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THE ISOMORPHISMS OF SYMPLECTIC
GROUPS OVER @-SURJECTIVE RINGS
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- Abstract

Let B and B are @-surjective rings with 2 as a unit. Then 4; § 2, (B)>8,, (1) is a
group isomorphism if and only if n=mn, there exists a ring homomorphism o, B~>Ry and 4
has the standard form AX=PX°P-}, for all X inS, (R), wheré P is a generalized symplec-
tic matrix. :

°

Let R be a commutative ring with 1, Max (R) be the set of all its maximal
ideals. For any ideal A in R, we have a mnatural ring homomorphism of R onto
R/A which is denoted by As. As is well known

B> [I R/Mby ot (ooey Aag@y oo0)

Memax(R)
is a ring homomorphism. This homomorphism, in general is not surjective. If there

exists {M,};cr&Max(R) such that
-®, R—> 1] R/ M,

teT

is a sur;;ectlve homomorphlsm, and MC | J M, for each M in Max (R), then we
teT

call B a &-surjective ring. Olearly, the semi-local rings, the infinite complete
direct product of fields are all @-surjective rings.

The set{M;};cr in above definition is called the defining system of ideals of the
@-gurjective ring R. w

It is. easy to see that, Ker &=J (R) and mER*@@(w) € (tel]z; BR/M)*e\u#0

~ for all t€T, where J (R) is the Jacobson radical of R, R* the set of units in R.
In this note, we always assume that R and R, are @-surjective rings with 2 as
a unit, §,,(R) and §,, (By) are sympléétic groups with =, /}a1>4 and {M }icr,
{N}scq are the deﬁnmg system of ideals of B and R; respectively. | |
We shall determine the 1somorph1sms between two symplectic groups The
main result is the following _
Theorem Under the above assumption, A; Sy,(R) —8,,(R)is a group isomor-
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phism if and only if n=ny, there exisls @ ring homomorphism o, R—>R; and A has the

Jorm ‘
AX=PX°P-*  forall X€8, (R),

where P is some generalized symplectic matrie. :
Prerequisites and Notations T
We use Bj;j(a) (¢€R) to denote the nxn matrix with the element a in the

(¢, j)position and 0, other wise.

Q=I+Ey(-1)+Ey(—1)+E;Q) +E,;(—~1),
Ty(a) =I+Ey(a), i+j, aER,

I

Let n=2p and

-1 - ®

—1 (V1)

I

J1j= I »

\ . | -1 1 w+h
)

Tn=J4, 1=1, <=, v, =2, -, v
@) %)
@s,@-[xeenwix-p(" ) res,m, aer]”
-GS, (R, A)={X¢c8,,(R) |[MX=al, a*=1, a€R/A},
_ ) SSPn(R) A) ={X€SPn(R) ““AX:I}:
where A is a proper ideal of R.

Obviousely, Ty Ty, Jﬂ;_ Ti'v;l-i(“)) Tﬂ-l-ini(a) (CZER, i=1, -, v, j=2: ) 7")
are the elements of S, (R). §8,,(R, 4) and G 8,,(R, A) are the normal subgroups
of 8y, (R). GS,,(R) is the subgroup of GL,(R), and PXP*ES, (R) for all PE
GSP:» <R)J X ES’M(‘R)-

§ 1. Lemmas

Lemma 1."! The S, (R) is genemted by the following matrices:

* The matrices in GE, (B) are callad generalized symplectic.:
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' ) N
Ti) J.‘li: Jii; (j=2: °tts 7’) T1,9+1(a) (QER) ( I® )'

Lemma 2. Suppose that G is a normal subgroup of S,,(R), and O.(G) =R.
Then G=8,,(R).

Proof (1) If there is a matrlx X €@ such that O(X) =R, then the normal
subgroup generated by X coincides with S,, (R) by [2]. Hence G'=38,,(R).

(2 If X3, Xy €G, T,={t€T|X.¢GS, (R, M)}, T,+@, TiNTs=@, then
there exists ¥ €@ such that ¥ ¢ @8, (R, M,) if t€TUT, and Y €GS,, (R, M,) if
t€l— (T1UTs). |

Pick a € R as follows: A; =0 for tE€T4, and Mya=1for ¢€T—T4, Then we can

I @) GEH .
see that O| X =R. Thus, by step (1), there exist P,e8,, (R) and

I(v)
m¢€ Z* such that

| (1 En) II P{( (1 | a?))ﬂp‘_lo

m : : I E :
Let Y1=[[ P, X$#'P;t. Then A, ¥ 1=( IH) for tin Ty and A.Y, is in the center

of S,”(R/Mt) for ¢ in 71T, that is, Y,¢GS,, (R, M), tET1 and Y, €68, (B,
M), t€T-T,, _ :
* Qonsider X,. By the same reason, we can find ¥,€@ such that Y,¢GS, (R,
M)for ¢ in T3 and ¥y €GS,, (R, M) for i in T'—T,. Let ¥ =Y,¥,. Then ¥ € Gand
Y €¢GS,, (R, M,) for t€T,UTs and Y €GS,, (R, M,) for tET— (UsUTs).
(8) By O(@) =R, there exist X;€Q, 4—1 v-,’k such that

ZO(XD =R,

Let T'= {tET | X, ¢@8,, (R, M), i=1, ---, k., Without loss of generality, we can
assume that 7,%¢, T,NT:U---U T;- UTiaU-Np) =0, 1<i<k and I'=T, -
U Ty | |

Since X4, X, satisfy the condition in(2), there is ¥ €@ such that ¥ ¢GS,, (R,
M,) for t€T1U Ty and Y €GS,, (R, M;) for teT— (TyUTy), It is clear that ¥ and
X 5 also satisfy the condition which Xy and X, satisfy. So we have Z €@ such that
Z&GS,, (R, M) it :€T UTUTs and Z€GS,, (B, M) if t€T—(T1UT:UTs).
Repeat gtep (2), we shall have our lemma.

Lemma 3. For any idecal 4 in R, we have

§8,, (R, 4) = [S5,,(R, 4), 8,,(R)] =[GS,,(B, 4), 5, (B)].
Proof Let @=[88,,(R, 4), 8, (R)]. '
(1) Suppose n=>6. Take a € A. Since

¥ =(T(”’(1) . > (1 aE11>( @ (1) )-1(1 ‘aE11>-1
’ T (~1) I PE(~1) I
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I aF,,+al,+‘al,
“( o i)ea’

Xo= TR @) I aBp+ally\(TY (1) -1
2—< - 1)>< I )( .'z’g';>(-—1)>

% (I QE12+(ZE21> -1 (I GE1;+GE,,1> EG.

I I
We have - C
1 _ . 1 »
I I A
I CUE;[;[ 1 ) 1 ~
= B X XY
( I> 1|7 1| €%
r | : I
1 ’ 1

, . : T oF »
Therefore, the normal’ subgroup generated by( a,111> ig contained in G. So

48’1,,, (R A)C@ by [2], and
§5,, (R, 4) =[5,, (R, 4), 5, (B, =
2) Ifn=¢4, since R/M+F, VYtcT, wecan pick an g in RB* such that s(s -1)
€ R*. So for any a & A, we have

i & : 0 @a g -1 0 a\—
1 I o 1 A e
Y= -1 -1
- 3 I . 8 I
1 : 1
0 (e—1Da
= (8—-1)6& 0 €q,
0 a\ 1e—1
I e O 1 .
(e—1)"* I (8—1)"1
1 1
0 (e=Da ‘
( (e— 1)w a cq.,
Hence, we also have ,
v 1 1
(I a€11>= 1 ) VT 1 . cq.
1 1

8o 58,,(R, 4) =[88,,(R, 4), 8,,(B)]. G=1[GS,, (B, 4),8,,(R)lis trivial,
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‘Lemma 4. I f 4 is a group isomorphism of 8,,(R) onto Sy, (Ry),then there is
@ bigection v between Max(R) and Max(Ry) such that _
ASS,, (R, M) =8,, (R, v(M)), VM € Max(R). , (%)
Further, the isomorphism A fmduces a set of isomorphisms A of S, (R/M) onto
8y, (Ba/v(M)) with |
A (AMX) &,(M) (7\,X) VX €8, (R), M€ Max(R).
Proof For each M € Max(R), there isan N in Max (Ry)such that
. A8S,, (R, M)SGS,, (Ry, N),
since ASS,,,, (R, M) is a normal subgroup of Sy, (Ri) But v
585, (R, M) =[8,,(R), @Sy, (R, M)] =[8,,(R), $5,,(&, )]
by lemma 8. So we have
488, (B, MYC[S,,(Ry), @S, (B, N)] =88
: Slmllarly, there exists M; € Max(R) such that
A‘i&S’,,,, (Ry, N)SS8,, (R, M),

(Rix N)o

Dny

Hence 4SS, (R, M) CSSP,, (R, N)cASS,,(R, My). Consequently McM 1, M =.

M4, i. 6.
485, (B, M) =95, (B, ).

- Now let 7 M -->N It is easy 1o see that 7 is a leectlon of Max (R) onto Max (R;)

and : .
| Sp,.(R)/SSm(R, M) 8, (Ry) /88y, (B, v(M)). , 1)
Hence ’ B - :

(Mh

Spn(R/M)N Sp,(Ba/w(M)), @
The Ay AuX) =M (AX) can be obtained by (1) and(2) immediately.
- Lemma 5. Suppose that A:8,,(R)—>S,, (By) s an isomorphism, {M;}icr is @
defining system of ideals of R. Then the {v(M;)}ter={N sitter obtained from =:
Max (R)—>Max (Ry)by restriction is @ definin,g system of ideals of B.

Proof For each ¢tCT, take a b; in Ry/N,,. There is an X, in S, (R/M,) such -

© that Ag, Xy=T4,,41(b;). But we have an X in §,,(R) such that A,X =X, for all
¢t ET. Therefore we have Ag, (X ) =Ag,(AX) =T4,,41(b;). Let b be the element of
AX in(1, v+1) position. Then we have Ayb=0; for all t€T by

A, (AX) =T1,041(bs).
"l‘hus bH(‘“?\-gtb’;‘) is a surjective homomo}rphism of R, onto LITRi/N 5, 1.6.{NV s,}ter

isa defining system of ideals of Ry,
By this lemma, if §,,(R) 28, (Ry) and{M t}tel‘ isa deﬁnmg system of ideals of
B, then we can assume that the definirig system of Rj is {N 8. }1em, Which satlsf_y
ASS@. (R, M,) =-‘S'Spm (By, Ng), VIET,
Bésides, by the proof of this lemma, we have n=n; whenever
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8y, (R) 228,,, (By).

5
Lemma 6. (1) IfX—-=(Z d) €S8Ly(R), and a—1€J (R), then X =1,

" |
2 If X=<Z d)eSLQ(R), X2=~] and ¢ € R*, then

R G W
(SR T

B Ifrx ES,,,,(R), X?=1I and MX=Ts for all tET, then there ewists PE
SI:,,(R) such that

If X3=—1I, then

PXP=T, MP=I, VtET,

Proof the Proof of (8) can be found in [5]. (1) and (2) can be proved by
calculation. .

For éonvenienc‘e, we denote

A4, X=PXP- for P€GL,(R).

Besides, Let, So,s be the set in 8,,(R) (orin S, (Ry)), whose entries just congist of
0, 1 or —1.

Lemma 7. Suppose that A: SLy(R)—>SLy( Ri) 48 an isomorphism.

(1 1\ (1 1 1 (1
D Ird = A -
oy 3)-( )4l
then there exists a ring isomorphism o, R—>Ry such that
AX =X°, VX €SLs(R) ¢

. 1 : ’ .
@) Ifr4 (1 1)=<1 1) and A, (AX) =1, X for all t€T and X €81, then

there ewist an isomorphism o, R—>Ry and P~ < 1 Z) €8Ly (Ry), MP =1I, VIET
such that
A 4X = X" VX €SL,(R),
Proof As for the proof of (1), see [6]. We prove (2) as.follows. Smce —I is
in the center of SI, (R), there is s€R" such that A(—I)= wI #*=1. But
—I€ 8o, 1. 8o Agw=—1 for all t€T. Therefore s=—1 by 2®—1=0and 2 €R;.

-1\ , 2 ,
- Let 4 (O )____(m y) ‘We have <m y) =—]. So M2=1for alli€Ti.e.
1 0 z % ) z U ' .

1 —z%
2€ R*. Therefore we can take P =='< » ) such that
\ . ,

waly o)l )
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1 1 1 .
by lemma 6. Ap./l< . ) =< ;) by calculation. Clearly
| —1\/1 1)\\?
(o
1 1/
So we have -
/ - 1 Z\\3
=—1I.
(70 )
Hence z=1, i. e. o
- 1 1

11

1 1

We also have

.Apfl(< H )
R S |

Then (2) follows from (1) in this lemma. |
Lemma 8. Suppose AT, =T, for some ¢ (L<i<v),
(1) The centralizer of Ty in S,, (R) is
(w+4)
By, 0 B,
0 6 0
B, |
Dy
0
D,

11
1

NN

As
0
A4
(oF
0
C.

e b
[« Mesnem,

W)

SO O O a8 O

O &2 © O

Ay
As
Oy
O,

A
Ay
Ca
on

By
. BS
Dy
D,

D,
D,

e Sﬂ’n-s (R )

(2) Suppose 1, (AX) =15 X, VEET, X €8o,1 and

b;=

I

|
4/
|

0
b

(1)

(V1)

d

(%)

(v4-1)

a b
¢ Yo

z Y ’
( . u) €S8L,(R)

vV




164 CHIN. ANN. OF MATH.

Vol. 6 Sex. B

Then

Aai =b¢ <1<’I;<V) R

Pfroof Since 2 is a unit, by direct calculation we obtain (1). Then we prove
(2). It is clear that Qi€ Cr, Qi04Ts00s(1) €0r,. s0 both AQ;,»4: and A(Q£,1.+1
T4,044(1) ) are the elements of O 4r,=Cr, Hence, by(l), we have

B,y

0
Ey
Gy

0
G

AQl 2 5 St

AinHTi,v-H (1) =

where Ay, g1 =1, A, 6, =0 for all €T,
we have

So, by lemma, 6, there are matrices

0
€1
0
0

G

k=1, 2. 8ince @2, =Ts(@urss Tovu(D))*=T,

[

0

I
Py~

B,
0
B,
G
0

Fy
0

G
0
Gy

where P, €QS8,,(Ry), A, Py=I, ViET, such that

By
0
Hy
-AQC.uH:P 1 gIl Q4
0
11Gs
By
0
By
| 951G

3 1G

AQi>.v+1Ti.v+i(1) =P2

O H OO oo

0
f1

Fq
Hs;

0 h O

H,

Fy
0
F,
H, |
0
H,
0 Fe

0 fa O

0 Fy
0 He!l

O Hs | o . |

63 f2 )2 = _I.
9z ha »
'0 L k=1, 2,
gu I
B, 91y 0 gin\
0 0 -1 0
B, g1Fs 0 g Fy p-1
gi*¢. Hy 0 H, 1
0 0 0 0
gitQs - Hg 0 H,
0 He gFs 0 goF
0 0 0 -1 0
0 Hy gF7: 0 gl pa
0 ¢;3'Ge Hy .0 Hg | °
1 0 0 1 0
0 ¢'Gs H; 0

Hs
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"Use O to denote the contralizer of Q.4 and @ vei, Tipss(L) in Cr,. Tt is easy to see
that A

(|41 0 Ay By 0 By ' - 3
00 ¢ 0 0 0 O Ay Ay By B,
| 4s 0 A4, B; 0 B, ||| 43 44 By B, '
OB =6, 0 0 b, o D0 0 D D, | B T=1r
0 0 0 0 « 0//\Cs C. Dy D,
\\Og ¢ O, Dy 0 D, ‘ J
Suppose
rf Ay 0 Ay B, 0 B, 3
0 1 0 0 0 0|//4, A, B By
1| 43 0 A, B; 0 B, ||| 42 A+ B, B, o
wi(R) =3 0. 0.0, b, 0 D, o, 0. D, Dg:E,Spn-a(R) 4 |
0 00 01 o0f\o; ¢ Dy D, - |
\C; 0 ¢, Dy 0 D, J ;

Then a;(R) =C (R). So Am,(R)YSAO(R) and AC(R) are the centralizer of AQ, .4 |
and A(Q;,v4Ts,044(1)) in Oy, '

Let . |
X, 0 Xy Y3 0 Y, |

0 2« O 0 ¢ 0

X X;s 0 Xy Y3 0 Y,

- Zy 0 Zy Uy 0 U,

0 =z O 0 w ©0

Zs 0 Z, Us 0 U,

be any element in AC(R). ,Then( vy >"€SL2 (R;)which commute with the follow-
. 2 U :

ing matrices ' § . , .
ol 2, I e
91/\1 91 | g/\1 1 ZV
So we have | ' '
S o G S
S/, \z2 w/\ g \—% %
SR O A
g 2w\ ga) \—Ya @m—ys/

Withmi, 4, € Ry. Henoe ¢y =193=0, 1=, by e;;éJ (Ry). Therefore we have mzu; Y=
2=0, AC(R)SO(Ry), and Am(R)SO(Ry). It is cloar that w?(R)~SZ,,(R) by
@i (R) 28, (R). So since 2C€ B* and S, (R) is generated by symplectic trasvection,

and
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we have S2 (R)‘=S,,”_,,(R),~ wZ(R) =w,(R), Thus
- Awy(R) =Awi(R) = (dm;(B) )*SO* (By) =wi(By).
The cbndition A, (AX) =g, X, VEET, X €8o,4 impleis A, (42X) =0X, ViET and
X €80,1. S0 we have A~*w,(Ry) Sovy(R) by the same reason. Therefore
AW1<R) wi(By).,
Let Cy, denote the contralizer of w, in Cr,- We hdve &, C g r). S0
A, S AC i zy = O payry = O'anum.
It is easy to see that
rfwl 0 ‘ | )

R

I 0 |
Owimy=3| ’ |97 =1, ( - > €8Ly(By)

W

L 0 wl J
Recall that @,~SL,(R), so @} =a,. Hence ' .
: Aa;=Aa} = (4a,)* SOy b,
Slmllarly, we have A7'b,Ca,;, that is, Ada;=b;, |

Lemma 9. Suppose that A, (AX) =Ag, X for all t€T and X ESM, then there
ewists P €8, (Ry) such that
A AT =T, i=1, -, ¥

Proof Olearly, (AT)?=I and Ag,(AT,) =Ag,T;, 6=1, -, ». By lerama 6, we -

have QES,, (BRy)such that A,AT=T4, As,@ =1, VEE€T. So we also have
Mg, (AoA X)) =2, X
for all tET, X €8,,1. Now agssume that there exists Py in S, (B;) such t.hat'
A AT =T, i=1, -, k=1, k=2,
and s, (ApAX) =25, X for all tET, X €8o,1. Consider T'. Since
T =TT, 6=1,, b—1,
by Lemma 8, we have |
“1. b:l.

A, AT, =

. b
C1 dy

.ck—i .dk—i
- c D
where 7»3,“,':7\.&.(1;;1, Ag,bi=Ag,co=0 for all t€T and i=1, ..., 5—1. But (4,,4T,)2
=1I, s0 we have @;=d;=1, b,=¢; by lemma 6. ' |

o ¥ For any group @, we mean that G2={gh|g, RED.
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Hence
G- O®-1
A B
Ay, AT = Ol e P
where Y D
A B A B\?
(0 .D> E Sﬂn—wﬁa (Ri) > (O .D) =I
and _1 ’
\ A B B I
*\¢ D) -
‘ I
for all €T, Therefore, applying Lemma 6 again, we have
Ql = <gii 312 ) e Sﬂn-gmz (Ri)
. a1 22
such that 1 '
A B ' I
-1 __ s
ot M| T
, \ I
Put ; T 0
Q1 Qus
P =
1o I
Q21 Q22

Then Py€8,, (R;) and A,,,A,,AT¢=T¢, 4=1, -, k., Our lemma therefore follows

from the above discussion.

Lemma 10. Suppose AT=T;, i=1, -, v, A, (4X) =g, X for all tET; and
X €80, 1. Lhen there ewists PEGS,,(Ry) such that '

A, AV =7,

where ¥ may be amgj one o f the following symplectic matrices
Tt, Tim-!-i(l), Tv+i.€(1): Jia': Jii: ?:=1: "ty V§j=2: e, VL

Proof It is clear that J;,T;=

8, we have

L1 g Y1

a1y Lo Yar
@y

AJ 18 =

24  Zg U

Za1 2 LUy
%y

T.J s for ¢>2 and T'y,,.:(1) Eay, So by Lemma

Y19

Ys | a b
| T 0
Wl AT ()~

Uya ¢ d

Ug ] 0 I
.up 4‘ .

By (AJ 12)2=I and(1)in Lemma 6, we have o;=w;=1, z,=1,=0 for
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: 1>2, Yy =1y =2 =23=0
and .

( Uy - ’Miz')' < 2y wm) y
. = s 91 = 212 21 ==~ %139,
Ugy Ug Pa1 D2 ’
that is
: ®1 By 0 9
Day B —ay O
o I ' 0
AJ 19 =
’ 0 213 @1 Ty -
- 2o, 0 B1g Ly
0 I

By using J 10 € So,1, 1b is easy to see that o341, miat1, s, Yie, 219 ave all in J (Ry).
In particular @y, @3 €R], _ : . .
Obvmusly, T1,p4a(1) Jaa =T 12T1.v+1 (1) So

ATi. vl (1) -AJIQ = AJ12AT:1, il (1) 3 (1)
therefore, we have

a=1 — 2120730,
¢ = — 4750, ' @2
. | d=1+z05d, o
where Ag,b=1, VtET, Hence bE Ri, Put \
I I I
P1=( ; 1) —za0i  |=| —beuei €GS,, (Ry).
0 I/ - 0b I o
Clearly Ag Py=1I, V¢€T. So, using the equalities (2), we have
A,,lATL,,H(l) Ti,,,,,i(l) Ap AT, =T, 4= 1
Furtherroore we. ha.ve

—1 @ 0 by
. 1 _b__iy:m O L3
AmAJj_g =- . _1 -
T1a 1
I
by equality (1). Let
1
l — D12
I

Py=T4 19 (b’i’yiﬂwﬁi )
o5
. Vo I
Then PQES,,,, (Ry), Mg, Pa=1 for all tET It is easy to see tha,t
ApzAp:AT Ti; = ; "; £3
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Ay Ay AT s (1) =T340 (1),
/11,2/1,,1_/1.7 12=" 1, - -
and Ag, (Ay, 4, AX) =2,X for all €T and X €So, 1. By lemma 8, A,,,,,,,Awi_lb1 So
there is a Ps=T4,,41 (w), Agw=0 for all tET such that
ApsApaAp;ATi.v-i-i @) =401 (1), Ap Ay Ay AT, 1(1) T.v+1.1(1)
and A, 4,4, 4 still preserves Jia, T (=1, =+, ), P
Using the equalities JoiTy=TW 51, >2, Jailvse1,1 (D) T,,+1,1(1)J a1, Ja=1I,
Ao AT 51 =NgJ o1, VEET and T'p1,1(1) €@y, we know that there is matrix

I —yusf o - ,
P,= 0|, Age=1, Ag@as=—1, Ag,912=0, VIET
. 0’"1 I . .
such that 1 =
. 1 | ,
' ' ‘ I
AT ,
'prapzm J21 2 _1 y
| —2 -, 1
. 0 I
where Agy=—1, Ag,z2=0 for all €T Let Py="T,,s,5(¥™2), We have
Y 1
' I
‘ 'Apﬂp«pspzpr/ljm = 1 y
1

N

and 'prwsﬂJ"amA still preserves Ti} 'I12) Ti;%l-l (1)1 TV—l-l:l,i(l): ,"=1) e, Y, and
Mo pppma A X =g, X for all €T, X € 80,1, :

But (Ti-j 10T1J 21)3 T:LTQ, S0 (T;[J 19T1A pw;pspm:AJ 21) _T]_Tg ) from which wo
know that y=—1, i. e.

Ao AT 51 =T 51, Ps = PsPaPsPaPs. .
Applying | . o
Fia=J13T1J 01T1J 15T, Ta,psa(1) =R 1QT1,v+1 (D F3,

Trra,a(1) =F53Tppy,1(1) Fy,

ApgAT27v+2 (1) T29v+2 (1)) -Apg-ATD+2 2<1> Tv+2 2(1)
For any integers #(>8), we assume that there is
QESp,.(R:L), MQ=1I, Vi€l
such that 4,4Y =Y, where ¥ may be any one of T, Jui, J £ Ti,pa (D), Toia,1 (1),
T.iw+: (1> Tv-f-ava (1>: .7 2 ]‘7 1 | | | .
Using the argument as above Wwe can see that _/1@/1 preserves J ke :
Choose another matrix QieG‘S,,” (Ry), M Qu=1 for all t€T, . Then Agye pre-

we have
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serves Jy Ty e (1) and Ty (1) besides the above matrices.
Our lemma therefore follows from the above discussion.

§ 2. The proof of our main theorem

Recal] that ’nhe 1somorph1sm Aof S, (R) onto Sy, (Ri) induces a set of isomor-
phisms '
5,28, (B/My) ——>Spm (Ri/ Ng,), VteT
with Ag, (AX) =Ag, (AX ) for all X in 8, (R), therefore, acoordmg to the result on
symplectic groups over fields, n=n; and for each ¢ €T there is Ps, &GS, (Ry) such
that |
_ A, (X)) =P, (M X )US’P s s
that is,
Ae,(AX) =Pg,(\X)*P;, VEET, X €8,,(R),

Where oy, is the isomorphism of R/M s onto Ry/Ng,.

Since Ry is a ®-surjective: rmg, there exists P1€B’p,, (Ry) such that ?»s,Pi =Py,

for alltcT. Hence '
Mg, (A AX) = (. X)o, VEET,
Tf X €8o,s, it is clear $hat(3X )" =g X. So we have
Ag, (A2 AX) =2, X, VEET and X €8,1.

Now ArrA is also an isomorphism of §8,,(R) onto S,,(R:). By lemma 9 and
lemma 10, there is Py € G, (R) such that A,,.lAY =Y, P=P,P,, where ¥ may be
any one of the following matrices. :

Ty Tovas(D)y Torai), Ju5, T, =1, ==, », =2, -

By Lemma 8, we have Ay da,=b;. But @, ;S’Lg (R), b~SL, (Ri) So, ’uhere

is an 1somorph1sm a of R onto Ry such that 4,.4X =X VX Ca,,

_ ~I o
Using lemma, and the fact that( I) can be expressed by

Tioei()y Torg,i(1), =1, -, v,
we ¢an show

ApAX = X7, ¥X €8, (R),

| AX =PX°P-%, VX €8,,(R),
where P € GS,, (Ry). ' |
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