z]").

When I(4y), -+, I(4,) are given, Zy, -+, Z, are iid, hence

Bexp[4,(U1— BT} <exp {RN 311(4) Bl gty— Tty '}

 <oxp{° S B (K| =exp{&N P IW>0) [ g (u(i) /() }

8,
<exp{@N-®VI(N>0)g"(v)}, ' - (19)
where we have written '
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7" (0) =sup| o) (du)/p (S,)
for any p~integrable function ¢ (). Note that by Lemma 1 and the choice of #, we
have ¢**(#) <oo. By (15) or (15") and d,=log nlogan, we know that for any &>0,
there exists ng=mny(z) such thab '

a(2)" o <dao

for n=>no. So, by Hoeflding’s inequality and Markov’s inequality, we have

P(U4~ BUL> ) <P (N <2np,)+P (U1~ BUL>s, N>3np,)

<p(T_po-1 p,,)+e—ans [ B, Ui-BuINP

N >1np
<exp(—np,/10) +exp(—d,z) -exp{di(2/ npn)" @)}
<exp(—np,/10) +exp(——%—dns). » (20)
By (15”) and by the choice of d,, we get _ |
S P(U— EU)>¢)<oo, for any ¢>0, (21)

By Borel-Cantelli’s lemma :
limsup(Uh~ EUD<0  a.s. (22)

Recalling (11), we see that KU"—0 a. s., thus,
limsup U<<0 a. s.,

U0
therefore, (18) is true.
Now we come to prove: lim Uy =0  a. s. Putting

n~ro0

_ .D,,={j:1<j<’)’b, I(-AJ) 'N—1>d;1}) (23)
we have

N 121 I(4)gh< 3 NI(A)o<N-tout (D),

Hence, for any &>>0, in order to gt U”>s, we must have
# (Dy)=eNe;™, (24)

Take a positive integer %> paj:_ 1 in the case of Theorem 1, and k=1 in another

case, by c,~n'/? (in Theorem 1) or ¢,=2¢ (¢ 1logn)/* (in Theorem 2), recalling
(15) or (15'), we know that there exists ng=ng (#) such that

N >% np,, UY>e= (D) s o i >h (25)
for n>=ne, and that
1 np,, ' o |

Hence, when n>no, we get
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4 . - 1 | 1 "
PU,>s) <_AP(N«7npn>+P <N>—np,,, " >8) :
1 . =
| o)+ (#{ji<n, 0> 50 1), (20)
In the case of Theorem 1, since g4, -+, g, are iid and npn>c(w)n we have

/r/> < = NPy, }
P(U; e)\P<N< : np,,)+{§ P( g5> oo )
1 2d,,
<P (.N<—2-npn>+{' <m.o ) E|gi }
<P (N <%mon>+ {n din=?% (w)}
<exp(—np,/10) —l—ciw)d Do~ @2=1k  n>ny, (28)
In the case of Theorem 2, from (15"), there exsits ny=mny(s) such that

| np,
b2,

<p(N<

A
. =>8logn for n>np,

" Choosing k=1 in (27), we gét

P( ZI>8)‘<P<N<%Wn>+n'P<"gi>_g%>

NPy

") Bloxp(elga| )]
<exp(—np,/10) +c(2)nexp(—8logn)

<P <N<—12— np,,)-l—n-exp(

<exp(—np,/10) +c(z)n~2, n>=>ng, (28")
From (28) or (28'), we get o ‘
S P(U, =¢) <oo, for any >0, ~(29)

By Borel-Cantelli’s lemma and U’ >0, we have
LmUY=0  a.s. (80,

From (17), (18), (80) and U,(«) =U,+U.-+U", we know that (12) is true.
In the followmg We, prove that

7,83 WM(m) Wy=m(X))>0 a5 (31)
as n—>oo, where W,;(z) =K((X;-:—a;)/h)/2 K((X,—w)/h)has been defined .in(2) .
Write e,—Y — m(X ;), take c;, d, as above, and let |
¢y=e;I(e;>c;); T, E W €5,
ely=¢;1 (W,,,e,<cz 1), T = 2 W aiths, ' - (82)
ehi=e;—ej—ej, T”’—E W,,,el{’j |

Slmﬂarlly, we get

EP(01>01)<2 P(lyil%_ 05)'*‘2 P(lm(xf)|>—— 03><
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P(e;>c;, i. (‘).)=O,«
g el (e;>e)<co  a: 8.
By Schwarz’s inequality and (16), we have
TY<Z W) 3 el (e>0)
< (G2/64)? N“U(N>0)§1 &I (e;>¢;) —=> 0. (33)

Writing Z;=d,W ..y, we have Z;<1. When 4=(Xy, Xa, --) is given, Zy, -, Z,
are conditionally independent, and E(Z;| X;)<0. '
Assume that 1<b<<2, write g,(X,;)=E(|¥;|°| X,), then we have as before

E(e#| X)<1+E(|Z,|°| X ;) <exp{E(|Z;|*| X))},
 Boxp(dT5) | ay<exp otz 3 Wen(X )}

<ooplaN+ 314y mx)}. e
Suppose p>1, by a>p™2, one can take b>1 sufficiently close to 1 such that ¢=p/b
>1 and «>1/q. Suppose A>0, by a>—}7, one can fake .b>l sufficiently close 1o I

such that the inequality a>1/v is valid for »=»A/b. In this case, B|g,(X))|0<
E|Y;|?< oo, and 1/g<a<1 for the occasion of Theorem 1. For the case of Theorem
2, we have E{exp(t|g,(X;)]*)} <o, and «>1/v. Therefore, from the proof of (12),

we obtain |
N3 IU)G(X)>e(@) a5, (35)
as n—>co. Writing p,°°=,u, X X+, we have |
BT RE)<e, &) o A, (36)
Just as before, from Hoeffding’s inequality
B P(I<gom)<e.
By Borel-Cantelli’s lemma _
| P(Nv<-ié— NPy, i o.)=0, : (87
Hence, when n is sufficiently large |
N>% uy . 0. A7), (38)

From (84), recalling np,>c¢ () (log n)**% d,=logn logan, for a. e. 4(u™) and given
8>>0, there exists.ng=ne(», 4)such that
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P(Th>¢e|4)<e ™ E{exp(d, ) | 4} <e ™*oxp{diN - 1)I(N>O)o(cv A}

-1 1
~ns b —ne,dn?/3 —
<e exp{al,,(an n) c(w, A)}<e ¢ —exp( 5 d,,s) (39)
for n>ny. Here, we got the second inequality by (86). By (88) we get the third one.

From(39), we have

n~rco

NPT =>¢e|d)<oo, for any &>0. (40)
Hence, by Borel-Cantelli’s lemma, we have ‘
P(llmsup T”>OIA) 0, for a.e. 4(u™). (41)y
By Fub1n1 8 theorem, we have v
P(lim supT’;,>0) =0, . (42)
i. o,
hmsup <0 a.s, (43)

For the proof of imsup 7/<0  ‘a. s., write

D,,=.{j:1<j<’n, W,.,-e,->d;1}, : (4:4:)
Then '

2 Wniem < 2 (cﬁ/ci)N 1I<-AJ')CJ< (62/01) N lcn-ﬁ: (Dn)

Therefore in order 0 get Tﬁ’,’ =¢ for any ¢>0, we must have

:H: (.Dn) >0102 SNC,,_ . : (4:5)
Taking a positive integer b> pal_ T just as béefore, there exists no=mny(x) such that
N >—;— np,, Th=e=1(D,) =k | - (46)
for n>=ny, and _ ,
N>% 1y, § € Dy=ve;> C1npy/ (20,69) A onpy/d,, (47)

Hence, when nzn,, we have

P(T">e)<P <N <-§— np,,>+P (N >% D, ::’>s)

<P (N <3mp.)+PE{jij<n, e>om,/d}>b).  (48)
In the case of Theorem 1, since ¢4, -+, €, are iid, and np,>c¢(x)n* we have
n %
P(Ti=e)<P (N <—%—npn> + {2::1 P(e,>cfnp,,/d,,,)}
=

<P (N <5 mp,)+{n(da/ (onpr) VB es| >

L
<P (¥ <—§-np,,)+{ndgn-%(m>} |
<oxp( —npn/10) +0(@)dPn-"% ppe (49)

In the case of Theorem 2, take k=1 in (48). Similar to the proof of (28), there
exists n'=ny(w) such that
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P(T>¢) <exp(—np,/10) +c(z)n™ (49')
for n>np. From (49) and (49'), we get
SV P(T) >¢) <co for any ¢>0. (50)
Hence, by Borel-Cantelli’s lemma, we have |
_ limsup 7, <0 a. s. (51)
From (83), (48), (61) and 7,(2) =T+ T,+T,, we have
limsup T, (2) <O a.s., - (62)
Replacing ¢; by —e;, (52) implies
Yiminf7,(2)=>0 a. s.. (63)
From (52) and (53), we get (31).
Finally by (8), (9), (12)and (31), noticing
(10(@) = (2) | < | 3 W) (1 (XD ~m(@)) |+ |3 W (o) (¥, =m (X))
=J (@) + | Tu(2) |, (54)
for s € F, we have .
lim |m,(z) —m(®) | =0 a.s. (55)

Since F ig the support of wu, we have w(F)=1. By Fubini’s theorem, we get (4). |

This completes the proof of Theorem 1 and 2.
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