THE ISOMORPHISMS OF SYMPLECTIC GROUPS OVER Φ -SURJECTIVE RINGS

ZHANG HAIQUAN (张海权)* WANG LUQUN(王路群)**

Abstract

Let R and R_1 are Φ -surjective rings with 2 as a unit. Then Λ : $S_{p_n}(R) \to S_{p_{n1}}(R_1)$ is a group isomorphism if and only if $n=n_1$, there exists a ring homomorphism $\sigma: R \to R_1$ and Λ has the standard form $\Lambda X = PX^{\sigma}P^{-1}$, for all X in $S_{p_n}(R)$, where P is a generalized symplectic matrix.

Let R be a commutative ring with 1, Max (R) be the set of all its maximal ideals. For any ideal A in R, we have a natural ring homomorphism of R onto R/A which is denoted by λ_A . As is well known

$$R \rightarrow \prod_{M \in \max(R)} R/M$$
 by $x \mapsto (\cdots, \lambda_M x, \cdots)$

is a ring homomorphism. This homomorphism, in general, is not surjective. If there exists $\{M_t\}_{t\in T}\subseteq \operatorname{Max}(R)$ such that

$$\Phi: R \to \prod_{t \in T} R/M_t$$

is a surjective homomorphism, and $M \subseteq \bigcup_{t \in T} M_t$ for each M in Max (R), then we call R a Φ -surjective ring. Clearly, the semi-local rings, the infinite complete direct product of fields are all Φ -surjective rings.

The set $\{M_t\}_{t\in T}$ in above definition is called the defining system of ideals of the Φ -surjective ring R.

It is easy to see that, Ker $\Phi = J(R)$ and $x \in R^* \Leftrightarrow \Phi(x) \in (\prod_{t \in T} R/M_t)^* \Leftrightarrow \lambda_t x \neq 0$ for all $t \in T$, where J(R) is the Jacobson radical of R, R^* the set of units in R.

In this note, we always assume that R and R_1 are Φ -surjective rings with 2 as a unit, $S_{p_n}(R)$ and $S_{p_n}(R_1)$ are symplectic groups with n, $n_1 \ge 4$, and $\{M_t\}_{t \in T}$, $\{N_s\}_{s \in S}$ are the defining system of ideals of R and R_1 respectively.

We shall determine the isomorphisms between two symplectic groups. The main result is the following

Theorem Under the above assumption, $\Lambda: S_{p_n}(R) - S_{p_{n_1}}(R)$ is a group isomor-

Manuscript received February 16, 1983.

^{*} Department of Mathematict, North East Normal University, Chang Chun, Jilin, China.

^{**} Department of Mathematics, Heilongjing University, Haerbin, Heilongjing, China.

phism if and only if $n=n_1$, there exists a ring homomorphism $\sigma: R \rightarrow R_1$ and Λ has the form

 $AX = PX^{\sigma}P^{-1}$, for all $X \in S_{p_n}(R)$,

where P is some generalized symplectic matrix.

Prerequisites and Notations

We use $E_{ij}(a)$ $(a \in R)$ to denote the $n \times n$ matrix with the element a in the (i, j) position and 0, other wise.

$$Q_{ij} = I + E_{ii}(-1) + E_{jj}(-1) + E_{ij}(1) + E_{ij}(-1),$$

$$T_{ij}(a) = I + E_{ij}(a), i \neq j, a \in R.$$

Let $n=2\nu$ and

$$J_{j1} = J'_{1j}, \ n = 1, \dots, \nu, \ j = 2, \dots, \nu$$

$$(GS_{p_n}(R) = \left\{ X \in GL_n(R) \mid X = P \begin{pmatrix} I^{(\nu)} \\ aI^{(\nu)} \end{pmatrix}, \ P \in S_{p_n}(R), \ a \in R^* \right\}^*)$$

$$GS_{p_n}(R, A) = \left\{ X \in S_{p_n}(R) \mid \lambda_A X = aI, \ a^2 = 1, \ a \in R/A \right\},$$

$$SS_{p_n}(R, A) = \left\{ X \in S_{p_n}(R) \mid \lambda_A X = I \right\},$$

where A is a proper ideal of R.

Obviousely, T_i , J_{1j} , J_{j1} , $T_{i,\nu+i}(a)$, $T_{\nu+i,i}(a)$ $(a \in R, i=1, \dots, \nu, j=2, \dots, \nu)$ are the elements of $S_{p_n}(R)$. $SS_{p_n}(R, A)$ and $GS_{p_n}(R, A)$ are the normal subgroups of $S_{p_n}(R)$. $GS_{p_n}(R)$ is the subgroup of $GL_n(R)$, and $PXP^{-1} \in S_{p_n}(R)$ for all $P \in GS_{p_n}(R)$, $X \in S_{p_n}(R)$.

§ 1. Lemmas

Lemma 1. In The $S_{p_n}(R)$ is generated by the following matrices:

^{*)} The matrices in $GR_{p_n}(R)$ are called generalized symplectic.

$$T_1, J_{1j}, J_{j1}, (j=2, \dots, \nu), T_{1,\nu+1}(a) (a \in R), \begin{pmatrix} I^{(\nu)} \\ -I^{(\nu)} \end{pmatrix}.$$

Lemma 2. Suppose that G is a normal subgroup of $S_{\mathbf{p}_n}(R)$, and O(G) = R. Then $G = S_{p_n}(R)$.

Proof (1) If there is a matrix $X \in G$ such that O(X) = R, then the normal subgroup generated by X coincides with $S_{p_n}(R)$ by [2]. Hence $G = S_{p_n}(R)$.

(2) If X_1 , $X_2 \in G$, $T_i = \{t \in T \mid X_i \notin GS_{p_n}(R, M_i)\}$, $T_i \neq \emptyset$, $T_1 \cap T_2 = \emptyset$, then there exists $Y \in G$ such that $Y \notin GS_{p_n}(R, M_t)$ if $t \in T_1 \cup T_2$ and $Y \in GS_{p_n}(R, M_t)$ if $t\in T-(T_1\cup T_2)$.

Pick $a \in R$ as follows: $\lambda_t a = 0$ for $t \in T_1$, and $\lambda_t a = 1$ for $t \in T - T_1$. Then we can see that $O\left(X_1\begin{pmatrix}I^{(\nu)} & aE_{11}\\ & I^{(\nu)}\end{pmatrix}\right) = R$. Thus, by step (1), there exist $P_i \in S_{p_n}(R)$ and $m \in Z^+$ such that

$$\begin{pmatrix} I & E_{11} \\ & I \end{pmatrix} = \prod_{i=1}^{m} P_i \left(X_1 \begin{pmatrix} I & aE_{11} \\ & I \end{pmatrix} \right)^{\pm 1} P_i^{-1}.$$

Let $Y_1 = \prod_{i=1}^m P_i X_1^{\pm 1} P_i^{-1}$. Then λ_t , $Y_1 = \begin{pmatrix} I & E_{11} \\ & I \end{pmatrix}$ for t in T_1 and $\lambda_t Y_1$ is in the center of $S_{p_n}(R/M_t)$ for t in $T-T_1$, that is, $Y_1 \notin GS_{p_n}(R, M_t)$, $t \in T_1$ and $Y_1 \in GS_{p_n}(R, M_t)$ M_t), $t \in T - T_1$.

Consider X_2 . By the same reason, we can find $Y_2 \in G$ such that $Y_2 \notin GS_{p_n}(R, \mathbb{R})$ M_t) for t in T_2 and $Y_2 \in GS_{p_m}(R, M_t)$ for t in $T-T_2$. Let $Y=Y_1Y_2$. Then $Y \in G$ and $Y \notin GS_{p_n}(R, M_t)$ for $t \in T_1 \cup T_2$ and $Y \in GS_{p_n}(R, M_t)$ for $t \in T - (U_1 \cup T_2)$.

(3) By O(G) = R, there exist $X_i \in G$, $i=1, \dots, k$ such that

$$\sum_{i=1}^k O(X_i) = R.$$

Let $T = \{t \in T \mid X_i \notin GS_{v_n}(R, M_t), i=1, \dots, k\}$. Without loss of generality, we can assume that $T_i \neq \emptyset$, $T_i \cap (T_1 \cup \cdots \cup T_{i-1} \cup T_{i+1} \cup \cdots \cap T_k) = \emptyset$, $1 \leq i \leq k$ and $T = T_1 \cup \cdots \cap T_k \cap T_k \cap T_k$ $\bigcup T_k$.

Since X_1 , X_2 satisfy the condition in (2), there is $Y \in G$ such that $Y \notin GS_{p_n}(R)$ M_t) for $t \in T_1 \cup T_2$ and $Y \in GS_{p_n}(R, M_t)$ for $t \in T - (T_1 \cup T_2)$, It is clear that Y and X_3 also satisfy the condition which X_1 and X_2 satisfy. So we have $Z \in G$ such that $Z \notin GS_{v_n}(R, M_t)$ if $t \in T_1 \cup T_2 \cup T_3$ and $Z \in GS_{v_n}(R, M_t)$ if $t \in T - (T_1 \cup T_2 \cup T_3)$. Repeat step (2), we shall have our lemma.

Lemma 3. For any ideal A in R, we have

$$SS_{p_n}(R, A) = [SS_{p_n}(R, A), S_{p_n}(R)] = [GS_{p_n}(R, A), S_{p_n}(R)]_{\bullet}$$

Proof Let $G = [SS_{v_n}(R, A), S_{v_n}(R)]$.

(1) Suppose $n \ge 6$. Take $a \in A$. Since

$$X_1 = \begin{pmatrix} T_{\nu 1}^{(\nu)}(1) & & \\ & T_{1\nu}^{(\nu)}(-1) \end{pmatrix} \begin{pmatrix} I & aE_{11} \\ & I \end{pmatrix} \begin{pmatrix} T_{\nu 1}^{(\nu)}(1) & & \\ & T_{1\nu}^{(\nu)}(-1) \end{pmatrix}^{-1} \begin{pmatrix} I & aE_{11} \\ & I \end{pmatrix}^{-1}$$

$$\begin{split} &= \begin{pmatrix} I & aE_{\nu\nu} + aE_{1\nu} + aE_{\nu1} \\ I \end{pmatrix} \in G, \\ &X_2 = \begin{pmatrix} T_{\nu2}^{(\nu)}(1) & & & \\ & T_{2\nu}^{(\nu)}(-1) \end{pmatrix} \begin{pmatrix} I & aE_{12} + aE_{21} \\ & I \end{pmatrix} \begin{pmatrix} T_{\nu2}^{(\nu)}(1) & & \\ & I \end{pmatrix} T_{2\nu}^{(\nu)}(-1) \end{pmatrix}^{-1} \\ &\times \begin{pmatrix} I & aE_{12} + aE_{21} \\ & I \end{pmatrix}^{-1} = \begin{pmatrix} I & aE_{1\nu} + aE_{\nu1} \\ & I \end{pmatrix} \in G. \end{split}$$

We have

Therefore, the normal subgroup generated by $\begin{pmatrix} I & aE_{11} \\ & I \end{pmatrix}$ is contained in G. So $S_{p_n}(R,A) \subseteq G$ by [2], and

$$SS_{p_n}(R, A) = [S_{p_n}(R, A), S_{p_n}(R)].$$

(2) If n=4, since $R/M \neq F_2$, $\forall t \in T$, we can pick an ε in R^* such that $\varepsilon(\varepsilon-1) \in R^*$. So for any $\alpha \in A$, we have

$$Y_{1} = \begin{pmatrix} \varepsilon & 1 & & & \\ & 1 & & & \\ & & \varepsilon^{-1} & & \end{pmatrix} \begin{pmatrix} I & a & a \\ & I & & \\ & & I \end{pmatrix} \begin{pmatrix} \varepsilon & 1 & & \\ & & 1 & \\ & & & I \end{pmatrix}^{-1} \begin{pmatrix} I & a & a \\ & & & & I \end{pmatrix}^{-1} \begin{pmatrix} I & a & a \\ & & & & I \end{pmatrix}^{-1} \begin{pmatrix}$$

Hence, we also have

So $SS_{p_n}(R, A) = [SS_{p_n}(R, A), S_{p_n}(R)]$. $G = [GS_{p_n}(R, A), S_{p_n}(R)]$ is trivial.

Lemma 4. If Λ is a group isomorphism of $S_{p_n}(R)$ onto $S_{p_n}(R_1)$, then there is a bijection τ between Max(R) and $Max(R_1)$ such that

$$\Delta SS_{p_n}(R, M) = S_{p_n}(R, \tau(M)), \forall M \in Max(R). \tag{*}$$

Further, the isomorphism Λ induces a set of isomorphisms $\Lambda_{\tau(M)}$ of $S_{p_n}(R/M)$ onto $\mathcal{S}_{p_n}(R_1/\tau(M))$ with

$$\Lambda_{\tau(M)}(\lambda_M X) = \lambda_{\tau(M)}(\lambda X), \forall X \in S_{\mathfrak{p}_n}(R), M \in \operatorname{Max}(R).$$

Proof For each $M \in Max(R)$, there is an N in $Max(R_1)$ such that

$$ASS_{p_n}(R, M) \subseteq GS_{p_n}(R_1, N)$$

since $ASS_{p_n}(R, M)$ is a normal subgroup of $S_{p_n}(R_1)$. But

$$SS_{p_n}(R, M) = [S_{p_n}(R), GS_{p_n}(R, M)] = [S_{p_n}(R), SS_{p_n}(R, M)]$$

by lemma 3. So we have

$$ASS_{p_n}(R, M) \subseteq [S_{p_n}(R_1), GS_{p_n}(R, N)] = SS_{p_n}(R_1, N).$$

Similarly, there exists $M_1 \in Max(R)$ such that

$$\Lambda^{-1}SS_{p_n}(R_1, N) \subseteq SS_{p_n}(R, M_1).$$

Hence $ASS_{p_n}(R, M) \subseteq SS_{p_n}(R_1, N) \subseteq ASS_{p_n}(R, M_1)$. Consequently $M \subseteq M_1, M =$ M_1 , i. e.

$$ASS_{p_n}(R, M) = SS_{p_{n_1}}(R_1, N).$$

Now let $\tau: M \rightarrow N$. It is easy to see that τ is a bijection of Max (R) onto Max (R_1) and

$$S_{p_n}(R)/SS_{p_n}(R, M) \simeq S_{p_n}(R_1)/SS_{p_n}(R_1, \tau(M)).$$
 (1)

Hence

$$S_{p_n}(R/M) \stackrel{\Lambda_{\tau(M)}}{\sim} S_{p_{n_1}}(R_1/\tau(M)). \tag{2}$$

The $\Lambda_{\tau(M)}(\lambda_M X) = \lambda_{\tau(M)}(\Lambda X)$ can be obtained by (1) and (2) immediately.

Lemma 5. Suppose that $\Lambda: S_{p_n}(R) \to S_{p_{n_1}}(R_1)$ is an isomorphism, $\{M_t\}_{t \in T}$ is a defining system of ideals of R. Then the $\{\tau(M_t)\}_{t\in T} = \{N_{S_t}\}_{t\in T}$ obtained from τ : Max $(R) \rightarrow Max(R_1)$ by restriction is a defining system of ideals of R_1 .

Proof For each $t \in T$, take a b_t in R_1/N_{s_t} . There is an X_t in $S_{p_n}(R/M_t)$ such that $\Lambda_{S_t} X_t = T_{1,\nu+1}(b_t)$. But we have an X in $S_{p_n}(R)$ such that $\lambda_t X = X_t$ for all $t \in T$. Therefore we have $A_{S_t}(\lambda_t X) = \lambda_{S_t}(AX) = T_{1,\nu+1}(b_t)$. Let b be the element of AX in $(1, \nu+1)$ position. Then we have $\lambda_{s_t}b=b_t$ for all $t\in T$ by

$$\lambda_{S_t}(\Lambda X) = T_{1,\nu+1}(b_t).$$

Thus $b \mapsto (\cdots \lambda_{S_t} b \cdots)$ is a surjective homomorphism of R_1 onto $\prod_{i \in T} R_1/N_{S_t}$, i.e. $\{N_{S_t}\}_{t \in T}$ is a defining system of ideals of R_1 .

By this lemma, if $S_{p_n}(R) \simeq S_{p_n}(R_1)$ and $\{M_t\}_{t\in T}$ is a defining system of ideals of R, then we can assume that the defining system of R_1 is $\{N_{S_t}\}_{t\in T}$, which satisfy

$$\Delta SS_{p_n}(R, M_t) = SS_{p_{n_1}}(R_1, N_{S_t}), \forall t \in T.$$

Besides, by the proof of this lemma, we have $n=n_1$ whenever

$$S_{p_n}(R) \simeq S_{p_{n_1}}(R_1)$$
.

Lemma 6. (1) If $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(R)$, and $a-1 \in J(R)$, then X = I. (2) If $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(R)$, $X^2 = -I$ and $c \in R^*$, then

$$\begin{pmatrix} 1 & -c^{-1}a \\ & c^{-1} \end{pmatrix} X \begin{pmatrix} 1 & -c^{-1}a \\ & c^{-1} \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

If $X^3 = -I$, then

$$\begin{pmatrix} 1 & -c^{-1}a \\ & c^{-1} \end{pmatrix} X \begin{pmatrix} 1 & -c^{-1}a \\ & c^{-1} \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

(3) If $X \in S_{p_n}(R)$, $X^2 = I$ and $\lambda_0 X = T_1$ for all $t \in T$, then there exists $P \in SL_n(R)$ such that

$$PXP^{-1}=T_1$$
, $\lambda_t P=I$, $\forall t \in T$.

Proof the Proof of (3) can be found in [5]. (1) and (2) can be proved by calculation.

For convenience, we denote

$$\Lambda_p X = PXP^{-1}$$
, for $P \in GL_n(R)$.

Besides, Let, $S_{0,1}$ be the set in $S_{p_n}(R)$ (or in $S_{p_{n_1}}(R_1)$), whose entries just consist of 0, 1 or -1.

Lemma 7. Suppose that $\Lambda: SL_2(R) \rightarrow SL_2(R_1)$ is an isomorphism.

(1) If
$$\Lambda \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}$$
, $\Lambda \begin{pmatrix} 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 & 1 \end{pmatrix}$,

then there exists a ring isomorphism $\sigma: R \rightarrow R_1$ such that

$$\Lambda X = X^{\sigma}, \ \forall X \in SL_2(R)$$

(2) If $\Lambda \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}$ and $\lambda_{S_t}(\Lambda X) = \lambda_{S_t} X$ for all $t \in T$ and $X \in S_{0,1}$, then there exist an isomorphism $\sigma: R \to R_1$ and $P = \begin{pmatrix} 1 & a \\ & 1 \end{pmatrix} \in SL_2(R_1)$, $\lambda_{S_t} P = I$, $\forall t \in T$ such that

$$\Lambda_{\mathfrak{g}}\Lambda X = X^{\sigma}, \ \forall X \in SL_2(R).$$

Proof As for the proof of (1), see [6]. We prove (2) as follows. Since -I is in the center of SL_2 (R), there is $x \in R^*$ such that A(-I) = xI, $x^2 = 1$. But $-I \in S_0$, 1. So $\lambda_{S_t} x = -1$ for all $t \in T$. Therefore x = -1 by $x^2 - 1 = 0$ and $2 \in R_1^*$.

Let
$$A \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} x & y \\ z & u \end{pmatrix}$$
. We have $\begin{pmatrix} x & y \\ z & u \end{pmatrix}^2 = -I$. So $\lambda_{S_t} z = 1$ for all $t \in T$ i. e.

 $z \in R^*$. Therefore we can take $P = \begin{pmatrix} 1 & -z^{-1}x \\ & z^{-1} \end{pmatrix}$ such that

$$A_{p}A\begin{pmatrix}0&-1\\1&0\end{pmatrix}=\begin{pmatrix}&-1\\1&\end{pmatrix}$$

So we have

$$\left(\begin{pmatrix} & -1 \\ 1 & \end{pmatrix} \begin{pmatrix} 1 & Z \\ & 1 \end{pmatrix} \right)^3 = -I_{\bullet}$$

Hence z=1, i. e.

$$A_pA\left(\begin{pmatrix}1&1\\&1\end{pmatrix}=\begin{pmatrix}1&1\\&1\end{pmatrix}.$$

We also have

$$\Lambda_{p}\Lambda\begin{pmatrix}1 & 0\\ 1 & 1\end{pmatrix} = \begin{pmatrix}1 & 0\\ 1 & 1\end{pmatrix} \quad \text{by} \quad \begin{pmatrix}1\\ 1 & 1\end{pmatrix} = \begin{pmatrix}-1\\ 1\end{pmatrix}\begin{pmatrix}1 & 1\\ 1\end{pmatrix}^{-1}\begin{pmatrix}1 & -1\\ 1\end{pmatrix}^{-1} \begin{pmatrix} & -1\\ 1\end{pmatrix}^{-1} \cdot \begin{pmatrix} & & 1\\ & & & \end{pmatrix}$$

Then (2) follows from (1) in this lemma.

Lemma 8. Suppose $AT_i = T_i$ for some $i(1 \le i \le \nu)$.

(1) The centralizer of T_i in $S_{p_n}(R)$ is

(2) Suppose $\lambda_{S_t}(\Lambda X) = \lambda_{S_t} X$, $\forall t \in T$, $X \in S_{0,1}$ and

Then

$$\Lambda a_i = b_i (1 \leq i \leq \nu)$$
.

Proof Since 2 is a unit, by direct calculation we obtain (1). Then we prove (2). It is clear that $Q_{i,\nu+i} \in C_{T_i}$, $Q_{i,\nu+i}T_{i,\nu+i}(1) \in C_{T_i}$. so both $AQ_{i,\nu+i}$ and $A(Q_{i,\nu+1})$ $T_{i,\nu+i}(1)$ are the elements of $C_{AT_i} = C_{T_i}$. Hence, by (1), we have

$$AQ_{i,v+1} = egin{pmatrix} E_1 & 0 & E_2 & F_1 & 0 & F_2 \ 0 & e_1 & 0 & 0 & f_1 & 0 \ E_3 & 0 & E_4 & F_3 & 0 & F_4 \ G_1 & 0 & G_2 & H_1 & 0 & H_2 \ 0 & g_1 & 0 & 0 & h_1 & 0 \ G_3 & 0 & G_4 & H_3 & 0 & H_4 \ \end{pmatrix},$$
 $AQ_{i,v+i}T_{i,v+i}(1) = egin{pmatrix} E_5 & 0 & E_6 & F_5 & 0 & F_6 \ 0 & e_2 & 0 & 0 & f_2 & 0 \ E_7 & 0 & E_8 & F_7 & 0 & F_8 \ G_5 & 0 & G_6 & H_5 & 0 & H_6 \ 0 & g_2 & 0 & 0 & h_2 & 0 \ G_7 & 0 & G_8 & H_7 & 0 & H_8 \ \end{pmatrix},$

where $\lambda_{S_i}g_k = 1$, $\lambda_{s_i}e_k = 0$ for all $t \in T$, k = 1, 2. Since $Q_{i,\nu+i}^2 = T_i(Q_{i,\nu+1} \ T_{i,\nu+i}(1))^3 = T_i$, we have

$$\begin{pmatrix} e_1 & g_1 \\ f_1 & h_1 \end{pmatrix}^2 = -I, \quad \begin{pmatrix} e_2 & f_2 \\ g_2 & h_2 \end{pmatrix}^2 = -I.$$

So, by lemma 6, there are matrices

where $P_k \in GS_{p_n}(R_1)$, $\lambda_{S_t}P_k = I$, $\forall t \in T$, such that

$$AQ_{i,\nu+i} = P_1 \begin{pmatrix} E_1 & 0 & E_2 & g_1F_1 & 0 & g_1F_2 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ E_3 & 0 & E_4 & g_1F_3 & 0 & g_1F_4 \\ g_1^{-1}G_1 & 0 & g_1^{-1}G_2 & H_1 & 0 & H_2 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ g_1^{-1}G_3 & 0 & g_1^{-1}G_4 & H_3 & 0 & H_4 \end{pmatrix} P_1^{-1},$$

$$AQ_{i,\nu+1}T_{i,\nu+1}(1) = P_2 \begin{pmatrix} E_5 & 0 & E_6 & g_2F_5 & 0 & g_2F_6 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ E_7 & 0 & E_8 & g_2F_7 & 0 & g_2F_8 \\ g_2^{-1}G_5 & 0 & g_2^{-1}G_6 & H_5 & 0 & H_6 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ g_2^{-1}G_7 & 0 & g_2^{-1}G_8 & H_7 & 0 & H_8 \end{pmatrix} P_2^{-1}.$$

Use C to denote the contralizer of $Q_{i,\nu+i}$ and $Q_{i,\nu+i}$, $T_{i,\nu+i}(1)$ in C_{T_i} . It is easy to see that

$$C(R) = \left\{ \begin{pmatrix} A_1 & 0 & A_2 & B_1 & 0 & B_2 \\ 0 & \alpha & 0 & 0 & 0 & 0 \\ A_3 & 0 & A_4 & B_3 & 0 & B_4 \\ C_1 & 0 & C_2 & D_1 & 0 & D_2 \\ 0 & 0 & 0 & 0 & \alpha & 0 \\ C_3 & 0 & C_4 & D_3 & 0 & D_4 \end{pmatrix} \middle| \begin{pmatrix} A_1 & A_2 & B_1 & B_2 \\ A_3 & A_4 & B_3 & B_4 \\ C_1 & C_2 & D_1 & D_2 \\ C_3 & C_4 & D_3 & D_4 \end{pmatrix} \in S_{\mathfrak{g}_{n-2}}(R), \quad \alpha^2 = 1 \right\}.$$

Suppose

$$\pi_{f 4}(R) = egin{cases} egin{pmatrix} A_1 & 0 & A_2 & B_1 & 0 & B_2 \ 0 & 1 & 0 & 0 & 0 & 0 \ A_3 & 0 & A_4 & B_3 & 0 & B_4 \ C_1 & 0 & C_2 & D_1 & 0 & D_2 \ 0 & 0 & 0 & 1 & 0 \ C_2 & 0 & C_4 & D_2 & 0 & D_4 \ \end{pmatrix} egin{pmatrix} A_1 & A_2 & B_1 & B_2 \ A_3 & A_4 & B_3 & B_4 \ C_1 & C_2 & D_1 & D_2 \ C_3 & C_4 & D_3 & D_4 \ \end{pmatrix} \in \ , S_{p_{n-2}}(R) iggr\}.$$

Then $\pi_i(R) \subseteq C(R)$. So $\Lambda \pi_i(R) \subseteq \Lambda C(R)$ and $\Lambda C(R)$ are the centralizer of $\Lambda Q_{i,\nu+1}$ and $\Lambda (Q_{i,\nu+i}T_{i,\nu+i}(1))$ in $C_{\Lambda T_i}$.

Let

be any element in AC(R). Then $\begin{pmatrix} x & y \\ z & u \end{pmatrix} \in SL_2(R_1)$ which commute with the following matrices

$$C_1 = \begin{pmatrix} 1 & e_1 \\ & g_1 \end{pmatrix} \begin{pmatrix} & -1 \\ 1 & \end{pmatrix} \begin{pmatrix} 1 & e_1 \\ & g_1 \end{pmatrix}^{-1}, \quad C_2 = \begin{pmatrix} 1 & e_2 \\ & g_2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & e_2 \\ & g_2 \end{pmatrix}^{-1}.$$

So we have

$$\begin{pmatrix} 1 & e_1 \\ & g_1 \end{pmatrix}^{-1} \begin{pmatrix} x & y \\ z & u \end{pmatrix} \begin{pmatrix} 1 & e_1 \\ & g_1 \end{pmatrix} = \begin{pmatrix} x_1 & y_1 \\ -y_1 & x_1 \end{pmatrix}$$

and

$$\begin{pmatrix} 1 & e_2 \\ & g_2 \end{pmatrix}^{-1} \begin{pmatrix} x & y \\ z & u \end{pmatrix} \begin{pmatrix} 1 & e_2 \\ & g_2 \end{pmatrix} = \begin{pmatrix} x_2 & y_2 \\ -y_2 & x_2 - y_2 \end{pmatrix}$$

with x_i , $y_i \in R_1$. Hence $y_1 = y_2 = 0$, $x_1 = x_2$ by $e_k \in J(R_1)$. Therefore we have x = u, y = z = 0, $AC(R) \subseteq C(R_1)$, and $A\pi_i(R) \subseteq C(R_1)$. It is clear that $\pi_i^2(R) \simeq S_{p_{n-2}}^2(R)$ by $\pi_i(R) \simeq S_{p_{n-2}}(R)$. So since $2 \in R^*$ and $S_{p_n}(R)$ is generated by symplectic trasvection,

we have $S_{p_{n-2}}^2(R) = S_{p_{n-2}}(R)$, $\pi_i^2(R) = \pi_i(R)$. Thus

$$\Lambda \pi_i(R) = \Lambda \pi_i^2(R) = (\Lambda \pi_i(R))^2 \subseteq C^2(R_1) = \pi_i(R_1).$$

The condition $\lambda_{S_t}(\Lambda X) = \lambda_{S_t} X$, $\forall t \in T$, $X \in S_{0,1}$ implies $\lambda_t(\Lambda^{-1}X) = \lambda_t X$, $\forall t \in T$ and $X \in S_{0,1}$. So we have $\Lambda^{-1}\pi_t(R_1) \subseteq \pi_t(R)$ by the same reason. Therefore

$$\Lambda \pi_i(R) = \pi_i(R_1)$$
.

Let C_{π_i} denote the centralizer of π_i in C_{T_i} . We have $\boldsymbol{a}_i \subseteq C_{\pi_i(R)}$. So

$$Aa_i \subseteq AC_{\pi_i(R)} = C_{A\pi_i(R)} = C_{\pi_i(R_i)}$$

It is easy to see that

$$C_{\pi_i(R_1)} = \left\{ egin{pmatrix} xI & & 0 & & & \ & x_1 & & & y_1 & & \ & & xI & & & 0 \ 0 & & & xI & & & \ & z_1 & & & u_1 & & & \ & & & & & xI \end{pmatrix} \middle| x^2 = 1, egin{pmatrix} x_1 & y_1 \ z_1 & u_1 \end{pmatrix} \in SL_2(R_1)
ight.
ight\}$$

Recall that $\boldsymbol{a}_i \simeq SL_2(R)$, so $\boldsymbol{a}_i^2 = \boldsymbol{a}_i$. Hence

$$\Lambda \boldsymbol{a}_i = \Lambda \boldsymbol{a}_i^2 = (\Lambda \boldsymbol{a}_i)^2 \subseteq C_{\pi_i(R_1)}^2 \subseteq \boldsymbol{b}_i$$
.

Similarly, we have $\Lambda^{-1}b_i \subseteq a_i$, that is, $\Lambda a_i = b_i$.

Lemma 9. Suppose that $\lambda_{S_t}(AX) = \lambda_{S_t}X$ for all $t \in T$ and $X \in S_{0,1}$, then there exists $P \in S_{r_n}(R_1)$ such that

$$\Lambda_v \Lambda T_i = T_i, i = 1, \dots, \nu$$

Proof Clearly, $(\Lambda T_i)^2 = I$ and $\lambda_{S_t}(\Lambda T_i) = \lambda_{S_t}T_i$, $i = 1, \dots, \nu$. By lemma 6, we have $Q \in S_{p_n}(R_1)$ such that $\Lambda_Q \Lambda T_1 = T_1$, $\lambda_{S_t} Q = I$, $\forall t \in T$. So we also have

$$\lambda_{S_t}(\Lambda_o \Lambda X) = \lambda_{S_t} X$$

for all $t \in T$, $X \in S_{0,1}$. Now assume that there exists P_1 in $S_{p_n}(R_1)$ such that

$$A_{p_1}AT_i = T_i, i = 1, \dots, k-1, k \ge 2,$$

and $\lambda_{S_t}(A_{p_1}AX) = \lambda_{S_t}X$ for all $t \in T$, $X \in S_{0,1}$. Consider T_k . Since

$$T_kT_i = T_iT_k, i = 1, \dots, k-1,$$

by Lemma 8, we have

$$A_{p_1}AT_k = egin{pmatrix} a_1 & & b_1 & & & & \\ & a_{k-1} & & & b_{k-1} & & \\ & & A & & & B \\ c_1 & & & d_1 & & & \\ & \ddots & & & \ddots & & \\ & & c_{k-1} & & & d_{k-1} & & \\ & & & C & & D \end{pmatrix},$$

where $\lambda_{S_t}a_i = \lambda_{S_t}d_i = 1$, $\lambda_{S_t}b_i = \lambda_{S_t}c_0 = 0$ for all $t \in T$ and $i = 1, \dots, k-1$. But $(A_{p_i}AT_k)^2 = I$, so we have $a_i = d_i = 1$, $b_i = c_i$ by lemma 6.

^{*} For any group G, we mean that $G^2 = \langle gh | g, h \in G \rangle$.

Hence

and

where

for all $t \in T$. Therefore, applying Lemma 6 again, we have

$$Q_1 = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \in S_{p_{n-2k+2}}(R_1)$$

such that

$$Q_1 \begin{pmatrix} A & B \\ C & D \end{pmatrix} Q_1^{-1} = \begin{pmatrix} -1 & & & \\ & I & & \\ & & -1 & \\ & & & I \end{pmatrix}$$

Put

$$P_2 = egin{pmatrix} I & & 0 & & & \ & Q_{11} & & Q_{12} \ 0 & & I & & \ & Q_{21} & & Q_{22} \end{pmatrix}.$$

Then $P_2 \in S_{p_n}(R_1)$ and $\Lambda_{p_1} \Lambda_{p_2} \Lambda_{p_3} \Lambda T_i = T_i$, $i = 1, \dots, k$. Our lemma therefore follows from the above discussion.

Lemma 10. Suppose $\Lambda T_i = T_i$, $i = 1, \dots, \nu$, $\lambda_{S_i}(\Lambda X) = \lambda_{S_i} X$ for all $i \in T$ and $X \in S_{0, 1}$. Then there exists $P \in GS_{p_n}(R_1)$ such that

$$\Lambda_{p}\Lambda Y = Y$$

where Y may be any one of the following symplectic matrices

$$T_{i}, T_{i,\nu+i}(1), T_{\nu+i,i}(1), J_{1j}, J_{j1}, i=1, \dots, \nu; j=2, \dots, \nu.$$

It is clear that $J_{12}T_i = T_iJ_{12}$ for i > 2 and $T_{1,\nu+1}(1) \in a_1$. So by Lemma 8, we have

$$AJ_{12} = egin{pmatrix} x_1 & x_{12} & y_1 & y_{12} \ x_{21} & x_2 & y_{21} & y_2 \ & \ddots & & \ddots & & \ & z_1 & z_{12} & u_1 & u_{12} \ z_{21} & z_2 & u_{21} & u_2 & & \ & & \ddots & & \ddots \ & & & \ddots & & \ \end{pmatrix}, \qquad AT_{1,\, \nu+1}(1) = egin{pmatrix} a & b & & & & \ & I & & 0 \ & c & & d & \ & 0 & & I \end{pmatrix}.$$

By $(\Lambda J_{12})^2 = I$ and (1) in Lemma 6, we have $x_i = u_i = 1$, $z_i = y_i = 0$ for

and

$$i > 2$$
, $y_1 = y_2 = z_1 = z_2 = 0$

$$\begin{pmatrix} u_1 & u_{12} \\ u_{21} & u_2 \end{pmatrix}' = \begin{pmatrix} x_1 & x_{12} \\ x_{21} & x_2 \end{pmatrix}, \quad y_{21} = -z_{12}, \quad y_{21} = -z_{12},$$

that is

$$A{J}_{12} = egin{pmatrix} x_1 & x_{12} & 0 & y_{12} \ x_{21} & x_2 & -y_{21} & 0 \ & I & & 0 \ 0 & z_{12} & x_1 & x_{21} \ -z_{21} & 0 & x_{12} & x_2 \ & 0 & & I \end{pmatrix}.$$

By using $J_{12} \in S_{0,1}$, it is easy to see that x_1+1 , $x_{12}+1$, x_2 , y_{12} , z_{13} are all in $J(R_1)$. In particular x_{12} , $x_1 \in R_1^*$.

Obviously, $T_{1,\nu+1}(1)J_{12}=J_{12}T_{1,\nu+1}(1)$. So

$$\Lambda T_{1,\nu+1}(1) \Lambda J_{12} = \Lambda J_{12} \Lambda T_{1,\nu+1}(1), \tag{1}$$

therefore, we have

$$\begin{cases} a = 1 - z_{12} x_{12}^{-1} b, \\ c = -z_{12}^2 x_{12}^{-2} b, \\ d = 1 + z_{12} x_{12}^{-1} b, \end{cases}$$
 (2)

where $\lambda_{S_t}b=1$, $\forall t\in T$. Hence $b\in R_1^*$. Put

$$P_{1} = \begin{pmatrix} I & \\ & bI \end{pmatrix} \begin{pmatrix} I & \\ -z_{12}x_{12}^{-1} & \\ 0 & I \end{pmatrix} = \begin{pmatrix} I \\ -bz_{12}x_{12}^{-1} & \\ 0 & b & I \end{pmatrix} \in GS_{p_{n}}(R_{1}).$$

Clearly $\lambda_{s_t} P_1 = I$, $\forall t \in T$. So, using the equalities (2), we have

$$\Lambda_{p_1}\Lambda T_{1,\nu+1}(1) = T_{1,\nu+1}(1), \ \Lambda_{p_1}\Lambda T_i = T_i, \ i=1, \dots, \nu.$$

Furthermore, we have

by equality (1). Let

Then $P_2 \in S_{p_n}(R_1)$, $\lambda_{S_i} P_2 = I$ for all $t \in T$. It is easy to see that $\Lambda_{p_2} \Lambda_{p_1} \Lambda T_i = T_i$, $i = 1, \dots, \nu$,

$$A_{p_2}A_{p_1}AT_{1,\nu+1}(1) = T_{1,\nu+1}(1),$$

$$A_{p_2}A_{p_1}AJ_{12} = J_{12},$$

and $\lambda_{S_t}(\Lambda_{p_1}\Lambda_{p_1}\Lambda X) = \lambda_{S_t}X$ for all $t \in T$ and $X \in S_0$, 1. By lemma 8, $\Lambda_{p_1p_1}\Lambda a_1 = b_1$. So there is a $P_3 = T_{1, \nu+1}(x)$, $\lambda_{S_t}x = 0$ for all $t \in T$ such that

$$A_{p_3}A_{p_3}A_{p_3}AT_{1,\nu+1}(1) = T_{1,\nu+1}(1), \quad A_{p_3}A_{p_3}AT_{\nu+1,1}(1) = T_{\nu+1,1}(1)$$

and $\Lambda_{p_2}\Lambda_{p_2}\Lambda_{p_3}\Lambda$ still preserves J_{12} , $T_i(i=1, \dots, \nu)$.

Using the equalities $J_{21}T_i = T_iJ_{21}$, i > 2, $J_{21}T_{\nu+1,1}(1) = T_{\nu+1,1}(1)J_{21}$, $J_{21}^2 = I$, $\lambda_{S_i}\Lambda J_{21} = \lambda_{S_i}J_{21}$, $\forall t \in T$ and $T_{\nu+1,1}(1) \in a_i$, we know that there is matrix

such that

where $\lambda_{s_i}y = -1$, $\lambda_{s_i}z = 0$ for all $t \in T$ Let $P_5 = T_{\nu+2,2}(y^{-1}z)$. we have

and $\Lambda_{p_ip_ip_ip_2p_1}\Lambda$ still preserves T_i , J_{12} , $T_{1,\nu+1}(1)$, $T_{\nu+1,1}(1)$, i=1, ..., ν , and $\lambda_{S_i}\Lambda_{p_ip_ip_2p_1}\Lambda X = \lambda_{S_i}X$ for all $t \in T$, $X \in S_{0,1}$.

But $(T_1J_{12}T_1J_{21})^3 = T_1T_2$, so $(T_1J_{12}T_1A_{p_1p_2p_3p_2p_1}AJ_{21})^3 = T_1T_2$, from which we know that y = -1, i. e.

$$A_{p_6}AJ_{21} = J_{21}, p_6 = p_5p_4p_3p_2p_1.$$

Applying

$$\begin{split} F_{12} = &J_{12}T_{1}J_{21}T_{1}J_{12}T_{1}, \ T_{2,\nu+2}(1) = &F_{12}T_{1,\nu+1}(1)F_{12}^{-1}, \\ &T_{\nu+2,2}(1) = &F_{12}^{-1}T_{\nu+1,1}(1)F_{12}, \end{split}$$

we have

$$\Lambda_{p_0}\Lambda T_{2,\nu+2}(1) = T_{2,\nu+2}(1), \Lambda_{p_0}\Lambda T_{\nu+2,2}(1) = T_{\nu+2,2}(1).$$

For any integers $k(\geqslant 3)$, we assume that there is

$$Q \in S_{p_n}(R_1)$$
, $\lambda_{S_t}Q = I$, $\forall t \in T$

such that $A_Q \Lambda Y = Y$, where Y may be any one of T_1 , J_{1i} , J_{1i} , $T_{1,\nu+1}(1)$, $T_{\nu+1,1}(1)$, $T_{j,\nu+j}(1)$, $T_{\nu+j,j}(1)$, j=2, ..., k-1.

Using the argument as above, we can see that $\Lambda_Q\Lambda$ preserves J_{1k} .

Choose another matrix $Q_1 \in GS_{p_n}(R_1)$, $\lambda_{S_t}Q_1 = I$ for all $t \in T$. Then A_{Q_1Q} pre-

serves $J_{k1} T_{k,\nu+k}$ (1) and $T_{\nu+k,k}$ (1) besides the above matrices.

Our lemma therefore follows from the above discussion.

§ 2. The proof of our main theorem

Recall that the isomorphism Λ of $S_{p_n}(R)$ onto $S_{p_{n_1}}(R_1)$ induces a set of isomorphisms

$$A_{S_t}: S_{p_n}(R/M_t) \rightarrow S_{p_n}(R_1/N_{S_t}), \forall t \in T$$

with $A_{S_t}(\lambda_t X) = \lambda_{S_t}(AX)$ for all X in $S_{p_n}(R)$, therefore, according to the result on symplectic groups over fields, $n = n_1$ and for each $t \in T$ there is $P_{S_t} \in GS_{p_n}(R_1)$ such that

$$\Lambda_{\mathcal{S}_t}(\lambda_t X) = P_{\mathcal{S}_t}(\lambda_t X)^{\sigma s_t} P_{s_t}^{-1},$$

that is.

$$\lambda_{S_t}(\Lambda X) = P_{S_t}(\lambda_t X)^{\sigma_{S_t}} P_{S_t}^{-1}, \forall t \in T, X \in S_{p_n}(R),$$

where σ_{S_t} is the isomorphism of R/M_t onto R_1/N_{S_t} .

Since R_1 is a Φ -surjective ring, there exists $P_1 \in S_{p_n}(R_1)$ such that $\lambda_{S_t} P_1 = P_{S_t}$ for all $t \in T$. Hence

$$\lambda_{\mathcal{S}_t}(\Lambda r_{\bullet}^{-1}\Lambda X) = (\lambda_t X)^{\sigma s_t}, \ \forall t \in T.$$

If $X \in S_{0,1}$, it is clear that $(\lambda_t X)^{\sigma s_t} = \lambda_{S_t} X$. So we have

$$\lambda_{S_t}(\Lambda_{r_1}^{-1}\Lambda X) = \lambda_{S_t}X$$
, $\forall t \in T$ and $X \in S_{0,1}$.

Now $\Lambda_{p_1}\Lambda$ is also an isomorphism of $S_{p_n}(R)$ onto $S_{p_n}(R_1)$. By lemma 9 and lemma 10, there is $P_2 \in GS_{p_n}(R)$ such that $\Lambda_{p^{-1}}\Lambda Y = Y$, $P = P_1P_2$, where Y may be any one of the following matrices

$$T_i, T_{i,\nu+i}(1), T_{\nu+i,i}(1), J_{1j}, J_{j1}, i=1, \dots, \nu, j=2, \dots, \nu.$$

By Lemma 8, we have $\Lambda_{p^{-1}}\Lambda \boldsymbol{a}_i = \boldsymbol{b}_i$. But $\boldsymbol{a}_i \simeq SL_2(R)$, $\boldsymbol{b}_i \simeq SL_2(R_1)$. So, there is an isomorphism σ of R onto R_1 such that $\Lambda_{p^{-1}}\Lambda X = X^{\sigma}$, $\forall X \in \boldsymbol{a}_i$.

Using lemma, and the fact that $\begin{pmatrix} -I \\ I \end{pmatrix}$ can be expressed by

$$T_{i,\nu+i}(1)$$
, $T_{\nu+i,i}(1)$, $i=1$, ..., ν ,

we can show

$$\Lambda_{p^{-1}}\Lambda X = X^{\sigma}$$
, $\forall X \in S_{p_n}(R)$,

i. e.

$$\Lambda X = PX^{\sigma}P^{-1}, \ \forall X \in S_{p_n}(R),$$

where $P \in GS_{p_n}(R_1)$.

References

- [1] 华罗庚、万哲先,典型群,上海科技出版社,1963年出版。
- [2] 张海权,王路群, 0-满射环上辛群的正规子群,数学学报,1985年第2期。
- [3] O'Meara, O. T., Symplectic Groups, H. M. S., 1978.
- [4] McDomald, B. R., Geometric Algabra over local rings, New York, 1976.
- [5] 王路群、曹重光, D-满射环 L辛群的自同构, 黑龙江大学学报, 1984年第3期。