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A NEW PROOF FOR THE CONVEXITY OF
THE BERNSTEIN-BEZIER SURFACES
OVER TRIANGLES
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Abstract

A necessary and sufficient condition for the convexity of the Bézier net is presented
‘The convex Bézier net implies the convexity of the corresponding Bernstein-Bézier surface
over triangles’, a theorem established by Chang Geng-zhe and Philip J. Davis, is reproved
by a new approach. :

§ 1 Definitions and Notations

Let T" be a triangle arbitrarily given and let P be an arbitrary point in the
plane on which triangle T’ lies. It is well-known that P can be eXpressed uniquely

by the barycentric coordinates (v, v, w) with respect o T and that u+o+w=1 ig

satisfied. We write P = (u, v, w) to identify the point and its baryceniric coordinates.
If PeT, then we have further restrictions 0<<u, v, w<<1l. For somé fixed yét
arbitrary positive integer n, set P;, ;, = (3/n, j/n, k/n) where 4, j, k are nonnegative
integers such that ¢+j-+k=n. Assigning a real number f;, ;, 5 to the point P, 4, 4,
a point B, ; »= (P4 4 # fi, iy x)is obtained. There are altogether (n+1)(n+2)/2
such points in the space. If line segments between any two of the following three
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points Fiu, 5, % Fi serne Fi gy w1 (6+j+k=n—1) are connected, a piecewise
linear function f,, which is called an nth Bézier net over T, is obtained. The projec-
tion of 7, onto triangle T' produces a subdivision of T denoted by S,(T). Points
Py are said to be the nodes of 8, (T). 85(T) and Bézier net, are illustrated in
Fig. 1. { fi, j v: 4+j+k=n} is called the set of Bézier ordinates of Fa.
To each Bézier net f, over 7', there is a polynomial
B'(f;P)= 3 fu s Th 1 u(P) 1)

associated with it where

JE, k(P) uviu®, ’ 2

lj!]‘;l

i-+j+k=n, are called the Bernstein basis polynomials. B*(f; P) is called the Ber-

* nstein-Bézier polynomial(or the B-B polynomial for brevity) over triangle 7.
" The B-B' surfaces have been studied extensively by Farin'~% Barnhill and
Farin™, and Goldman'. Stimulated by interests both in theory and application,
Geng-zhe Ohang and Philip J. Davis investigated the convexity of these surfaces in
[7] . They call the Bézier net fn convex in u-direction if inequalities
Fust, g wtfoe ~Lr34ds w1 141, k+fi, gs kad » (3

hold for all i, §, k such that ¢>1 and ¢-+j+k=n—1. Similar definitions may be
apphed to the #~direction and the w~direction. If fa is convex in u-direction, -
direction and w-direction, then it is said o be convex in 8-direction. They have
shown that a sufficient condition for convexity of B*(f; P) is that f, is convex in
8-direction. Since the convexity of f over T’ implies that of fa in 8-direction, they
conclude ‘

" Theoem 1. The convewity of Fu implies that of B*( f; P) over triangle T.

In this paper, we first establish the equivalence of the convexity of f, and the
convexity of f, in 8-direction. Then based on a theorem of Farin, Theorem 1 is
reproved by a new approach.

§ 2. Characterization for Convexity of fu

The following lemma will be useful in the sequel. _

Lemma. Let y=F(w) be a contin_uous curve which can be divided imto two
convex pleecés having not only a point but @ segment in common. Thon y=F(v) dtself is
a conves curve in its domain. . ' ‘ '

Proof Assume that the common segment shared by the two convex pieces is
represented by y=f(w) restmcted on interval (a, b)) where a<<b. We have to prove
mhat the mequahty

f((w+y)/2) (f@)+f () /2 | @
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holds for any #<y in the domain. of f. » _
Let m= (2+4)/2, i. e. , m is the midpoint of the interval (o, y). We first
consider the case, m € (@, b). There exist »; and 4y close enough to m such that
m = (w1+9,) /2 and that _ '
w<%<m<m<%'

@<z <y1<b.
From the first inequality we see that there exist two positive numbers « and ,8
with e+ B8=1 such that e

o =ax+ Bm, . ‘

1= [Bm+ay.

Since f(=) is convex for >0 and for ©<b, we have
of (m) =2f (2 +91) /2) <f (21) +f () = (aw+ Bm) +f (Bm-+ay)
. <oaf (@) +Bf (m) + Bf (m) +af ().,
It follows that ' S
2af (m)<a(f(0) +f(®))
and then (4) is obtdined. Now we turn to the other case; m& (@, b). Without loss
- of generality, we can assume b<<m<g. If at least one of » and ¢ is in (@, b), then
(4) is valid by the hypothesis. Hence it suffices to consider the case in which »<a
<b<y. Fix arbitrarily a point 2 in (e, b) and then find a pdint o such that
L = (w+2))/2. ' '
It is obvious that z<a’<y. Hence there exists a real number A satisfying 0<A<1
such that 2’ =Az+ (1—1)y. Then we get
m=(2—A)2/2+\y/2.
Since the midpoint 2 of interval (o, #') is in (a, b), by the fact we have just shown
before
() ~27 (o--07)/2) < F(@) &)
. <f (@) +0f () + 1 ~1)f ().
It follows that ' .
’ F@<f(®)/2@—M+f(@A-1)/(2-1). - ®
Since a<z<m<y, we have '
Fm) <F(2) (2 ) /2 F @2 (F @)+ F @) /2
(5) has been used in the last step. This completes the proof of the lemma.
The main theorem of thls section is stated as follows.
Theorem 2. A necessary and sufficient condition for Béier net being convew is
that 41 és convew in 3-direction. '
Proof The proof of the necessity of the condition is cagior and could be
found in [7]. It remains to prove the sufficiency of the condifion. Proceed
induction on degree of Bézier net. For n=2, convexity'in 8-direction says that
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fa, 0, 0+ Fo,1,1=F1,0,1+ F1,1,0,
Sfo, a0t f1,0,1=F1,1,0F fo,1,1, ' (6)

fo.0,at+F1,1,0=Fo,1,1+ F1.001.
Tt isintuitively easy o see that each inequ~

- ality of (6) ensures the convexity of fs
. restricted to the corresponding parallelo—
gram in Fig. 2. (This can be made rigor—
“ous of course.) Now suppose P and @ are
two arbitrary points in 7’. There exists ab
least one shaded triangle shown in Fig. 2,
)C 0.0 2 which does contain neither P nor . This
5-0. 2,0 | j; of1 "' means that line segment PQ is contained
Fig. 2 completely by the union ef two parallelo-

grams. The Bézier net fg restricted to PQ is denoted by P'Q. If PQ is not a part of
the boundary of T, then P'Q) itself is either a convex curye or a union of two

convex curves having a line segment in common, thus P'Q’ is a convex curve by

the lemma. A _
It follows immediately from (6)that

* far0,0F Fo,9,02>2f41,1,0,
fo,5,0 fo,0.22>2f0,1,1, (T»
fo,0,a+F2,0,02>2f1,0,1.
'This means that each of the boundary curves of 7, is convex. Hence we have shown
Fa is convex over 7. _

Assume that each (n—1)th Bézier net which is convex in 3-direction is
convex. Now we consider a nth Bézier net which is convex in 3-direction. If any
side of T and all subtriangles of S,(T) having at least one point in common with.
the side are deleted, then the(n—1)th Bézier net left, which is still convex in 8-
direction, is convex by the induction hypothesis. This means that Fu is the union. -
of three convex surfaces. Applying the same argument used in the case of n=2, we |

can prove that 7, is convex over 7.

§ 3. Proof of Theorem 1

A sunple calculation shows
It 5= L@+ TV, 50+ GAL) T3k (B+1)JT2 w41]/ (n+1)
where ¢+j-+%=n. This formula enables us to express the B-B polynomial of degree
n in terms of the Bernstein basis polynomials of degree n+1 as the following
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B (fi Py= 20 fiawliiu(P), )
_ §+jETmnel ,
where ‘ ‘ |
Fovne=Gf v, 55+ 1 -1t Bty 5y0-2) / (0 1), )]

If ff 4 defined in (9) is assigned 0 the node (4/(n+1), j/(n+1), k/(n+1)) of
Syt (T), then a (n+1)th Bézier net Hf, is obtained. (8) says that Bézier nets f,
and Ef,, define the same B-B surface over triangle 7'. This procedure is called
degree elevation by Farin in [1, 2]

‘We have the following

Theorem 3. If f,, s convex over T, then so is Ef .

Proof Since £, is convex over T', by Theorem 2 it is convex in 3-direction.
From (9) we have

Fistane=[E@+D) fo gt ifist ot Efint, 01l /(a+1),
Fictizrmen=[@—Dfig eamat G+Dficsomat G+Dficg1,8]/ (0+1),
Froistoe= lifitigerat G+ fu 0t Bl /(n+1),
Sirnner=[fia, 1,001 0 1 it w1+ G+ fro sl / (n+1),

thus .
1) (FF st et Fi -ty st e — 1 a1, Fo s at)
=(i—1) (.f{,j,k+fi~2,j.+1,k+1 ~Fict,158,6— Fictyinan)

+§(Frrtsi-tontFictiiiss— Fo = Froi-tinst)

Fb(fists i1t Fiotenn— Frgatsn-1—Fi ) >0
by the fact of f, being convex in u-direction. The result we have just shown is
that Ef, is convex in u-direction. Its convexity in 3-direction can be proved by
symmetry. Hence Ef, is convex over T’ by Theorem 2.

If the process of degree elevation is continued, the sequence of Bézier nets

B, BPF,, EBfeeeee
is obtained. Edach term in the sequence is convex over T’ if £, is so. In 1979, Farin

proved that _
lim Bmf (P)=B"(f; P),

Theorem 1 follows immediately from this fact.

/7
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