COMPLETE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE AND CONSTANT MEAN CURVATURE IN R⁴

HUANG XUANGUO(黄宣国)*

Abstract

Let M be a 3-dimensional complete and connected hypersurface immersed in \mathbb{R}^4 . If the scalar curvature R and the mean curvature |H| of M are constants, where $|H| \neq 0$, $R \ge 0$, then there are only three cases: $R=6|H|^2$, $\frac{9}{2}$ $|H|^2$ and O. Moreoven we can find some hypersurfaces appropriate to these cases.

Introduction

In 1974, Mosafumi Okumura proved the following theorem: Let M be an *n*dimensional complete and connected hypersurface in an (n+1)-dimensional Riemannian manifold N with non-negative constant curvature C. Let S be the square norm of second fundamental tensor \tilde{H} of M. If both S and trace \tilde{H} are constants, where trace $\tilde{H}>0$, and in addition, $S<2O+\frac{1}{n-1}$ (trace \tilde{H})², then Mis a sphere (see [1]).

Suppose that $|H| = \frac{1}{n}$ trace \widetilde{H} , and R is the scalar curvature of M. At first, we have $R+S=n^2|H|^2$. In particular when n=3, $N=R^4$, the above theorem indicates that if $S<\frac{9}{2}|H|^2$, we must have $M=S^3$. At that time, $S=3|H|^2$.

Assume $R \ge 0$. It is obvious that $S \le 9|H|^2$. In this paper, we obtain the following result: Let M be a 3-dimensional complete and connected hypersurface in \mathbb{R}^4 . If |H| and R are constants, and $|H| \ne 0$, $R \ge 0$, then there are only three cases: $R = 6|H|^2$, $\frac{9}{2}|H|^2$ and 0, when $R = 6|H|^2$, $M = S^3\left(\frac{1}{|H|}\right)$; when $R = \frac{9}{2}|H|^2$, $M = S^2\left(\frac{2}{3|H|}\right) \times R^1$; When R = 0, for example, $M = S^1\left(\frac{1}{3|H|}\right) \times R^2$.

Manuscript received February 26, 1983.

* Institute of Mathematics, Fudan University, Shanghai, China.

§1. Preliminaries

Let M be an *n*-dimensional hypersurface immersed in (n+1)-dimensional Euclidean space R^{n+1} . We choose a local vector field of orthonormal frames e_1, \dots, e_{n+1} in R^{n+1} such that, restricted to M, the vectors e_1, \dots, e_n are tangent to M. And consequently, the remaining vector e_{n+1} is normal to M. We shall agree with the following convention on the ranges of indices:

$$1 \leq A$$
, B, C, $\dots \leq n+1$, $1 \leq i$, j, k, l, s, t, $\dots \leq n$.

Let ω^1 , ..., ω^{n+1} be a local field of dual frames in \mathbb{R}^{n+1} . It's well known that the structure equation and fundamental formulas are given by

$$d\omega^{A} = \sum_{B} \omega^{B} \wedge \omega^{A}_{B}, \ \omega^{A}_{B} + \omega^{B}_{A} = 0,$$

$$d\omega^{A}_{B} = \sum_{C} \omega^{C}_{B} \wedge \omega^{A}_{C}.$$
 (1.1)

We restrict these forms to M. Then we can see

$$\omega^{n+1} = 0, \ \omega_j^{n+1} = \sum_i h_{ji}\omega^i, \ h_{ji} = h_{ij},$$
$$d\omega^i = \sum_j \omega^j \wedge \omega_j^i, \ \omega_j^i + \omega_i^j = 0,$$
$$d\omega_j^i = \sum_l \omega_j^l \wedge \omega_l^i + \frac{1}{2} \sum_{l,s} R_{jls}^i \omega^l \wedge \omega^s,$$

where

$$R_{j\,ls}^{i} = h_{js}h_{il} - h_{jl}h_{is}.$$
 (1.2)

We call h_{ij} the components of the second fundamental form. Let

 $S = \sum_{i,j} (h_{ij})^2$. Mean curvature vector $H = \frac{1}{n}$. $\sum_i h_{ii}e_{n+1}$. When $|H| \neq 0$, we can choose e_{n+1} as the unit vector of H, and make use of | | to express the length of a vector. We can see $\sum_i h_{ii} = n |H|$.

From [6] or [7], we know

$$\sum_{k} h_{ijk} \omega^{k} = dh_{ij} - \sum_{l} h_{il} \omega_{j}^{l} - \sum_{l} h_{lj} \omega_{i}^{l}, h_{ijk} = h_{ikj},$$

$$\sum_{i} h_{ijkl} \omega^{i} = dh_{ijk} - \sum_{i} h_{ljk} \omega_{i}^{i} - \sum_{l} h_{ilk} \omega_{j}^{l} - \sum_{l} h_{ijl} \omega_{k}^{l}$$

$$h_{ijkl} - h_{ijlk} = \sum_{s} h_{is} R_{jkl}^{s} + \sum_{s} h_{sj} R_{ikl}^{s},$$

$$\sum_{s} h_{ijkls} \omega^{s} = dh_{ijkl} - \sum_{s} h_{sjkl} \omega_{i}^{s} - \sum_{s} h_{iskl} \omega_{j}^{s} - \sum_{s} h_{ijsl} \omega_{k}^{s} - \sum_{s} h_{ijkls} \omega_{l}^{s},$$

$$h_{ijkls} - h_{ijksl} = \sum_{l} h_{tjk} R_{ils}^{l} + \sum_{l} h_{itk} R_{jls}^{l} + \sum_{l} h_{ijkl} R_{kls}^{l},$$

$$dh_{ij} = \sum_{k} h_{ijkk}, \ dh_{ijk} = \sum_{l} h_{ijkll}.$$
(1.3)

The Ricci curvature R_{ij} of M is determined by $R_{ij} = \sum_{i} R_{iij}^{i}$. The scalar curvature

 $R = \sum_{i} R_{ii}$. From (1.2), we know

$$R_{ij} = n |H| h_{ij} - \sum_{l} h_{ll} h_{lj}, R = n^2 |H|^2 - S.$$
(1.4)

In this paper, we require that |H| and R are constants $(|H| \neq 0)$. We make use of \tilde{H} to express matrix (h_{ij}) . Σ indicates the sum of all the same indices. By a long calculation and by virtue of (1.2)—(1.4), we obtain

$$4h_{ij} = n |H| \sum_{i} h_{ii} h_{ij} - Sh_{ij}, \qquad (1.5)$$

$$\sum h_{ijk} \Delta h_{ijk} = 6 \sum h_{ijk} h_{lsk} h_{il} h_{sj} - 3 \sum h_{ijk} h_{sik} h_{ls} h_{ls} - 6 \sum h_{ijk} h_{lsk} h_{lj} h_{ls} + 3n |H| \sum h_{ijk} h_{sik} h_{sj} - S \sum h_{ijk}^2, \qquad (1.6)$$

$$\Delta(\text{trace } \widetilde{H}^3) = 3 \sum \Delta h_{ij} h_{jl} h_{ll} + 6 \sum h_{ijk} h_{jlk} h_{ll}$$

$$=3n|H| \text{ trace } H^4 - 3S \text{ trace } H^3 + 6\sum h_{ijk}h_{jik}h_{ilk}.$$
(1.7)

$$\begin{aligned} \mathcal{A}(\text{trace } H^*) &= 4n |H| \text{ trace } H^* - 4S \text{ trace } H^* + 8 \sum h_{ijs} h_{jls} h_{lk} h_{kl} \\ &+ 4 \sum h_{ijs} h_{jl} h_{lks} h_{kl}. \end{aligned}$$
(1.8)

We also have

$$\frac{1}{2} \Delta S = \sum h_{ij} \Delta h_{ij} + \sum h_{ijk}^2 = n |H| \text{ trace } \widetilde{H}^3 - S^2 + \sum h_{ijk}^2, \qquad (1.9)$$

$$\frac{1}{4} \Delta^2 S = \frac{1}{2} n |H| \Delta (\operatorname{trace} \widetilde{H}^3) - \frac{1}{2} \Delta S^2 + \sum h_{ijk} \Delta h_{ijk} + \sum (h_{ijkl})^2.$$
(1.10)

Now because S is a constant too, using (1.6) and (1.7), we have

$$\sum h_{ijkl}^{2} = -\frac{3}{2} n^{2} |H|^{2} \operatorname{trace} \widetilde{H}^{4} + \frac{3}{2} Sn |H| \operatorname{trace} \widetilde{H}^{3} - 6n |H| \sum h_{ijk} h_{ijk} h_{ilk} h_{il} - 6 \sum h_{ijk} h_{lsk} h_{il} h_{sj} + 3 \sum h_{ijk} h_{sik} h_{ls} h_{jl} + S \sum h_{ijk}^{2}.$$
(1.11)

Let
$$b_{ij} = |H| \delta_{ij} - h_{ij}$$
, then $b_{ij} = b_{ji}$. The following formulas are easily seen:

 $\sum_{i} b_{ii} = 0, \ \sum b_{ij}^2 = S - n | \ H |^2,$

trace
$$\widetilde{H}^{3}=3|H|S-2n|H|^{3}$$
-trace B^{3} ,

trace
$$\tilde{H}^4 = 6|H|^2 S - 5n|H|^4 - 4|H|$$
 trace $B^3 + \text{trace } B^4$,

where B denotes the matrix (b_{ij}) .

(1.12)

§2. 3-dimensional complete hypersurfaces in R⁴

In this section, n=3. On the other word, M is a complete and connected hypersurface with constant mean curvature and constant scalar curvature in R^4 .

At the beginning of this section, we know all formulas in § 1 are valid. Because $\widetilde{H} = (h_{ij})$ is a symmetric matrix, we choose e_1, e_2, e_3 at a point P of M such that $h_{ij} = \lambda_i \delta_{ij}$. From the definition of b_{ij} , at the same time, we have $b_{ij} = \mu_i \delta_{ij}$ and $\lambda_i + \mu_i = |H|$.

It is easy to know that

$$\mu_1 + \mu_2 + \mu_3 = 0, \ \mu_1^2 + \mu_2^2 + \mu_3^2 = S - 3 |H|^2,$$

$$\mu_{1}^{4} + \mu_{2}^{4} + \mu_{3}^{4} = (\mu_{1}^{2} + \mu_{2}^{2} + \mu_{3}^{2})^{2} - \frac{1}{2} [(\mu_{1} + \mu_{2} + \mu_{3})^{2} - (\mu_{1}^{2} + \mu_{2}^{2} + \mu_{3}^{2})]^{2}$$
$$= \frac{1}{2} (S - 3|H|^{2})^{2}.$$
(2.1)

From (2.1), (1.9) and (1.12), we get

$$\Delta(\operatorname{trace} \widetilde{H}^4) = 4|H| \ \Delta(\operatorname{trace} \widetilde{H}^8) = -\frac{4}{3} \ \Delta(\Sigma h_{ijk}^2).$$
(2.2)

Because of (1.8) and (2.2), at P, we have

$$2\sum_{ijk}^{2}\lambda_{i}^{2}+\sum h_{ijk}^{2}\lambda_{i}\lambda_{j}=-\frac{1}{3}\Delta(\sum h_{ijk}^{2})-3|H|\sum_{i}\lambda_{i}^{5}+S\sum_{i}\lambda_{i}^{4}.$$
(2.3)

Using the relation between λ_i and μ_i , we know

$$\sum h_{ijk}^{2} \lambda_{i}^{2} + 2 \sum h_{ijk}^{2} \lambda_{i} \lambda_{j} = 3 |H|^{2} \sum h_{ijk}^{2} - 6 |H| \sum h_{ijk}^{2} \mu_{i} + \frac{1}{3} \sum h_{ijk}^{2} (\mu_{i} + \mu_{j} + \mu_{k})^{2}. \quad (2.4)$$

From (1.7), we have

$$6|H|\sum h_{ijk}^{2}\mu_{i}=9|H|^{2} \operatorname{trace} \tilde{H}^{4}-3S|H| \operatorname{trace} \tilde{H}^{3}$$
$$+6|H|^{2}\sum h_{ijk}^{2}+\frac{1}{3}\Delta(\sum h_{ijk}^{2}), \qquad (2.5)$$

and from

$$6\sum h_{ijk}^{2}\lambda_{i}\lambda_{j}-3\sum h_{ijk}^{2}\lambda_{j}^{2}=5\left(\sum h_{ijk}^{2}\lambda_{i}^{2}+2\sum h_{ijk}^{2}\cdot\lambda_{i}\lambda_{j}\right)-4\left(2\sum h_{ijk}^{2}\lambda_{i}^{2}+\sum h_{ijk}^{2}\lambda_{i}\lambda_{j}\right),$$
(2.6)

we can obtain

$$\begin{split} 6\sum h_{ijk}^{2}\lambda_{i}\lambda_{j} - 3\sum h_{ijk}^{2}\lambda_{j}^{2} &= -\frac{1}{3} \Delta(\sum h_{ijk}^{2}) + 12|H| \text{ trace } \widetilde{H}^{5} \\ &- (4S + 45|H|^{2}) \text{ trace } \widetilde{H}^{4} \\ &+ 15|H| (S + 3|H|^{2}) \text{ trace } \widetilde{H}^{3} - 15S^{2}|H|^{2} \\ &+ \frac{5}{3}\sum h_{ijk}^{2} (\mu_{i} + \mu_{j} + \mu_{k})^{2}. \end{split}$$

$$(2.7)$$

We substitute (1.7), (1.9), (2.2) and (2.7) into (1.11), then $\sum h_{ijkl}^{2} = \frac{4}{3} \Delta (\sum h_{ijk}^{2}) + S^{3} + 15S^{2} |H|^{2} + 4S \text{ trace } \widetilde{H}^{4}$ $- \frac{45}{2} S |H| \text{ trace } \widetilde{H}^{3} - 12 |H| \text{ trace } \widetilde{H}^{5} + \frac{117}{2} |H|^{2} \text{ trace } \widetilde{H}^{4}$ $- 45 |H|^{3} \text{ trace } \widetilde{H}^{3} - \frac{5}{3} \sum h_{ijk}^{2} (\mu_{i} + \mu_{j} + \mu_{k})^{2}. \qquad (2.8)$

Using (2.1), we can see

trace
$$\widetilde{H}^{5} = -\frac{9}{2} |H|^{5} - 5 |H|^{3}S + \frac{5}{2} |H|S^{2} - 10 |H|^{2} \sum_{i} \mu_{i}^{3} - \sum_{i} \mu_{i}^{5}$$
 (2.9)

and

$$\sum_{i} \mu_{i}^{5} = -5\mu_{1}\mu_{2}(\mu_{1} + \mu_{2})(\mu_{1}^{2} + \mu_{1}\mu_{2} + \mu_{2}^{2})$$

$$= \left(\frac{5}{3}\sum_{i}\mu_{i}^{3}\right) \cdot \left(\frac{1}{2}\sum_{i}\mu_{i}^{2}\right) = \frac{5}{6}(S-3|H|^{2})\sum_{i}\mu_{i}^{3}.$$
(2.10)

From (1.12) and (2.10), evidently

No. 2 Huang, X. G. COMPLETE HYPERSURFACES WITH CONSTANT SCALAR

trace
$$\widetilde{H}^{5} = \frac{5}{6} (S+9|H|^{2})$$
 trace $\widetilde{H}^{3} + \frac{9}{2}|H|^{3}(9|H|^{2}-5S).$ (2.11)

181

We rely on (1.12), (1.9) and (2.11). Let $\sum h_{ijk}^2 = f$. f is a differentiable function of M. Then (2.8) becomes

$$\Sigma h_{ijkl}^{2} = \frac{4}{3} \Delta f + \frac{5}{2} (S - 3|H|^{2}) \left(S - \frac{9}{2} |H|^{2} \right) (9|H|^{2} - S) + \frac{11}{2} (S - 6|H|^{2}) f - \frac{5}{3} \Sigma h_{ijk}^{2} (\mu_{i} + \mu_{j} + \mu_{k})^{3}.$$
(2.12)

Combining (2.5) with (1.9), (1.12), we have

$$\frac{1}{3} \Delta f = 6 |H| \sum h_{ijk}^2 \mu_i + (6|H|^2 - S)f + (S - 3|H|^2) \left(S - \frac{9}{2} |H|^2\right) (S - 9|H|^2).$$
(2.13)

Therefore

$$\sum h_{ijki}^{2} + \frac{5}{3} \sum h_{ijk}^{2} (\mu_{i} + \mu_{j} + \mu_{k})^{2} - 24 |H| \sum h_{ijk}^{2} \mu_{i}$$

= $\frac{3}{2} (S - 3|H|^{2}) \left(S - \frac{9}{2} |H|^{2} \right) (S - 9|H|^{2}) + \frac{3}{2} (S - 6|H|^{2}) f.$ (2.14)

The above equality is a very important formula in this paper.

If, in the whole of M, each λ_i $(1 \le i \le 3)$ is constant, we say M owns constant principal curvatures. Secondly, we introduce some res u|t which we shall use later on

(1) In \mathbb{R}^{n+1} , a complete and connected hypersurface with constant principal curvatures must be $S^k \times \mathbb{R}^{n-k}$ ($0 \le k \le n$) (see [2]).

Hence, in \mathbb{R}^4 , non-totally geodesic complete and connected hypersurfaces with constant principal curvatures are certainly S^3 , $S^2 \times \mathbb{R}^1$, $S^1 \times \mathbb{R}^2$, where S are $3|H|^2$, $\frac{9}{2}|H|^2$ or $9|H|^2$, respectively.

(2) $-\frac{1}{\sqrt{6}}(S-3|H|^2)^{3/2} \ll \sum_i \mu_i^3 \ll \frac{1}{\sqrt{6}}(S-3|H|^2)^{3/2}$, the equality holds if

and only if there are at least two equal μ_i (cf. lemma in [1]).

From (1.4). we know

$$R_{ii} = 3 |H| \lambda_i - \lambda_i^2 > -3 |H| \sqrt{S} - S.$$
 (2.15)

In this paper, the Ricci curvature of M is bounded below.

Now we shall set up a theorem.

Theorem. In \mathbb{R}^4 , let M be complete and connected hypersurface with non-zero constant mean curvature vector H and non-negative constant scalar curvature R. Then there are only three cases: $\mathbb{R} = 6|H|^2$, $\frac{9}{2}|H|^2$ and 0. When $\mathbb{R} = 6|H|^2$, $M = S^2\left(\frac{1}{|H|}\right)$; when $\mathbb{R} = \frac{9}{2}|H|^2$, $M = S^2\left(\frac{2}{3|H|}\right) \times \mathbb{R}^1$; when $\mathbb{R} = 0$, for example $M = S^1\left(\frac{1}{3|H|}\right) \times \mathbb{R}^2$.

Proof Because |H| and S are constants, from (1.9) and (1), M owns constant principal curvatures if and only if f is constant. Hence it is considerable that f is not constant.

We assume f is not constant. Masafumi Okumura proved that when

$$S < \frac{9}{2} |H|^2, M = S^3 \left(\frac{1}{|H|}\right).$$

When $S = \frac{9}{2} |H|^2$, by virtue of the work of Chen and Okumura in 1973 (see [4]), we can see M has non-negative sectional curvature.

From the work of Nomizu and Smyth in 1969 (cf. [5]), we can find

$$M = \mathrm{S}^{2}\left(\frac{2}{3|H|}\right) \times R^{1}.$$

Now we consider $S > \frac{9}{2} |H|^2$. In 1975, S. T. Yau discovered the following theorem¹³:

Let \widetilde{M} be a complete Riemannian manifold. The Ricci curvature of \widetilde{M} is bounded below. In addition. F is a c² function and sup $F < \infty$. Then there is a sequence of points $\{P_{\nu}\}$ in \widetilde{M} such that

$$\lim_{\nu \to \infty} |dF(P_{\nu})| = 0, \quad \lim_{\nu \to \infty} \Delta F(P_{\nu}) \leq 0,$$
$$\lim_{\nu \to \infty} F(P_{\nu}) = \sup_{\nu \to \infty} F. \tag{2.16}$$

Let F = -f. Obviously, M and F satisfy the condition in S. T. Yau's theorem. Hence, $\lim f(P_{\nu}) = \inf f$. Because of (1.9) and (1.12), evidently

$$\lim_{\nu \to \infty} \sum_{i} \mu_{i}^{3}(P_{\nu}) = \inf \sum_{i} \mu_{i}^{3} \ge -\frac{1}{\sqrt{6}} (S-3|H|^{2})^{3/2}, \qquad (2.17)$$

while we know $\mu_i(P_\nu) \in [-(S-3|H|^2)^{1/2}, (S-3|H|^2)^{1/2}]$ $(1 \le i \le 3)$. It is well known that in a closed interval a set of infinite points has at least an accumulation point. Therefore we can select a subsequence $\{P_{\nu'}\}$ of $\{P_\nu\}$ such that $u_1(P_{\nu'})$ has a limit point. Next, we can choose a subsequence $\{P_{\nu''}\}$ of $\{P_{\nu'}\}$ such that $\mu_2(P_{\nu''})$ has a limit point, etc. At last, there exists a subsequence of $\{P_\nu\}$, which, for simplicity, we still write as $\{P_\nu\}$. Moreover, at the same time, $\mu_i(P_\nu)(1 \le i \le 3)$ has limit points respectively.

Now we conclude

$$\lim_{\nu \to \infty} \sum_{i} \mu_{i}^{3}(P_{\nu}) = -\frac{1}{\sqrt{6}} (S-3|H|^{2})^{3/2}, \text{ inf } f = 0.$$
(2.18)

At the beginning, we prove the first equality. If it were not true, i. e.,

$$\inf \sum_{i} \mu_{i}^{3} > -\frac{1}{\sqrt{6}} (S-3|H|^{2})^{3/2},$$

from (2), we should know that any two numbers among $\lim_{\nu \to \infty} \mu_1(P_{\nu})$, $\lim_{\nu \to \infty} \mu_2(P_{\nu})$ and $\lim_{\nu \to \infty} \mu_3(P_{\nu})$ are different. Because there are two equal numbers, by calculation, $\inf \sum_{i} \mu_i^3$ must be $\frac{1}{\sqrt{6}} (S-3|H|^2)^{3/3} = \sup \sum_{i} \mu_i^3$. Hence $\sum_{i} \mu_i^3$ is a constant. Consequently f is a constant too. It is contrary to the hypothesis. Therefore we can see that when ν is sufficiently large, any two numbers among $\lambda_1(P_{\nu}), \lambda_2(P_{\nu})$ and $\lambda_3(P_{\nu})$ are different.

It's easy to know that

$$A(P_{\nu}) = \begin{vmatrix} 1 & 1 & 1 \\ \lambda_{1}, & \lambda_{2}, & \lambda_{3} \\ \lambda_{1}^{2}, & \lambda_{2}^{2}, & \lambda_{3}^{2} \end{vmatrix} (P_{\nu}) \neq 0 \text{ and } \lim_{\nu \to \infty} A(P_{\nu}) \neq 0.$$
(2.19)

In view of (1.9), we know $df = -3|H| d(\text{trace } \tilde{H}^3)$. Then $\lim_{\nu \to \infty} |d(\text{trace } \tilde{H}^3(P_{\nu}))|$ =0. And because |H|, S are constants, at P_{ν} we have

$$\sum_{i} h_{iik} = 0, \qquad \sum_{i} \lambda_{i} h_{iik} = 0, \qquad \sum_{i} \lambda_{i}^{2} h_{iik} = a_{k}, \qquad (2.20)$$

where a_k depends on P_{ν} , $1 \le k \le 3$, and $\lim_{\nu \to \infty} a_k(P_{\nu}) = 0$. Because of (2.20), at point P_{ν} we get

 $h_{11k} = A^{-1} a_k(\lambda_3 - \lambda_2), \ h_{22k} = A^{-1} a_k(\lambda_1 - \lambda_3), \ h_{33k} = A^{-1} a_k(\lambda_2 - \lambda_1).$ (2.21) By virtue of (2.19), we find $\lim_{\nu \to \infty} h_{iik}(P_{\nu}) = 0.$ from (2.1), we can see

$$\sum h_{ijk}^2 \mu_i = \sum_i h_{iii}^2 \mu_i + \sum_{i \neq k} h_{iik}^2 (2\mu_i + \mu_k).$$
(2.22)

Evidently

$$\lim \sum h_{ijk}^2 \mu_i(P_{\nu}) = 0.$$
 (2.23)

Similarly, we have

$$\lim_{\nu \to \infty} \sum h_{ijk}^2 (\mu_i + \mu_j + \mu_k)^2 (P_{\nu}) = 0.$$
 (2.24)

Evaluate formula (2.13) at P_{ν} and let $\nu \rightarrow \infty$. Then using $\lim_{\nu \rightarrow \infty} \Delta f(P_{\nu}) \ge 0$ and (2.23), we can see

$$(S-6|H|^2)\inf f \leq (S-3|H|^2) \left(S-\frac{9}{2}|H|^2\right) (S-9|H|^2).$$
(2.25)

As in the work of Peng and Terng^[6] we obtain

$$\sum h_{ijkl}^2 \geqslant 3 \sum_{i \neq j} h_{ijij}^2.$$
(2.26)

Define $t_{ij} = h_{ijij} - h_{jiji}$. From (1.3), we have

$$t_{ij} = \lambda_i \lambda_j (\lambda_i - \lambda_j). \qquad (2.27)$$

When $i \neq j$,

$$h_{ijij}^{2} + h_{jiji}^{2} = \frac{1}{2} (h_{ijij} - h_{jiji})^{2} + \frac{1}{2} (h_{ijij} + h_{jiji})^{2}.$$
 (2.28)

Hence

$$\sum h_{ijkl}^2 \ge \frac{3}{4} \sum \lambda_i^2 \lambda_j^2 (\lambda_i - \lambda_j)^2.$$
(2.29)

From (2.14), we know $\lim_{\nu \to \infty} \sum h_{ijkl}^2(P_{\nu})$ exists. From (2.29) and the fact that any two numbers among $\lim_{\nu \to \infty} \lambda_1(P_{\nu})$, $\lim_{\nu \to \infty} \lambda_2(P_{\nu})$ and $\lim_{\nu \to \infty} \lambda_3(P_{\nu})$ are different, we have $\lim_{\nu \to \infty} \sum h_{ijkl}^2(P_{\nu}) > 0.$ (2.30)

Making use of (2.23), (2.24), (2.25) and (2.30), from (2.14), we can see

$$0 < 3(S-3|H|^{2}) \left(S-\frac{9}{2}|H|^{2}\right) (S-9|H|^{2}).$$
(2.31)

Because $\frac{9}{2}|H|^2 < S \leq 9|H|^2$, it is impossible. Therefore, we obtain the first formula in (2.18).

Using (1.9) and (1.12), at P_{ν} , we have

$$f = (S-3|H|^2)(S-6|H|^2) + 3|H|\sum \mu_i^3.$$
(2.32)

Because $f \ge 0$, we have $\inf f \ge 0$. In view of the first formula in (2.18), obviously

$$(S-3|H|^2)(S-6|H|^2) - \frac{3}{\sqrt{6}}|H|(S-3|H|^2)^{3/2} = \inf f \ge 0.$$
 (2.33)

(2.33) is equivalent to

$$-3(S-3|H|^{2})\left[|H|-\frac{1}{\sqrt{6}}(S-3|H|^{2})^{1/2}\right]\cdot\left[|H|+\frac{2}{\sqrt{6}}(S-3|H|^{2})^{1/2}\right]$$

= inf f>0.

By virtue of $\frac{9}{2}|H|^2 < S \leq 9|H|^2$, the left hand side of $(2.34) \leq 0$. Hence inf f=0. At the moment

$$|H| - \frac{1}{\sqrt{6}} (S-3|H|^2)^{1/2} = 0$$
, i. e., $S=9|H|^2$. (2.35)

In sum, when $0 < S \leq 9 |H|^2$, S gets only three values: $3|H|^2$, $\frac{9}{2} |H|^2$ and $9|H|^2$, i. e., when $R \geq 0$, R has only three values: $6|H|^2$, $\frac{9}{2} |H|^2$ and 0.

When $M = S^1\left(\frac{1}{3|H|}\right) \times R^2$, *M* owns constant principal curvatures. We know $S = 9|H|^2$ and R = 0 (cf. [2]).

References

- [1] Okumura, M., Hypersurfaces and a pinching problem on the second fundamental tensor, Amer, Jour. of Math., 96 (1974), 207-213.
- [2] Nomizu, K., Elie Cartan's work on isoparametric families of hypersurfaces, Proc. of Symp in Pure Math., 27 (1975), 191-200.
- [3] Yau, Shing-tung, Harmonic functions on complete Riemannian manifolds, Comm. Pure. Appl Math., 28 (1975), 201-228
- [4] Chen, B. Y. & Okumura, M., Scalar curvature inequality and submanifold, Proc. Amer. Math. Soc., 38(1973), 605-608
- [5] Nomizu, K. & Smyth, B., A formula of Simons' type and hypersurfaces with constant mean curvature, Jour. of Diff. Geom., 3(1969), 367-377.
- [6] Peng, C. K. Terng, C. L., Minimal hypersurfa-ces of spheres with constant scalar curvature (to appear).
- [7] Yau, Shing-Tung, Submanifolds with constant mean curvature I, Amer. Jour. of Math., 96 (1974) 346-366.